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Viscosity of body fluid is an established biomarker of pathological conditions. Abnormality

of cellular viscosity occurs when cells are challenged with external stresses. Small

molecule probes to assess the viscosity are sought after for both disease diagnostics

and basic studies. Fluorescence based probes are particular attractive due to their

potentials for convenient and high spatiotemporal resolution microscopic monitoring of

biological samples. The dyes with a floppy push-pull backbone or dyes with a rotatable

substituent exhibits a viscosity responsive fluorescence enhancement and therefore

viable viscosity probes. The scaffold of the existing viscosity probes contains typically

one such floppy site. Therefore, they typically linearly respond to log(viscosity). We argue

that minor viscosity fluctuation could potentially be physiological as the biological system

is dynamic. We wish to develop a type of conceptually-new, threshold-limited viscosity

probes, to complement the existing probes. Such probes do not exhibit a fluorescence

enhancement when challenged with minor and presumably physiological enhancement

of viscosity. When the viscosity is higher than a certain threshold, their fluorescence

turns on. We hypothesize that a dye with two far-apart floppy sites could potentially

yield such a threshold-limited signal and designed VPZ2 and VPZ3. Through spectral

titration, VPZ3was found to yield the desired threshold-limited signal. VPZ3was suitable

for in vitro bioimaging of viscosity under one-photon or two-photon excitation. VPZ3 is

potentially useful in many downstream applications. Future work includes fine-tune of

the threshold to allow tailored limit for fluorescence turn-on to better meet the need of

different applications. Besides the implications in the real-world applications, the design

concept could also be translated to design of alternative substrates.
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INTRODUCTION

Viscosity is a biophysical parameter of homeostasis (Tsien, 1989; Balkwill et al., 2012; Wang
et al., 2017). By altering the molecular diffusion kinetics, biomolecular trafficking, lipid fluidity,
and protein conformational rate, all physiological processes including enzymatic activity, energy
metabolism, and signal transduction are affected (Miyamoto et al., 1990; Uribe and Smpedro,
2003; Boric et al., 2012; Liu et al., 2014; Sekhar et al., 2014). Abnormal fluctuation of
microenvironmental viscosity is found to be reliable biomarker of underlying diseases or stresses
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(Aydemir et al., 2008; Harisa, 2014; Kasperczyk et al., 2014;
Herranz et al., 2018). Oxidative burst can alter the membrane
fluidity through lipid peroxidation and hence disrupts its
function (Richter, 1987; Hormel et al., 2013). Lysosome storage
disorders are associated with increased local viscosity (Platt et al.,
2012; Devany et al., 2018). Viscosity is also vital to maintain
the mitochondrial network organization and energy metabolism

FIGURE 1 | Structures of a number of classic molecular rotors (1–6).

SCHEME 1 | Design and synthesis of the viscosity probe VPZ2 and VPZ3.

(Mecocci et al., 1997). Hyperviscosity, or macroscopic high
blood viscosity, is found with patients of many blood diseases,
such as myeloma, leukemia, anemia, and sepsis (Gustine et al.,
2016). Therefore, fluorescent probes for viscosity are in need for
both basic biomedical studies and disease diagnosis to monitor
the viscosity of complex biological systems (Haidekker and
Theodorakis, 2007; Kuimova et al., 2008; Sutharsan et al., 2010;
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Kuimova, 2012; Wang et al., 2013; López-Duarte et al., 2014;
Yang et al., 2014; Chen et al., 2015; Vyšniauskas et al., 2015,
2016; Lee et al., 2016; Ren et al., 2016; Su et al., 2016; Zhu et al.,
2016; Klymchenko, 2017; Lyubov et al., 2017; Ning et al., 2017;
Song et al., 2017).

The capability of a dye to sense environmental viscosity
originates from its excited state dynamics, including non-
radiative rotational deactivation and radiative deactivation
(Klymchenko, 2017). For a fluorophore exhibiting a high degree
of rotational freedom, it is typically non-fluorescent. When
the rotational freedom is restricted, possibility of radiative
deactivation enhances. The structural freedom of the fluorophore

may come from rotatable bonds of the push-pull backbone, as
seen in P1 (Loutfy and Arnold, 1982), and P2 (Cui et al., 2019)
(Figure 1). Or, a group may be installed to a rigid push-pull
backbone via a single bond to construct a molecular rotor, e.g.,

