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Molybdenum disulfide/reduced graphene oxide/polyaniline ternary composites

(MoS2/rGO/PANI) were designed and synthesized by a facile two-step approach

including hydrothermal and in situ polymerization process. The MoS2/rGO/PANI

composites presented an interconnected 3D network architecture, in which PANI

uniformly coated the outer surface of the MoS2/rGO binary composite. The

MoS2/rGO/PANI composites with a weight percent of 80% (MGP-80) exhibits the

best specific capacitance (570 F g−1 at 1A g−1) and cycling stabilities (78.6% retained

capacitance after 500 cycles at 1 A g−1). The excellent electrochemical capacitive

performance is attributed to its 3D network structure and the synergistic effects among

the three components that make the composites obtain both pseudocapacitance and

double-layer capacitance.

Keywords: molybdenum disulfide, reduced graphene oxide, polyaniline, ternary composites, supercapacitors

INTRODUCTION

To meet the burgeoning need of light-weight and portable electronic devices, efficient and
environmentally-friendly electrochemical energy storage systems are urgently developed (Liu
et al., 2017). Among the various energy storage systems, supercapacitors have drawn tremendous
research attention due to their low cost, environmental friendliness, fast charging and discharging
rate, excellent power density, high cycling stability, and long cycle life (Dunn et al., 2011; Yu
et al., 2013; Wu et al., 2017; Qu et al., 2018). According to the charge-storage mechanism,
supercapacitors are classified into two categories: electrochemical double-layer capacitors (EDLCs)
and pseudocapacitors (Zhang et al., 2016). In general, pseudocapacitors of transition metal
oxides and conducting polymers possess much higher specific capacitance than EDLCs of carbon
materials, but their cycling stability is inferior (Li et al., 2014). Naturally, to draw on each other’s
strengths, a binary or ternary hybrid material composed carbon materials, a transition metal oxide
and conducting polymer is more effective for high specific capacitance and long life time (Chen
et al., 2014).

Graphene, a two-dimensional monolayer of sp2 carbon atoms, is considered as an
extremely promising candidate for future advanced applications in supercapacitors due to its
excellent electrical conductivity, high surface area, good mechanical flexibility, and chemical
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stability (Zhang et al., 2012). Meanwhile, it is an ideal substrate
for the growth and anchoring of nanomaterials, such as metal
oxide, metal sulfide and conducting polymers, to exploring
hybrid composite for improved electrochemical properties (Zhao
et al., 2018). Among various hybrid materials, graphene/MoS2,
graphene/PANI, MoS2/PANI binary nanostructure are found
to be promising electrode materials for supercapacitors (Ataca
et al., 2012; Huang et al., 2013; da Silveira Firmiano et al.,
2014; Thangappan et al., 2016). For example, Thangappan et al.
reported a facile one step preparation of a molybdenum disulfide
(MoS2) nanosheet-graphene (MoS2/G) composite with the in
situ reduction of graphene oxide, which exhibited a high specific
capacitance of 270 and 90 F g−1 at 0.1 and 1.0A g−1, respectively.
In addition, its specific capacitance can still remain 89.6% after
1,000 cycles at 0.6 Ag−1 (Thangappan et al., 2016). However,
three major defects found in the binary composite including
the low practical capacitance, poor cycle stability and poor
rate performance, hinder its wide application in supercapacitors
(David et al., 2014).

Recently, a ternary composite of MoS2/graphene wrapped
with Fe3O4, polypyrrole and carbon nanotubes has been tried
out in the fields of lithium ion batteries, electromagnetic wave
absorption and electrocatalyst (Khan et al., 2016; Xie et al., 2016;
Li et al., 2017). However, there are few reports on the synthesis
of MoS2/rGO/PANI ternary nanostructure for supercapacitors
applications.

In this work, we prepared molybdenum disulfide/reduced
graphene oxide/polyaniline (MoS2/rGO/PANI) ternary
composites by a facile two-step method. In the first step,
the MoS2 nanosheets are uniformly grown on the surface
of the GO nanosheets through a hydrothermal process to
produce a MoS2/rGO binary composite. In the second step,
the MoS2/rGO/PANI ternary composites were synthesized
by in situ polymerization of aniline on the out face of the
MoS2/rGO binary composite. In the MoS2/rGO/PANI ternary
composites, the weight percent of PANI can effectively improve
their electrochemical performance when they serve as the
electrode materials in supercapacitors. The results indicate that
the MoS2/rGO/PANI ternary composites deliver a very high
specific capacity and excellent cyclic stability compared with the
MoS2/rGO binary composite.

