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Constructing high-performance photo-electrodes by patterning the photo-active

semiconducting components with desirable texture and architecture is one of the most

promising approaches to achieve the practical and scale-up application of photo-electric

or photoelectrochemical (PEC) devices. However, it is a still big challenge to efficiently

and effectively handle nano-structural semiconducting materials into intergraded circuit

devices, displaying good electric-contact and stability. Here, a facile manufacture

strategy for fabricating native metal-oxides based photo-electrodes by directly printing

Ga-based liquid metals is explored. The PEC device, functionalized by the native

Ga-oxide functional layer, exhibits self-powered photo-detection behaviors and presents

fast photo-electric responsibility in response to the simulated Sunlight illumination.

This printable PEC device shows good potential for high sensitive self-powered

photo-detector and provides a flexible and versatile approach for the design and

fabrication of novel electrode structures.

Keywords: liquid metal, metal oxide, photoelectrochemical, printing electronics, photodetector

INTRODUCTION

Photoelectrochemical (PEC) devices offer a promising method of converting light into electric
power or chemical fuels (Fujishima and Honda, 1972; Li et al., 2013b). Being distinguished
from the solid-state junction in the classic photovoltaics devices, multi-junction by contacting
the semiconductor with an electrolyte (liquid, gel or organic solid) constructs the internal
circuit of the PEC devices (Grätzel, 2001). This type of design enables a facile transfer
of photo-induced charge carriers across the semiconductor-electrolyte interface, realizing
the migration of electrons from the internal circuit to the external circuit (Hagfeldt and
Grätzel, 2000). Specifically, the ionic conduction in the semiconductor-electrolyte system
offers an efficient way to develop nanomaterials as photo-responsive media, which largely
enhance the specific interface area and carries migrating channels, departing completely
from the requirement of perfect solid-solid electrical contact in photovoltaics devices
(Sivula and van de Krol, 2016). Due to the large specific surface area, high light-harvest
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ability and the appearance of quantum confinement effects,
semiconducting nanomaterials shows huge potential for building
advanced PEC devices, however, effective construction of stable
photo-electrodes with these tiny objects are full of challenge
(Walter et al., 2010; Lee et al., 2014; Chen et al., 2015).

For general fabrication of photo-electrodes, slurries of photo-
active nanomaterials (normally semiconductors) mixed with
binders (e.g., Nafion, polyvinylidene fluoride) are spread over
the surface of a conductive substrate, which acts as the
current collection from internal circuit to external circuit
(Govindaraju et al., 2017). Although the addition of polymer
binders favors the immobilization of functional nanomaterials
on the surface of the current collection, it takes risks
that may increase the series resistance, block active sites
and inhibit diffusion, leading to reduced utilization and
conversion of photo-energy (Qiu et al., 2016; Jia et al.,
2019). It is expected that such issues could be solved by
direct growth of the photo-active materials on conductive
substrates via physical/chemical deposition, or wet chemical

FIGURE 1 | (a) Digital image of a printed galinstan pattern. (b) Optical microscope image of a local area marked in (a). (c) SEM of the edge area of the printed

galinstan pattern in (a), and (d)–(g) the corresponding EDX mapping results in (c); ((d) for Ga, (e) for In, (f) for Sn, and (g) for O, respectively).

synthesis process (Sheng et al., 2019). However, the requirement
of experimental conditions including high temperature and
excessive chemical treatments, impose serious limitations on the
scale-up practical applications.

In the present work, a novel approach is proposed that
allows for direct printing high sensitive photo-electrodes by using
Gallium-based liquid metal (Ga-based LM) as current collection
and its native oxide layer as two-dimensional (2D) photo-active
component. The basic idea is that a thin layer of oxide, Ga2O3,
which is an important wide-band-gap semiconductor for photo-
electric device (Hou et al., 2006; Yan et al., 2010; Zhang et al.,
2015; Qian et al., 2017), forms nearly instantaneously when
the galinstan (a eutectic Ga-based LM alloy used in this work)
exposure to oxygen at room temperature (Regan et al., 1997;
Syed et al., 2017; Zavabeti et al., 2017). This 2D semiconducting
layer continually covers on and naturally contacts with the
high-electrical-conductive LM matrix, establishing stable and
perfect matching in the semiconductor-liquid metal junctions for
good electron migration (Sivan et al., 2013; Daeneke et al., 2018).
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In addition, as metals that are liquid at room temperature,
Ga-based LMs enable rapid and facile room temperature
processing and can be injected, printed, or even 3D printed
on either soft or hard substrates (Ladd et al., 2013; Joshipura
et al., 2015), forming highly conductive, durable, and stretchable
components in soft electronics (Dickey, 2017; Wang et al.,
2018). With these advantages, 2D semiconducting Ga2O3

