

Insights Into Highly Improved Solar-Driven Photocatalytic Oxygen Evolution Over Integrated Ag₃PO₄/MoS₂ Heterostructures

Xingkai Cui¹, Xiaofei Yang^{1,2,3*}, Xiaozhai Xian¹, Lin Tian¹, Hua Tang¹ and Qinqin Liu^{1*}

¹ School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China, ² College of Science, Nanjing Forestry University, Nanjing, China, ³ State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China

OPEN ACCESS

Edited by:

Fan Dong, Chongqing Technology and Business University, China

Reviewed by:

Kangle Lv, South-Central University for Nationalities, China Yanhui Ao, Hohai University, China Shichao Tian, Research Institute of Tsinghua University in Shenzhen, China

*Correspondence:

Xiaofei Yang xiaofei_yang1980@163.com; xiaofei.yang@njfu.edu.cn Qinqin Liu liu_qin_qin@126.com

Specialty section:

This article was submitted to Catalysis and Photocatalysis, a section of the journal Frontiers in Chemistry

Received: 13 March 2018 Accepted: 03 April 2018 Published: 18 April 2018

Citation:

Cui X, Yang X, Xian X, Tian L, Tang H and Liu Q (2018) Insights Into Highly Improved Solar-Driven Photocatalytic Oxygen Evolution Over Integrated Ag₃PO₄/MoS₂ Heterostructures Front. Chem. 6:123. doi: 10.3389/fchem.2018.00123 Oxygen evolution has been considered as the rate-determining step in photocatalytic water splitting due to its sluggish four-electron half-reaction rate, the development of oxygen-evolving photocatalysts with well-defined morphologies and superior interfacial contact is highly important for achieving high-performance solar water splitting. Herein, we report the fabrication of Ag_3PO_4/MoS_2 nanocomposites and, for the first time, their use in photocatalytic water splitting into oxygen under LED light illumination. Aq₃PO₄ nanoparticles were found to be anchored evenly on the surface of MoS₂ nanosheets, confirming an efficient hybridization of two semiconductor materials. A maximum oxygen-generating rate of 201.6 μ mol \cdot L⁻¹ \cdot g⁻¹ \cdot h⁻¹ was determined when 200 mg MoS₂ nanosheets were incorporated into Ag₃PO₄ nanoparticles, which is around 5 times higher than that of bulk Ag₃PO₄. Obvious enhancements in light-harvesting property, as well as electron-hole separation and charge transportation are revealed by the combination of different characterizations. ESR analysis verified that more active oxygen-containing radicals generate over illuminated Ag₃PO₄/MoS₂ composite photocatalysts rather than irradiated Ag₃PO₄. The improvement in oxygen evolution performance of Ag₃PO₄/MoS₂ composite photocatalysts is ascribed to wide spectra response in the visible-light region, more efficient charge separation, and enhanced oxidation capacity in the valence band (VB). This study provides new insights into the design and development of novel composite photocatalytic materials for solar-to-fuel conversion.

Keywords: Ag₃PO₄, MoS₂, composite photocatalyst, oxygen evolution, water splitting, Z-scheme

INTRODUCTION

Inspired by natural photosynthesis, the construction of visible-light-responsive functional semiconducting materials for highly efficient photocatalytic water splitting and reduction of CO_2 has drawn considerable attention over the past few years (Maeda and Domen, 2010; Mikkelsen et al., 2010; Takanabe, 2017; Zheng et al., 2017). Especially, water splitting into hydrogen and oxygen has been intensively investigated due to the nature of clean and sustainable solar-to-fuel conversion. Compared with the hydrogen evolution reaction (HER), four-electron water oxidation process is more difficult to be fulfilled since a higher potential more than 1.23 eV is required

1

(Kudo and Miseki, 2009), mostly an overpotential is also required. Thus, oxygen evolution is considered as the ratedetermining step in photocatalytic overall water splitting process. So far only few semiconductors such as WO₃, BiVO₄, have been employed as photocatalysts for oxygen production from water splitting (Xin et al., 2009; Wu et al., 2016; Zeng et al., 2017; He et al., 2018). Due to the limitations of band structures and light-harvesting properties in the visible light region, the utilization of sing-component semiconductors as catalysts for oxygen evolution has encountered serious difficulties, the design and development of novel composite materials for solar-driven photocatalytic water splitting are highly desirable.

