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DFT calculations were performed to elucidate mechanistic details of an unusual
palladium-catalyzed methylcyclopropanation from [2 + 1] cycloadditions of
(Z)-2-bromovinylbenzene and endo-N-(p-tolyl)-norbornenesuccinimide. The
reaction proceeds via oxidative addition (OA), intermolecular alkene insertion,
deprotonation/protonation, intramolecular alkene insertion, β-H elimination and
reductive elimination (RE). Protonation is the rate-limiting step and requires an overall
barrier of 28.5 kcal/mol. The sources of two protons for protonation and exchange have
also been clarified and the calculations agree with experimental observations.
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INTRODUCTION

Cyclopropane skeleton has attracted tremendous attention from organic chemists and can be found
in many important biomolecules and pharmaceutical drugs (Hofmann et al., 1954; Crowley et al.,
1961; Wiberg, 1996; de Meijere, 2003; Fedorynski, 2003; Lebel et al., 2003; Pietruszka, 2003; Reissig
and Zimmer, 2003; Wessjohann et al., 2003; Hata et al., 2011; Chen et al., 2014; Hiratsuka et al.,
2014). Many methods have been used to construct the cyclopropane scaffold, including transition
metal mediated C–C and C–H bond activations (Satake and Nakata, 1998; Goudreau and Charette,
2010; Oonishi et al., 2012; Masutomi et al., 2014; Du et al., 2015), carbene/carbenoid cycloadditions
(Miki et al., 2002; Biswas et al., 2012; Lindsay et al., 2013), Simmons–Smith reactions (Simmons
and Smith, 1958; Beaulieu et al., 2013), Michael-initiated ring closure (MIRC) (Xie et al., 2007;
Xuan et al., 2009), cycloisomerizations (Bruneau, 2005; Miege et al., 2011), and the coupling of
norbornenes with organoboron reagents or alkynes (Bigeault et al., 2005; Miura et al., 2006).

However, the cyclopropanation of halohydrocarbon with alkenes catalyzed by transition metal
catalysts by a non-carbene mechanism is still underdeveloped (Mao and Bao, 2014a; Mao
et al., 2014). Recently, we firstly reported the palladium-catalyzed methylcyclopropanation of
bromostyrenes with norbornenes via [2 + 1] cycloaddition, and the reactions proceed by a
methylene protonation and aH/D exchange with CD3OD (Mao et al., 2015). Amethylcyclopropane
group was constructed through a three-fold domino method including an important protonation
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GRAPHICAL ABSTRACT | Palladium-Catalyzed Methylcyclopropanation of Norbornenes With Vinyl Bromides.

SCHEME 1 | Deuterium-labeling studies.

process. The experimental results demonstrated that a
norbornenylpalladium intermediate could capture one proton
from research systems (Palucki et al., 1997; Torraca et al., 2000;
Kuwabe et al., 2001; Matsukawa et al., 2005; Tseng et al., 2006;
Dash and Janni, 2012; Mao and Bao, 2014b). The mechanistic
studies revealed that the methylcyclopropanation step proceeds
via a protonation and a H/D exchange with CD3OD. As
shown in Scheme 1, two different deuterium atoms from
CD3OD were chemoselectively added into the two positions of
methylcyclopropane derivatives. Herein, quantum chemistry
(QC) calculations have been used to elucidate the reaction
mechanisms, and the protonation step and a H/D exchange
process from CD3OD have also been explored and discussed.

COMPUTATIONAL METHODS

All of species were optimized through M06 functional (Zhao
and Truhlar, 2006a,b, 2008) in combination with 6-31G(d,p)

basis set for H, C, O and N atoms. The Pd, P, Br, and Cs
atoms were described by LANL2DZ basis set (Ehlers et al.,
1993; Check et al., 2001). The polarization functions involving
Pd(ζf) = 1.472 (Huzinaga, 1984), Br(ζd) = 0.389, P(ζd) = 0.340,
and Cs(ζf) = 0.306 were also added (Amatore et al., 1992).
The structural parameters of complex 1 from calculations are
consistent with the measured parameters from experiments
(Figure 1; Mao et al., 2015) suggesting that the computational
method in our calculations is right. Frequency analyses have
been used to obtain the zero-point energies (ZPE), and then
confirmed the transition states with only one imaginary
frequency and the intermediates with zero imaginary frequency.
Each transition state was also validated through intrinsic
reaction coordinate calculations to connect the reactant and
product (Fukui, 1970, 1981). Natural bond orbital (NBO)
was carried out to obtain atomic charge distribution (Reed
and Weinhold, 1985; Reed et al., 1985, 1988). In order to
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FIGURE 1 | Free energy profiles for two possible oxidative addition pathways.

reduce the costs for computation, the triphenylphosphine
(PPh3) ligand used in experiments was replaced by
trimethylphosphine (PMe3), and the reliability of this models
has been validated by previous calculations (Xie et al., 2013a,b).
All calculations were performed by Gaussian09 software
(Frisch et al., 2009).