EXPERIMENTAL

Synthesis of a MoS2/rGO Binary Composite
Graphene oxide (GO) was synthesized from natural graphite
flakes by a modified Hummers method (Zhang et al.,
2015). The MoS2/rGO binary composite was prepared
by a facile hydrothermal method. Typically, GO (0.8 g),
(NH4)6Mo7O24·4H2O (1.236 g), thiourea (4 g) and HCl solution
(0.2ml) were dispersed in deionized water (40ml) and sonicated
for 1 h to form a uniform suspension. The above mixed
dispersion was transferred into a Teflon-line stainless steel
autoclave (50ml) and annealed at 220◦C for 18 h. After cooling
down, the black precipitate was collected by centrifugation,
washed with deionized water and ethanol for several times, and
dried at 80◦C for 24 h.

Synthesis of MoS2/rGO/PANI Ternary
Composites
The MoS2/rGO/PANI ternary composites were synthesized
by in situ polymerization in the presence of MoS2/rGO
and aniline. Typically, a certain amount of MoS2/rGO and
dodecyl benzenesulfonic acid (4.065 g) were dispersed into 50ml
deionized water with ultrasonic radiation. Aniline (1.16 g) and
deionized water (75ml) were poured into the above suspension
and sonicated for 1 h. A solution of APS (0.5M, 25ml) was
dropwise added to the above mixed dispersion and continually
stirred at 0◦C for 5 h and then at 20◦C for 2 h. After that, the
blackish green product was filtered and washed with acetone,
and then dried in a vacuum oven at 60◦C for 8 h. The resultant
MoS2/rGO/PANI ternary composites were denoted as MGP-X,
where X (X = 50, 60, 70 and 80) represents the weight percentage
loading of PANI in the ternary composites.

Material Characterization
The morphology and microstructure of the samples were
characterized by a S-4800 scanning electron microscope
(SEM) and a JEOL 2010 field-emission transmission electron
microscope (TEM). The crystalline structures of the samples were
performed on a Rigaku D/Max-2500 X-ray diffractometer with
Cu Kα radiation (λ = 0.1542 nm) in the 2θ range from 5◦ to 90◦.
Fourier transform infrared (FT-IR) spectra were recorded on a
Bruker Optics TENSOR 27 spectrometer using KBr pellets in the
wave-number range of 400–4,000 cm−1.

Electrochemical Measurements
The electrochemical performance of the samples used as
electrode materials for supercapacitors were measured in a three-
electrode system. The working electrodes were fabricated by
mixing 80 wt% active materials, 10 wt% carbon black, and 10
wt% polytetrafluoroethylene (PTFE) solution. The mixture was
pasted on stainless steel network (1 × 1 cm2) and dried at
80◦C for 12 h in a vacuum oven. The mass of active materials
loaded on the working electrodes were 4–5mg. A platinum
foil and a saturated calomel electrode (SCE) were used as the
counter electrode and reference electrode, respectively, and 1M
H2SO4 aqueous solution was used as the electrolyte. Cyclic
voltammetry (CV) tests were obtained at different scan rates (1,
2, 5, 10, 20, 50, and 100mV s−1) within a potential window
of 0–1.0V vs. SCE. Electrochemical impedance spectroscopy
(EIS) measurements were carried out in the frequency range
from 0.01Hz to 100KHz with 5mV AC voltage amplitude at
open circuit potential. Galvanostatic charge-discharge (GCD)
investigations were performed at various current density (1, 2
3, 4, and 5A g−1) in a potential range of 0–1.0V vs. SCE. The
capacities of the samples were calculated based on the mass of
the active materials.

RESULTS AND DISCUSSION

Structure and Morphology of
MoS2/rGO/PANI Ternary Composites
Figure 1 shows XRD patterns of the PANI, MoS2/rGO
binary composite, and MoS2/rGO/PANI ternary composites,
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respectively. The diffraction peaks of the PANI located at 2θ =

20.3◦ and 25.3◦, which can be assigned to (020) and (200) crystal
planes of the emeraldine PANI salt, respectively (Tong et al.,
2014). The MoS2/rGO binary composite exhibits the diffraction
peaks centered at 2θ = 14.1◦, 33.1◦, 39.6◦, and 58.9◦, which
can be ascribable to the (002), (100), (103) and (110) crystal
planes of 2H-phase MoS2 (JCPDS no. 37-1492), respectively. The
diffraction peak of the rGO located at 2θ = 26.5◦ cannot be
detected in the MoS2/rGO binary composite, which indicates
that the restacking of graphene layers was inhibited by MoS2
nanosheets (Wang et al., 2014; Dai et al., 2017). In the diffraction
spectrum of the MoS2/rGO/PANI ternary composites, there
are some characteristic diffraction peaks of both MoS2/rGO
and PANI, revealing that the PANI is successfully attached
onto the surface of the MoS2/rGO binary composite. Moreover,
the intensities of the diffraction peaks from PANI gradually
increase with the elevated weight percent of PANI. All the results
indicate that these three components are fully compounded
together.