Since the pioneer work of silver phosphate (Ag₃PO₄) semiconductor for photocatalytic applications in 2010 (Yi et al., 2010). Many efforts have been devoted to synthesize Ag₃PO₄ photocatalysts with different nanostructures and a variety of Ag₃PO₄-based composite photocatalytic materials for energy and environmental applications (Bi et al., 2012; Wang et al., 2012; Hu et al., 2013; Cao et al., 2017). Nanostructure engineering of pristine Ag₃PO₄ and hybridization of Ag₃PO₄ with other semiconductors have been proven to offer superior advantages in light absorption, electronhole separation and charge transportation, resulting in the enhancement in the photocatalytic activity (Yang et al., 2015b; Lv et al., 2016; Wang et al., 2017; Zhou et al., 2018). The key to synthesizing highly efficient Ag₃PO₄-based composite photocatalysts lies in screening promising candidates with matched band structures and constructing heterojunctions with optimal morphologies and interfaces, where favorable visible light utilization and tandem charge transfer pathway should be taken into consideration. The past decades have witnessed the use of molybdenum disulfide (MoS₂), a 2D lamellar material with excellent conductive property, as electrocatalysts and photocatalysts for applications in electrochemical and solar-tofuel conversion (Xiang et al., 2012; Dai et al., 2017; Yang et al., 2017). It was confirmed that the combination of MoS₂ with functional semiconductors enabled obvious enhancements in both photocatalytic and electrocatalytic hydrogen production activity (Sun et al., 2016; Zhang et al., 2016; Iqbal et al., 2017; Yuan et al., 2017). The hybridization of MoS₂ with Ag₃PO₄ to produce MoS₂/Ag₃PO₄ composite materials has been primarily explored, however the application is restricted to the photodegradation of different kinds of organic pollutants (Wang L. et al., 2015; Wang P. F. et al., 2015; Gyawali and Lee, 2016; Li et al., 2016; Zhu et al., 2016; Wan et al., 2017), the employment of MoS₂/Ag₃PO₄ nanocomposites as photocatalysts for solar-lightdriven oxygen evolution from water splitting has not yet been explored.

Most recently, we reported the *in-situ* deposition of Ag_3PO_4 on graphitic carbon nitride (g- C_3N_4) nanostructures for highly efficient Z-scheme oxygen evolution from water splitting (Yang et al., 2015a,c; Cui et al., 2018; Tian et al., 2018). In consideration of the matched band structures of bulk Ag_3PO_4 and MoS_2 materials for redox reactions, in this work, we demonstrate the hybridization of oxygen-producing photocatalyst Ag_3PO_4 with few-layered, two-dimensional MoS_2 nanosheets, and the use of Ag_3PO_4/MoS_2 nanocomposites for photocatalytic water oxidation under LED illumination. Asprepared hybrid materials exhibit well-organized nanostructures, in which sheet-like MoS_2 materials provide sufficient active sites for the deposition of Ag_3PO_4 nanoparticles. It is for the first time that oxygen evolution performance over the obtained Ag_3PO_4/MoS_2 composite photocatalysts has been evaluated, moreover, the effects of highly conductive MoS_2 materials on visible light utilization, electron-hole separation and water oxidation efficiency are systematically revealed.

EXPERIMENTAL

Preparation

 MoS_2 nanosheets were fabricated by the ultrasonic stripping of commercially available MoS_2 materials. In a typical synthesis of Ag_3PO_4/MoS_2 nanocomposites, different amounts of sheetlike MoS_2 (50, 100, 200, 300 mg) were added into 90 mL H₂O, respectively, followed by the ultrasonic treatment for 3 h. Next, 30 mL of $AgNO_3$ (18 mmol, 3.06 g) aqueous solution was added dropwise into the MoS_2 suspension, and stirred for further 12 h. And then 30 mL of Na_3PO_4 (6 mmol, 2.28 g) aqueous solution was added slowly into the above mixture, followed by continuous stirring for 3 h. After high-speed centrifugation, solid products were washed with deionized water and ethanol repeatedly, and dried at 60° C for 12 h. The final products were collected and are denoted as AM-50, AM-100, AM-200, and AM-300.