P3 (Kuimova et al., 2008). Or, it could be a flexible push-pull

backbone installed with a rotatable group, e.g., P4 (Peng et al.,
2011), P5 (Babendure et al., 2003), and P6 (Colom et al., 2018)
(Figure 1). Typically, these molecular rotors respond linearly

to log(viscosity). Minor enhancement of microscopic viscosity
could be physiological considering the dynamic nature of a
biological system. Therefore, we are interested in development of
a new class of molecular rotors which does not respond to minor
enhancement of viscosity, until the viscosity surpasses a certain
threshold limit. Such threshold-limited molecular rotors could
potentially be very useful in disease diagnostics. The existence
of one site of high rotational freedom in the scaffold of a
fluorophore is required to yield a viscosity-sensitive fluorescence
enhancement. We propose that two such sites are warranted to
exhibit threshold-limited response to viscosity. Intuitively, minor
enhancement of viscosity may restrict the rotational freedom
of one site, leaving the other site unaffected to quench the
fluorescence of the fluorophore. When the viscosity is higher
than a certain limit, the chances of simultaneous restriction
of both sites becomes possible and fluorescence enhancement
should be noticeable. Also, sterics should be present in the
scaffold of such a probe to minimize unintended fluorescence
turn-on by aggregation or unselective binding with native
biomacromolecules (Lei et al., 2017).

FIGURE 2 | Absorption (A, VPZ1; C, VPZ2; E, VPZ3) and emission (B, VPZ1; D, VPZ2; F, VPZ3) spectra of VPZ probes in different viscosity (glycerol and water),

concentration: 10µM.
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Herein, we report the synthesis, spectral titrations and proof-
of-concept bioimaging of threshold-limited fluorescent probe
(VPZ1-3) for microscopic viscosity.

RESULTS AND DISCUSSIONS

Compound Synthesis
VPZ1 is a known compound and synthesized according to the
reportedmethod (Lei et al., 2017). The synthesisVPZ2 andVPZ3
are displayed in Scheme 1 2-Bromo-4-fluorobenzaldehyde (1)
was condensed with ethylene glycol in the presence of p-toluene-
sulfonic acid to the corresponding 1,3-dioxolane derivative (2)
in an 85% yield. Then 2 was treated with nBuLi at −78◦C to
generate the nucleophilic intermediate phenyllithium reagent in
situ, which was quenched with DMF to yield the benzaldehyde
derivative (3) in good yield. Through aldol condensation of 3
and 1,4-cyclohexanedione monoacetal under basic conditions, 4
was obtained in an 95% yield. (2-Phenoxyphenyl) lithium was
added into a solution of 4 in THF. The resulting carbinol product
was isolated and treated with methylsulfonic acid without further
purification to afford 5 through a cascade of reactions. The
crystal structure of the compound 5 was obtained and the
diphenylether moiety and the bottom dinaphthylmethanone unit
are perpendicular. Replacement of fluorine atoms of 5 with
methoxide gave 6 in an 35% yield. Then the two methoxys
groups of 6 was demethylated by BBr3 to get 7, the hydroxyls
of which were converted to triflate by treatment of triflic
anhydride to obtain the key intermediate 8. The viscosity probes
(VPZ2 and VPZ3) were furnished by the Suzuki–Miyaura cross
coupling reactions with 9 and 10, respectively. The NMR and
the HRMS spectra of all new compounds are provided in the
SI (Figures S1–S25). The crystal structure of compound 5 was
obtained (Figure S26).

Spectral Titrations
With the probes in hand, we firstly tested the photophysical
properties of these probes (Figure 2, glycerol and water). The
maximum absorption wavelength of VPZ1, VPZ2, and VPZ3

in pure water is about 470, 465, and 373 nm, respectively.
Their fluorescence is very weak but still observable. The
emission wavelength of VPZ1, VPZ2, and VPZ3 is about 650,
650, and 515 nm, respectively. With their symmetric D-A-D
structure, the VPZ probes typically exhibit a Stokes shift of
ca. 140–190 nm, much larger than that of a list of common
fluorophores, such as fluorescein (24 nm), tetramethylrhodamine
(25 nm), BODIPY (20 nm), Cy5 (20 nm), Cy7 (23 nm), which
is desirable for imaging-based applications. We tested the
viscosity related spectral responses (Figure 2). VPZ probes were
added into solvent mixtures of water and glycerol exhibiting
different viscosity values, their absorption and emission spectra
were recorded. As shown in Figure 2, the absorption of VPZ
probes exhibited only very subtle changes with respect to the
increase of the solvent viscosity. The fluorescence emission
intensity of VPZ1 and VPZ2 remained essentially unchanged
with respect to the increase of the solvent viscosity. Notably,
VPZ3 show a strong increase in fluorescence (ca.126-fold) with
the increase of viscosity. Very interestingly, the fluorescence