has been successfully automatically patterned on a metallic
soft substrate with desirable texture and architecture while
printing the Ga-based liquid metal into electronic circuits,
which is expected to controllably regulate the light-harvest
and achieve high efficient light-electric conversion. The as-
prepared flexible photo-electrodes, after enveloping in a solid-
state electrolyte-based PEC cell, exhibit fast photo-electric
responsibility in response to the simulated Sunlight illumination,
even at a very irradiation density (20 mW/cm2), presenting
a good potential for printable high-sensitive photo-detectors.
The proposed strategy and the constructed PEC devices pave
the way to the scale-up manufacture and application of PEC
devices, which also offer a promising extension for other
electrochemical devices.

EXPERIMENTAL SECTION

Fabrication of Ga-Based LM and Related
Circuits
The Ga-based LM used in this work is galinstan bulk sample,
which is prepared by the co-melting methods with the weight
ratio: 68% Ga, 22% In, and 10% Sn. Printing galinstan into
desired patterns was fabricated using a layered molding and
casting process. The substrate is a silicone rubber made by
spin coating the polydimethylsiloxane (PDMS) mixture onto
glass slides.

Characterizations of Structure and
Properties
Optical microscope observations were performed using Leica
DM6000 Optical microscope. Field emission scanning electron
microscope (FE-SEM) observations were performed using a
JEOL JSM-7500FA microscope with an EDX solid-state X-
ray detector. Transmission electron microscope (TEM) images,
selected area electron diffraction (SAED) patterns were obtained
using a JEOL JEM-2011. The surface roughness of the sample

FIGURE 2 | (a) TEM image and (b) SAED pattern of the native Ga-oxide nanosheets. (c) XRD pattern of the galinstan electrode. (d) The absorption spectrum of the

native Ga-oxide nanosheets, the inset is (αhν)2 vs. hν.
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together with the thickness was analyzed using a JPKNanowizard
atomic force microscope (AFM) in the tapping mode. The crystal
structure of printed galinstan pattern was evaluated by X-ray
diffraction (XRD) (GBC MMA diffractometer) using Cu Kα

radiation. The UV-vis absorption spectra were measured by the
means of the diffuse reflection mode using a Shimadzu 2550
UV-vis spectrometer equipped with an integrating sphere.

Fabrication of PEC Device
The PEC device here is mainly composed by the printed galinstan
circuit on PDMS as working electrode, the Pt deposited on the
surface of PDMS as contrast electrode, and the neutral solid-state
electrolyte. The neutral solid electrolyte was prepared by a water
bath method. In detail, 1.2 g of sodium chloride (NaCl) and 1 g
of polyvinyl alcohol (PVA) were added to 20mL of deionized
water. The mixture was kept stirring at 90 ◦C in a water bath
environment for about 30min until a clear colloidal gel was
obtained. Then, the colloidal electrolytes were naturally cooled
and sit overnight until the bubbles were completely eliminated.
After depositing Pt with desired sharp with 1 cm distance to the
galinstan pattern on the PDMS substrate, a droplet of NaCl-PVA
gel was spread over the surface of PMDS connecting the working
electrode and contrast electrode. In the final step, a transparent
thin layer of PDMS was spread the whole device to separate the
whole device to the outside atmospheric environment. Only two
conductive wire connected inside electrodes with the outside,
providing the signal output.

Photo-Response Activities Measurements
All photoresponse performance tests are based on a standard
two-electrode electrochemical workstation (CHI660D, CH
Instruments, Inc., Shanghai). During the test, the electrode
clips of the counter electrode and the reference electrode were
clamped at the same conductive wire connecting Pt, and the
working electrode was clamped at the other wire connecting
printed galinstan pattern. The linear sweep voltammogram
(LSV) was measured at a scan rate of 10 mV·s−1. The current–
time relationship (i–t) curve was tested by periodically turning
on the “on” and “off” light source states at a frequency of 10 s.
A 350W xenon arc lamp was placed at a distance of 20 cm
from the device as a light source for testing. The light only
irradiated on the surface of galinstan electrode, and illumination
intensity at the location of the photo-anode was measured and
tuned before the test. All the photo-response current density has
been normalized to the dark current density, in order to clearly
compare the variation with and without light irradiation.