Characterizations

X-ray diffraction (XRD) was measured using Cu Ka radiation with the 2 θ range from 5 to 80° at a scan rate of 5° min⁻¹ on D/MAX2500PC. Raman spectra were recorded by Thermo ScientificTM DXR spectrometer operating at 532 nm. X-ray photoelectron spectroscopy (XPS) was evaluated by Perkin-Elmer PHI 5000C. The field-emission scanning electron microscopy (FE-SEM) was performed on JSM-7001F. The Ultraviolet-visible diffuse reflectance spectrophotometer (UV-vis DRS) on UV2450 from 200 to 800 nm with BaSO₄ as reference standard. Photoluminescence (PL) emission measurements were carried out by a QuantaMasterTM 40 with an excitation wavelength of 420 nm. The electron spin resonance (ESR) measurements were recorded on a JES FA200 Spectrometer using the 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as the radical capture reagent.

Photocatalytic Measurements

The efficiency of photocatalytic oxygen evolution was monitored by *in-situ* oxygen sensor in a sealed system connected with a circulation system. Before the measurement, oxygen-free and air-saturated water were used to calibrate the oxygen probe with temperature compensation. For the measurement of oxygen evolution, 0.3 g of the photocatalyst powder was added into AgNO₃ aqueous solution (100 mL, 10 g/L), followed by an ultrasonic treatment for 5 min.

RESULTS AND DISCUSSION

Photocatalytic oxygen evolution from water splitting over pure Ag₃PO₄ and Ag₃PO₄/MoS₂ composites with different mass ratios were evaluated, and the results are presented in Figure 1. It can be observed (Figure 1A) that the amount of evolved oxygen increases gradually when 50 and 100 mg MoS₂ were employed, the highest concentration of produced oxygen was recorded when the content of MoS₂ was increased to 200 mg. Further increase in the MoS₂ content from 200 to 300 mg in the Ag₃PO₄/MoS₂ composite resulted in the deterioration in the oxygen-generating performance. Notably all the composites showed improved oxygen-evolving performance than bulk Ag₃PO₄ material. The oxygen-evolving rates of as-prepared samples under LED illumination are further quantified and shown in Figure 1B. When 200 mg MoS₂ was introduced to hybridize with Ag₃PO₄, an optimal oxygen-generating rate of 201.6 $\mu mol \cdot L^{-1} \cdot g^{-1} \cdot h^{-1}$ was determined, which is about 4.5 times higher than that of pure Ag₃PO₄. It can be concluded from the oxygen evolution performance that a proper addition of MoS₂ may promote the water oxidation efficiency, while the use of more than 200 mg of MoS_2 is found to show negative effects on the oxygen evolution performance. For simplicity, only the composite AM-200 with the best oxygen-producing efficiency is chosen for comparisons with two starting materials in the following sections.

Following the evaluation of photocatalytic oxygen evolution performance, phase structures of the AM-200 composite were confirmed by XRD patterns (Figure 2A). Diffraction peaks (black line) appearing in 14.32, 32.62, 33.44, 35,82, 39.48, 44,1, 49.72, 58.24, 60.32, and 72.72° can be assigned to the (002), (100), (101), (102), (103), (006), (105), (110), (008), and (203) planes of hexagonal MoS₂ (JCPDS No. 37-1492). And the characteristic peaks (blue line) located at 20.96, 29.78, 33.38, 36.66, 47.86, 52.76, 55.1, 57.34, 61.72, and 73.94° correspond to planes (110), (200), (210), (211), (310), (222), (320), (321), (400), and (332) of bulk Ag₃PO₄ (JCPDS No. 06-0505), respectively. No obvious difference can be observed in characteristic diffraction peaks of bulk Ag₃PO₄ and Ag₃PO₄/MoS₂ composite (AM-200), presumably due to a relatively weaker diffraction intensity of MoS₂. The molecular structures of pure MoS₂, bulk Ag₃PO₄ and the Ag₃PO₄/MoS₂ composite AM-200 were further characterized