Figure 2 shows FT-IR spectra of the PANI, MoS2/rGO
binary composite, and MoS2/rGO/PANI ternary composites,
respectively. As shown in Figure 2, the spectrum of PANI shows
strong absorption peaks at 1,120, 1,250, 1,310, 1,489, and 1,550
cm−1 due to the C = N stretching, C–N stretching of the second
amine, the aromatic C= C stretching vibration of the benzenoid
and quinonoid rings, respectively (Cong et al., 2013). In the FT-IR
spectra of the MoS2/rGO binary composite, there is no obvious
peak arisen from the vibration of oxygen containing functional
groups on GO, which is attributed to the reduction of graphene
oxide after hydrothermal treatment. The weak peak at about 500
cm−1 is assigned to MoS2 vibration. Furthermore, the FT-IR
spectra of MGP-50 show the obvious existence of all the PANI
and MoS2/rGO characteristic peaks. With the increasing weight
percent of PANI, the intensities of the main characteristic PANI
peaks in the MoS2/rGO/PANI ternary composites all show an

FIGURE 1 | XRD patterns of the PANI, MoS2/rGO binary composite, and

MoS2/rGO/PANI ternary composites.

increase. This indicated that the PANI was successfully coated
on the surface of the MoS2/rGO binary composite, which is
helpful to improve the dispersibility of MoS2/rGO/PANI ternary
composites in the electrolyte.

The morphologies of the MoS2/rGO binary composite and
MoS2/rGO/PANI ternary composites are shown in Figure 3. As

FIGURE 2 | FT-IR spectra of the PANI, MoS2/rGO binary composite, and

MoS2/rGO/PANI ternary composites.

FIGURE 3 | SEM and TEM images of the MoS2/rGO binary composite (a,b),

and SEM images of the MoS2/rGO/PANI ternary composites [MRP-50 (c),

MRP-60 (d), MRP-70 (e), and MRP-80 (f)].
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shown in Figures 3a,b, the MoS2 nanosheets were well-scattered
on the surface of rGO nanosheets to form hetero-layered
architecture. The MoS2/rGO binary composite as an attractive
substrate can supply a large number of active sites for the
growth of PANI. Figures 3c–f show the morphology of the
MoS2/rGO/PANI ternary composites with different weight
percents of PANI. As shown in Figure 3c, the MGP-50 ternary
composite shows that a well-defined and interconnected
3D network architecture. The PANI in a planar shape were

polymerized and attached onto the surface of the MoS2/rGO
binary composite due to the electrostatic interaction between
negatively charged MoS2/rGO and positively charged PANI
(Luo et al., 2015). With the increased weight percent of PANI,
PANI coated MoS2/rGO assemble to generate a compact and
laminated morphology so that the layer structure of MoS2/rGO
is not clearly seen due to the low content (Figures 3d–f).
Such particular structure of the MoS2/rGO/PANI ternary
composites could increase the dispersion of PANI and improve

FIGURE 4 | CV curves for the MoS2/rGO binary composite and MoS2/rGO/PANI ternary composites at scan rates of (A) 2 and (B) 50mV s−1.

FIGURE 5 | (A) GCD curves of MoS2/rGO binary composite and MoS2/rGO/PANI ternary composites at a current density of 1 A g−1, (B) GCD curves of the MGP-80

at different current densities, (C) the specific capacitance as a function of discharge current density; (D) cycle performance of the MoS2 /rGO/PANI ternary

composites at 1 A g−1.
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the interfaces of PANI with electrolyte, which might be
beneficial for the improvement of electrochemical performance
of the MoS2/rGO/PANI ternary composite as electrode
materials.

Electrochemical Performance of
MoS2/rGO/PANI Ternary Composites
Figure 4 shows the CV curves of the MoS2/rGO binary
composite and MoS2/rGO/PANI ternary composites at scan
rates of 2 and 5mV s−1. In the case of the MoS2/rGO/PANI
ternary composites, it can be found that CV loop exhibit larger
areas under redox curve than the MoS2/rGO binary composite,
which indicates its higher specific capacitance. From the CV
curves for the MoS2/rGO/PANI ternary composites at different
PANI content, it was noted that the MGP-80 electrode shows
the largest rectangular curve corresponding to the highest
capacitance among the four samples. The CV curves for the
MGP80 at a low scan rate of 2mV s−1 show severely distorted
rectangular shapes as well as two conspicuous pairs of small,
broad oxidation and reduction peaks, resulting from the co-
contribution of electrical double-layer capacitance generated
from MoS2/rGO and pseudocapacitance arising from PANI
(Wang et al., 2015). The redox peaks become less obvious, and
the potential of the oxidation peak moves to higher potential
while the potential of the reduction peak shifts to lower at a high
scan rate of 50mV s−1. It should be noted that MoS2/rGO/PANI
ternary composites have fast ionic transport for charge-discharge
operations, which results from synergetic effect ofMoS2/rGO and
PANI.