RESULTS AND DISCUSSIONS

By using the galinstan for printing electronics, various defined
patterns can be fabricated on a substrate, as demonstrated in
Figure 1a. The as-printed circuits presented typical metallic color
and show high electric conductivity. As expected, a smooth
surface, featured by reflecting the visible light like a mirror was
observed from the optical microscope (Figure 1b). Meanwhile,
small thin flakes which may be the native oxide layer have been
also found on the surface of galinstan. According to the further

SEM characterization for the edge area of the printed galinstan
circuit, one can find that smooth surface with several ripples
displaying in Figure 1c, which is similar with a flexible and
continues “skin” covering a soft flat core. The EDX mapping
(Figures 1d–g) presents a homogenous distribution of Ga, In,
and Sn in the selective square area in Figure 1c, and the mass
proportion of Ga, In, and Sn is the same with the weight
proportions in galinstan bulk used for printing. The signal for
O was also detected everywhere, indicating the homogenous
distribution of O in the surface of galinstan pattern, and
substrate. These microscope characterizations indicate that a thin
oxide layer grows on the whole surface of galinstan LM, and
those small pieces of sheet shown in optical microscope image
are regarded as the thicken oxide film that cracks from the area
undergoing mechanical agitation during the printing process.

To reveal the chemical composition of the native oxide layer,
typical XRD was conducted and the patterns of the printed
galinstan LM are shown in Figure 2c. Although there is no
obvious sharp peak observed indicating poor crystallization of
the sample, all of the observed broad diffraction peaks are in
good agreement with the reported diffraction peaks of α-Ga2O3

(JCPDS no. 06-0503), a hexagonal system with lattice constants
a = b = 4.97 Å, c = 13.42 Å. Further characterization on the
morphology and structure of this 2D Ga-oxide layer has been
investigated by electron diffraction and high-resolution TEM
(HRTEM). Taking the exfoliation method (Daeneke et al., 2017;
Zavabeti et al., 2017) to deposit the Ga-oxide nanosheets onto
the TEM grids, high-magnified TEM images and selected area
electron diffraction (SAED) patterns have been recorded. As
shown in Figure 2a, the sheet-like morphology featured with
many creases or folds illustrates the native Ga-oxide nanosheets
on the printed circuit are evidently very thin (∼ 3 nm).
The thickness of the native Ga-oxide nanosheets was further
measured by AFM (Figure S1) by transferring the nanosheets on
a SiO2/Si substrate. The stacks of several nanosheets with smooth
surface was observed, a thickness of about 3.6 nm was estimated
from the line profile depicted in an individual sheet. The SAED
pattern, displayed in Figure 2b, presents a clear ring which
can be ascribed to the (012) planes of the hexagonal α-Ga2O3

structure, indicates that the Ga-oxide nanosheet crystallizes in
small domains that may be not aligned with each other, similar
to the reported oxidation behavior of other liquid metal in
oxygen-rich environments (Daeneke et al., 2017).

As the photo-active component of the constructed PEC
device, the optical absorption properties of the native Ga-
oxide nanosheets samples were explored by UV-vis absorption
spectroscopy, displayed in Figure 2d. It shows that the
absorption onset of the Ga-oxide nanosheets samples is at
around 260 nm, exhibiting strong absorption in the UV region.
The corresponding optical bandgap can be estimated by Tauc’s
analysis based on the equation (αhν)2 = A(hν – Eg), to be ∼

4.75 eV, which is consistent with the previous reports (Li et al.,
2013a; Zhang et al., 2015; Syed et al., 2017).

The photo-response performance of the printed galinstan
photo-electrode was evaluated by PEC tests, the schematic
illustration of the PEC device and test system are shown
in Figure 3a. The linear sweep voltammetry (LSV) curves of
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as-printed galinstan photo-electrode were required at a scanning
speed of 10 mV·s−1, in both light and dark conditions. As shown
in Figure 3b, it is obvious that the anode current of Ga-oxide
layer under simulated Sunlight illumination is lower than the
dark current, and the current intensity of the anode decreased
with bias potential in contrast to the Pt electrode increasing from

0 to 0.5V, whichmatched the character of a p-type semiconductor
(Wang et al., 2017). Thus, it reveals that this native Ga-oxide layer
is a p-type semiconductor, which is also identical to previous
report (Shafiei et al., 2017). Photocurrent is defined as the
photo-induced change in the currents with and without light
irradiation. Therefore, for the PEC device constructed in this

FIGURE 3 | (a) Schematic illustration of the PEC device and test system. (b) Current-voltage relationship (I–V) of the printed galinstan electrode. (c) Schematic

illustration of the working mechanism of the as-constructed PEC device. (d) Normalized photocurrent density of printed galinstan PEC device at different bias

potentials (0 V, 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, vs. the Pt electrode) with the on-off switching operation of 100 mW·cm−2 simulated Sunlight irradiation.