intensity of VPZ3 did not immediately increase when the
solvent viscosity increased (Figure 3). Instead, the fluorescence
intensity remained unchanged until the Log(viscosity) of the
solution was higher than 10. After that, the fluorescence of
VPZ3 enhanced linearly with respect to Log(viscosity). This is
in good agreement with the design rational of the VPZ series
of probes. The fluorescence life-time decay of VPZ3 in different
solvent mixtures of H2O and glycerol was acquired (Figure S27).
Since VPZ3 has the best performance against different viscosity,
we chosen VPZ3 as the viscosity probe for the cell imaging
study. The fact that VPZ1 and VPZ2 do not fluoresce in this
solvent mixture is intriguing and subject to further in-depth
photophysical studies.

Cell Images
The short absorption wavelength of VPZ3 limits its usage in
imaging-based application in vivo with one photon excitation.

FIGURE 3 | The relationship of the fluorescence intensity of VPZ3 at varying

solvent viscosity.

FIGURE 4 | Two-photon excitation action cross-section of VPZ3 in the

glycerol–water system with different viscosities (20% glycerol and 100%

glycerol). Two-photon excitation wavelength range: 680–880 nm (1λ = 10 nm).
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To apply VPZ3 in cell study, we firstly performed the two-
photon cross-section (δ) test (Figure 4) since the short one
photon excitation problem can be circumvented by two-
photon excitation. The maximum δ is about 80 GM at
770 nm in glycerol. Therefore, 770 nm was used for the cell
imaging study.

The cytotoxicity of VPZ3 was determined by MTT.
In short, HepG2 cells were incubated with VPZ3 with
different concentration for 24 h. The cell viability remained
85% at up to 25µM (Figure S28). The low cytotoxicity
of VPZ3 promotes us to further explore the possibility
of VPZ3 as a fluorescence probe for the detection of
cell viscosity. In order to demonstrate the imaging ability
of VPZ3 in living cells, the HepG2 cells were incubated
with VPZ3 (10µM) at 37 and 25◦C for 30min separately.
The ptimages of the cells were collected under two-photon
excitation. As we known, lower temperature means higher
viscosity for the cells. The fluorescence intensity of cells
incubated at 25◦C was higher than those at 37◦C significantly
(Figure 5). The imaging results supported that the VPZ3 could
be used for monitoring the viscosity in the cytoplasm of
living cells.

To further demonstrate the potentials of VPZ3 in
monitoring the micro-viscosity change of cells, VPZ3 was
used to monitor the real-time viscosity change during cell
apoptosis. Because etoposide (a chemotherapy drug used
to treat many types of cancer) can cause cell death, the
micro-viscosity of the cells will change greatly during the
apoptosis process. HepG2 cells were incubated with etoposide.
The two-photon fluorescence images were collected at different
times during the apoptosis process. As shown in Figure 6,
the fluorescence intensity of the cells increased greatly during
the apoptosis upon addition of etoposide. In contrast, the
fluorescence of the cells without the addition of etoposide kept
unchanged (Figure S29). These results clearly show that VPZ3
could be used to monitor the viscosity changes during the
apoptosis process.

CONCLUSION

In summary, we have developed a series of new fluorescence
probes (VPZ) for viscosity monitoring based on a symmetric
D-A-D framework. Among the three VPZ probes, VPZ3

FIGURE 5 | Two-photon confocal images of HepG2 cells incubated with VPZ3 (10µM) after 30min of incubation at (a1) 37◦C and (a2) 25◦C, respectively and then

washed with 10mM PBS buffer. λex = 770 nm, emission wavelength from 500 to 540 nm; (b1,b2) bright-field images of HepG2 cells; (c1) the overlay of panels

(a1,b1); (c2) the overlay of (a2,b2). (d) Normalized intensity analysis of the probe at 37 and 25◦C, respectively. Scale bars: 20µm.

FIGURE 6 | (a–h) Two-photon confocal images of HepG2 cells incubated with VP3 (10µM) at different time points after the addition of 2.0µM etoposide,

λex = 770 nm, emission wavelength from 500 to 540 nm. (i) Plot of normalized intensities of the probe against time with (triangle, green line) and without (circle, blue

line) etoposide. Scale bars: 20µm.
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showed a great “off-on” fluorescence response (ca. 126-
fold) with increasing viscosity in the glycerol-water
system. VPZ3 shows low cytotoxicity and could be used
to monitor the real-time viscosity change during the cell
apoptosis process. We expect VPZ3 to find applications
in basic biological studies related cell apoptosis and
disease diagnostics.
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