The supercapacitance behavior of the MoS2/rGO/PANI
ternary composites was further investigated using GCD
measurements, as shown in Figure 5. Figure 5A displays the
GDC curves of the MoS2/rGO,MoS2/rGO/PANI with different
amounts of PANI at a current density of 1 Ag−1. It can be seen
that the shapes of the GDC curves of ternary composites are
similar to that of binary composite, which indicates that the
ternary composite possesses the co-contribution of electrical
double-layer capacitance and pseudo-capacitance. The ternary
composites with different amounts of PANI exhibit a higher
discharge time and lower IR drop than binary composite,
which indicates that the introduction of PANI can enhance
the capacitance and conductivity (Wang et al., 2013). The
discharge time of the ternary composites increased with an
increase amounts of PANI. The MGP-80 ternary composite
exhibits the maximum discharge time. Furthermore, the GCD
curves of the MRP-80 at different current densities from 1 to
5A g−1 are shown in Figure 5B. It could be seen that with the
increase of current density, the discharge time of the composite
decreased due to partial accessibility for electrolyte ions within
the active material at high currents. Figure 5C reveals the specific
capacitances of the ternary composites at the current densities of
1, 2, 3, 4, and 5 Ag−1. As can be observed, the capacitances of
the MGP-80 were 570, 400, 303, 220, and 212 Fg−1, respectively.
Figure 5D shows the cycle stability of the ternary composite at a
current density of 1A g−1. After 500 charging and discharging
cycles, the specific capacitances of MPG-50, MPG-60, MPG-70

FIGURE 6 | Nyquist plots of the MoS2/rGO binary composite and

MoS2/rGO/PANI ternary composites (the inset is an enlarged view of the

Nyquist curves).

and MPG-80 retained 64.3, 67.7, 71.5, and 78.6% of the value of
the first cycle, respectively. The good cycling stability of MPG-80
is ascribed to the fact that the synergistic effect between the
MoS2/rGO and PANI could relieve the volumetric shrinkage
or swelling of PANI during the charge/discharge process
(Dai et al., 2013).

EIS was carried out to describe the electrochemical process of
the electrode/electrolyte interface. Figure 6 shows the Nyquist
plots of MoS2/rGO binary composite and MoS2/rGO/PANI
ternary composites. In high-frequency regions, the intercept
of the semicircle with the X-axis represents the equivalent
series resistance (Rs) of the electrode materials, while the
diameter of the semicircle corresponds to the charge transfer
resistance (Rct) (Sk et al., 2014). From the Nyquist plots, the
Rs of MoS2/rGO binary composite and MoS2/rGO/PANI
ternary composites (MGP-50, MGP-60, MGP-70 and MGP-80)
were 0.28, 0.90, 0.93, 0.97, and 1.03�, respectively, indicating
that the introduction of PANI could decrease the electrical
conductivity of binary composite. However, Rct displays
a opposite trend, probablely because that the hierarchical
structures of MoS2/rGO/PANI ternary composites show the fast
charge transfer rates and reflect a preferable electrochemical
performance. In low frequency regions, the nearly parallel
to imaginary axis of the lines show that MoS2/rGO/PANI
ternary composites have an ideal capacitive behavior. These
results indicated that the ternary composite could improved
charge storage and transportation within the electrode,
which should be considered as a better electrode material
(Liu et al., 2014).

CONCLUSIONS

MoS2/rGO/PANI ternary composites with different amounts
of PANI were successfully prepared by a two-stage
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synthesis combing a hydrothermal method with in situ
chemical oxidative polymerization, and their supercapacitor
performance were further investigated using electrochemical
measures. The introduction of PANI in the MoS2/rGO
binary composite not only hindered the agglomeration
of MoS2/rGO, but also resulted in a synergistic effect
among these three components. MoS2/rGO/PANI ternary
composite with 80% PANI (MGP-80) showed the highest
specific capacitance of 570 F g−1 at of 1A g−1 which was
comparatively larger than MoS2/rGO binary composite
(200 F g−1). Furthermore, it was noticed that the specific
capacitance of the MGP-80 composite retained more
than 78.6% after 500 cycles at 1 A g−1. All the evidences
suggest that the MoS2/rGO/PANI ternary composite is a
high-performance electrode material for next-generation
supercapacitors.
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