A continuum medium strategy based on the optimized
species in gas-phase was performed to obtain single
point energy in solvent. We selected the conductor-
like polarizable continuum model (CPCM) involving
an UAHF radii method (Barone and Cossi, 1998; Cossi
et al., 2003). Toluene was utilized as solvent based on
reaction conditions.

The entropy change was taken into consideration in a
bimolecular process, and the corrections were added to the
free energies based on the free volume theory (Benson,
1982). For 2 to 1 (or 1 to 2) change, a correction of −2.6
(or 2.6) kcal/mol was necessary. The corrections have been
validated by previous calculations (Okuno, 1997; Ardura et al.,
2005; Liu et al., 2009, 2012; Schoenebeck and Houk, 2010;
Wang et al., 2012a,b). The relative Gibbs free energies from
solvent were adopted to analyze the reaction mechanisms in
this manuscript.

RESULTS AND DISCUSSION

Oxidative addition is expected to be the initial step for Pd-
catalyzed methylcyclopropanation of norbornene with vinyl

bromide, and the corresponding free energy profiles are
shown in Figure 1, and optimized geometries for different
transition states are described in Figure 2. From palladium
bisphosphine complex 1, two possible pathways for the formation
of complex 3 are proposed. Path a (black) is related to
the bisphosphine pathway and path b (blue) involves the
monodentate phosphine pathway. The calculation results showed
that path a is preferred. In path a, the double bond of
substrate (Z)-2-bromovinylbenzene is coordinated to the Pd
center to produce complex 2, and the process is endergonic via
10.6 kcal/mol. Subsequently, the three-membered ring oxidative
addition transition state has been located with an overall
barrier of 23.3 kcal/mol from 1 to TS23, and generates a
square-planar complex 3. In path b, one phosphine ligand of
complex 1 is dissociated to give complex 4, and the barrier is
predicted to be 33.0 kcal/mol for dissociation process based on
the method proposed by Hall and coworkers (Hartwig et al.,
2005). From 4, the substrate enters into reaction system to
yield complex 5, followed by oxidative addition with a barrier
(TS56) of 7.5 kcal/mol to afford a three-coordinate complex
6. Finally, complex 3 is produced via the coordination of
phosphine ligand.

From 3, the reaction proceeds by intermolecular alkene
insertion step, and two possible pathways are presented
considering different coordination directions of endo-N-
(p-tolyl)-norbornenesuccinimide (Figure 3). In path c, two
bridge-hydrogen atoms and the bridge-carbon atom of
norbornene moieties are outside of the plane. While in
path d, two bridge-hydrogen atoms and the bridge-carbon
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FIGURE 2 | Optimized geometries (Å) for selected transition states.

atom of norbornene moieties locate inside of the plane.
According to the calculations, path c (12.2 kcal/mol for TS78)
is more favorable than path d (17.3 kcal/mol for TS78′ ) by
5.1 kcal/mol, then a stable four-coordinate intermediate
8 is formed and this process is obviously exergonic by
17.7 kcal/mol.

From 8, we consider the possibility for the formation of
ion pair complex 9’ as described in previous experiments (Mao
et al., 2015). The calculations showed the relative Gibbs free
energy of this complex is very high with a value of 68.1 kcal/mol
(Figure 4), thus we exclude this possibility. Alternatively, we
investigate the key role of base in deprotonation, which has been
confirmed in previous experiments (Wasa et al., 2009; Liang
et al., 2012) and calculations (Biswas et al., 2000; Davies et al.,

2005; Lafrance et al., 2007; Ess et al., 2008; Kefalidis et al.,
2010; Figg et al., 2013; Xie et al., 2013c, 2016). However, it
is interesting to note that the γ -H1 in complex 8 is far away
from palladium center with the Pd–H1 distance of 5.268 Å
(Figure 4), therefore, it is very difficult to activate this C–H1

bond. The γ -C–H activation has been previously accomplished
by Yu et al. (Li et al., 2014; Jiang et al., 2016; Wu et al.,
2016; Shao et al., 2017, 2018; Zhu et al., 2018), and they
developed a weakly coordinating directing group to help the C–
H bond activation. From 8, the ligand substitution of Cs2CO3

and CsCO−

3 for Br− occurs to give a stable complex 9, where
the γ -H1 generates weak hydrogen bond interaction with the
oxygen atom of CsCO−

3 . The γ -C–H1 distance is 1.110 Å
in complex 9 (Figure 5), indicating that this bond has been
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FIGURE 3 | Free energy profiles for two possible intermolecular alkene insertion pathways.