FIGURE 4 | (a) Photocurrent density of printed galinstan PEC device under different power intensity at 0 V bias potential (20 mW·cm−2, 40 mW·cm−2, 60 mW·cm−2,

80 mW·cm−2, 100 mW·cm−2). (b) Photocurrent density and calculated responsivity as a function of the power intensity at 0 V bias potential.
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work, the photocurrent in response to the light is actually the
decreasing value of the anode current in dark condition and light
irradiation condition.

Using this definition of the photocurrent, as shown in
Figure 3d, we tested the photocurrent density of the printed
galinstan electrode under different bias potentials from 0 to
0.5V in contrast to the Pt electrode. The photocurrent of the
sample increased in negative direction rapidly and saturated in a
short time under irradiation, and this photo-responsive switching
behavior can be steadily reproduced via periodically turning
the “on” and “off” state with a 10 s frequency. It was found
that the negative photocurrent density at high bias potentials is
much enhanced in comparison to that at low bias potentials,
indicating an effective separation of photo-induced electron-
hole pairs and a rapid transfer of photo-generated carriers when
applying high bias potentials. Interestingly, under the irradiation
of light intensity of 100 mW·cm−2, the printed galinstan
photo-electrode possesses a negative photo-response current of
approximately 80 nA·cm−2 and excellent photo-response rate (<
0.1 s) without applying bias voltage (0V). This indicates that the
constructed PEC device exhibits self-powered photo-detection
behavior without relying on external power supplies. Figure 3c
illustrates the working mechanism of this PEC device under
the irradiation of light. As a p-type semiconductor, the Fermi
level at the surface of Ga-oxide is shifted close to the valence
band, resulting in a downward band bending (Jiang et al., 2017).
Due to the band bending, the photo-generated electrons in p-
type Ga-oxidemigrate toward the semiconductor-liquid interface
to unleash the reduction reaction. Meanwhile, the holes in the
valence band of p-type electrode recombine with the outside
connection via ohmic contact between both photo-electrodes.
In our experiment design, the electrons flow from the working
electrode (galinstan) to the counter electrode (Pt) via an external
circuit without any bias applied in dark environment, due to
the standard reduction potentials of the elements (Ga, In, Sn) in
galinstan is lower than Pt (Hoshyargar et al., 2017). Therefore,
under the irradiation of light, the photo-induced migration of
carriers would reduce the current density in the external circuit,
resulting in the decreased current intensity under simulated
Sunlight illumination shown in Figure 3b.

The influence of light intensity on the photocurrent density is
an important factor in evaluating the photo-response ability of
a photo-electrode, which can reflect the sensitivity of the photo-
detector constructed by PEC devices. Figure 4a shows the photo-
response switching behaviors of the as-prepared PEC device
under different illumination intensities without applied voltage.
The photo-response rate remained high (< 0.1 s) even for the low
light irradiation density of 20 mW·cm−2, and the photocurrent
of the device increases in a negative direction with the increase
of the light densities, exhibiting the self-powered characteristic
again. As shown in Figure 4b, the negative photocurrent density
appears linearly increases with a rise in illumination intensity
over a wide range from 20 to 100 mW·cm−2. In order to
further evaluate the photo-response performance of the as-
printed PEC photodetector, the values of responsivity of the 2D
native Ga-oxide nanosheets based photodetector can be obtained

through the following equation (Qiao et al., 2019): R = I/J

light, where the I is the photocurrent density (nA·cm−2) and J

light is the illumination intensity (mW·cm−2). The relationship
among the photocurrent density, the photocurrent responsivity
and irradiation power intensity is demonstrated in Figure 4b.
The photocurrent responsivity of the printed galinstan PEC
photodetector varies from 2 to 1 µA/W, showing superior
sensitivity in contrast to similar PEC device manufacturing by
conventional methods (Chen et al., 2018; Huang et al., 2018).

CONCLUSION

In summary, a novel design for printing semiconducting Ga
oxides-based PEC devices in desirable texture and architecture
was demonstrated. The 2D Ga-oxide semiconductor, as the
photo-active materials in this PEC device, can be automatically
synthesized by native oxidation of the fresh surface of the
galinstan LM during the printing manufacturing process.
The natural contact between the semiconducting photo-active
material and the conductive soft metal substrate offers good
electric communication from the PEC internal circuit to
the external. The native Ga-oxide exhibits promising photo-
absorbance ability, and the as-printed PEC device exhibits good
photo-response performance. Meanwhile, this PEC device as
photodetector achieves self-powered photo-detection behaviors
and presents high responsibility without external power supplies
even for a low light density. This novel design provides
strong prospects for the native metal oxide layer of LMs
as promising candidates for developing practical printable
photodetectors and offers a new platform for manufacturing
more complex and soft PEC devices or semiconductor-based
photo-electronics.
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