activated. Subsequently, the deprotonation is easy to take place
to give complex 10 with a barrier (TS9−10) of only 8.9 kcal/mol.
The C–H1 and O–H1 bond length in TS9−10 are 1.430 Å
and 1.221 Å, respectively (Figure 5). For comparison, the α-
H and β-H on the same side of Pd center can be activated
by palladium center, and the barriers for α-H (26.8 kcal/mol)
and β-H (14.2 kcal/mol) are much higher than that of γ-H.
From 10, the ligand substitution of five CH3OH molecules
for Cs2CO3 and CsHCO3 takes place to generate an unstable
complex 10, and this process is significantly endergonic by
25.7 kcal/mol, accompanied by protonation via TS11−12 to
yield complex 12. It is worth noting that the proton comes
from hydroxyl of methanol. An overall barrier of protonation
step is 28.5 kcal/mol from 10 to TS11−12, which is the rate-
limiting step of catalytic cycle. We have used several density
functionals including B3LYP-D3 (Becke, 1993; Stephens et al.,
1994), TPSS (Tao et al., 2003), M06-2X (Zhao and Truhlar,
2008), WB97X-D (Chai and Head-Gordon, 2008) to evaluate

the functional dependency of this transition metal system. The
calculations demonstrated that different functionals have slight
effect on the rate-determining state. The barriers (TS11−12)
for B3LYP-D3, TPSS, M06-2X, and WB97X-D are 26.9, 31.2,
29.3, and 27.8 kcal/mol, respectively. From 12, intramolecular
alkene insertion occurs to give a cyclopropanepalladium complex
13 and it requires a barrier (TS12−13) of only 3.0 kcal/mol.
Then complex 14 is generated via the release of four methanol
molecules. We know that the γ -H1 in complex 8 is far away
from palladium center, thus five CH3OHmolecules are necessary
to form the hydrogen bonding network between γ -H1 and
Pd center for proton transfer in TS11−12. In addition, we also
considered the influence of methanol number on the barriers
for proton transfer, and the calculations showed that it has
only slight effect. The barriers are 28.5 kcal/mol (TS11−12)
for five methanol molecules, 31.4 kcal/mol (TS11−12_A) for
six methanol molecules, 30.9 kcal/mol (TS11−12_B) for seven
methanol molecules, and 30.3 kcal/mol (TS11−12_C) for eight
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FIGURE 4 | Free energy profiles for proton exchange with CH3OH and intramolecular alkene insertion.

methanol molecules, respectively (see Supporting Information).
We also consider the other possible pathway for proton exchange
with CH3OH and intramolecular alkene insertion, where the
intramolecular alkene insertion occurs first (see Figure S1).
The calculations illustrated that the protonation by methanol
molecule is the rate-determining step for catalytic cycle, and
needs much higher overall barrier (35.8 kcal/mol from 11′ to
TS12−13′ ) than the barrier mentioned above (28.5 kcal/mol from
10 to TS11−12).

From 14, the reaction can proceed via β-H elimination
and two possible pathways are proposed due to the existence
of two β-H atom for Pd center (Figure 6). One is from
methoxyl group (path e) and the other is from the cyclopropane
carbon-bonded hydrogen atom (path f). The calculations
demonstrated that path e (16.7 kcal/mol for TS14−15) is
more favorable than path d (23.0 kcal/mol for TS14−16), and
optimized geometries of two transition states are described
in Figure 7. Subsequently, a square-planar complex 15 is

generated, followed by the release of methanal to produce
complex 17. A methylcyclopropane product is then formed
via the C–H bond reductive elimination, and it needs a
barrier (TS17−4) of 9.5 kcal/mol. Finally, one phosphine ligand
is coordinated to the Pd center to regenerate the catalyst.
It is clearly to see that the proton for the protonation
of a methylcyclopropane subunit comes from the methyl
of CH3OH, which is consistent with the deuterium-labeling
experiments (Fedorynski, 2003).

As described in Figure 8, the catalytic cycle for the
reaction of (Z)-2-bromovinylbenzene with endo-N-
(p-tolyl)-norbornenesuccinimide undergoes six steps,
consist of oxidative addition (OA), intermolecular olefin
insertion, deprotonation/protonation, intramolecular olefin
insertion, β-H elimination and reductive elimination
(RE), and protonation is the rate-determining step and
requires an overall barrier of 28.5 kcal/mol from 10

to TS11−12.
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FIGURE 5 | Optimized important geometries (Å) as presented in Figure 4.
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FIGURE 6 | Free energy profiles for β-H elimination and C–H bond reductive elimination.

FIGURE 7 | Optimized geometries (Å) for selected transition states as presented in Figure 6.
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FIGURE 8 | Catalytic cycle for palladium-catalyzed methylcyclopropanation between (Z)-2-bromovinylbenzene and endo-N-(p-tolyl)-norbornenesuccinimide.

CONCLUSIONS

In conclusion, Pd-catalyzed [2 + 1] cycloaddition domino
reaction mechanisms of (Z)-2-bromovinylbenzene and
endo-N-(p-tolyl)-norbornenesuccinimide have been studied
by DFT calculations. The results revealed that the
methylcyclopropanation process underwent six steps,
including oxidative addition, intermolecular alkene insertion,
deprotonation/protonation, intramolecular alkene insertion,
β-H elimination and reductive elimination, and protonation by
methanol is the rate-limiting step with an overall barrier of 28.5
kcal/mol. In addition, the hydrogen atoms for protonation and

exchange are both from the methanol, and the former comes
from the methyl of methanol, and the latter comes from the
hydroxyl of methanol. These calculation results are consistent
with the deuterium-labeling experiments.
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