FIGURE 3 | Low-magnification (A,C,E) and high-magnification (B,D,F) SEM images of pure Ag₃PO₄ (A,B), MoS₂ (C,D) as well as the composite AM-200 (E,F); EDS element mapping images of AM-200 (G).

by Raman spectra (**Figure 2B**). In the spectrum of Ag_3PO_4 , a sharp absorption peak at 908.5 cm⁻¹ can be attributed to the motion of terminal oxygen bond vibration in phosphate chains. The peak at 1002.4 cm⁻¹ is ascribed to the asymmetric stretching vibrations of O–P–O bonds in [PO₄] clusters. The broad peak located at 554.4 cm⁻¹ arises from the asymmetric stretch of P–O–P bonds, while the peak centered at 406.1 cm⁻¹ corresponds to the symmetric bending vibration modes related to [PO₄] clusters (Botelho et al., 2015). For pure MoS₂, characteristic Raman shifts located at 375.8 and 402.1 cm⁻¹ are assigned to the E_{2g} and A_{1g} modes, while the peak appearing at 446.2 cm⁻¹ is suggested to come from the interaction of the longitudinal acoustic phonon and Raman inactive A_{2u} modes (Koroteev et al., 2011; Lukowski et al., 2013). All characteristic peaks of both Ag₃PO₄ and MoS₂ were detected in Raman spectrum of the Ag₃PO₄/MoS₂ composite AM-200, indicating a complete hybridization of $\mathrm{Ag_3PO_4}$ with $\mathrm{MoS_2}.$

The morphologies of as-prepared samples were recorded by SEM images (**Figure 3**). From **Figures 3A,B**, as-synthesized Ag₃PO₄ products present an irregular polyhedron structure with the size of about $1-3 \mu$ m, and a few of small particles are distributed around large particles. SEM images of ultrasonictreated MoS₂ material (**Figures 3C,D**) shows that stripped MoS₂ exhibit a thin sheet-like nanostructure. The stripped MoS₂ layer-like material has a certain accumulation and parts of MoS₂ materials have not been stripped into pieces. The Ag₃PO₄/MoS₂ composite AM-200 was synthesized by the *in-situ* deposition of Ag₃PO₄ nanoparticles on the surface of MoS₂ nanosheets via electrostatically driven self-assembly. As displayed in **Figures 3E,F**, the Ag₃PO₄ particles are uniformly distributed on the MoS₂ nanosheets without obvious agglomeration. It can

be observed that the particle size of Ag_3PO_4 in AM-200 decreases slightly and is more uniform when a certain amount of MoS_2 were hybridized with Ag_3PO_4 , suggesting that the addition of MoS_2 nanosheets have an effect on the particle size of Ag_3PO_4 . The EDS element mapping images of AM-200 suggest that Mo, S, Ag, P, and O elements are homogeneously distributed, confirming the complete hybridization of Ag_3PO_4 particles and MoS_2 nanosheets.

The surface chemical compositions and states of the Ag₃PO₄/MoS₂ composite AM-200 were investigated by XPS characterization, the results are shown in Figure 4. Ag, P, O, Mo, S, and C elements can be detected in the survey spectrum (Figure 4A) of as-prepared composite AM-200. The existence of C 1s peak is may due to the adventitious carbon on the surface of sample. In the high resolution spectrum of Ag 3d (Figure 4B), two peaks at 368.1 and 374.2 eV can be assigned to the Ag $3d_{5/2}$ and Ag $3d_{3/2}$, respectively. The broad peak in the P 2p spectrum (Figure 4C) located at 133.0 eV originates from the P⁵⁺ in the Ag₃PO₄. The high resolution spectrum of Mo 3d is displayed in Figure 4D, the peaks at 226.7, 229.7, 232.9, and 236.2 eV can be ascribed to the S 2s, Mo $3d_{5/2}$, Mo $3d_{3/2}$, and Mo-O binding, respectively. Particularly, the first three binding energies indicated that S and Mo elements in the MoS₂ are found in the form of S^{2-} and Mo^{4+} , respectively, and the last one might result from the exposed Mo atoms during the exfoliation process combining with the O of Ag₃PO₄ (Wan et al., 2017). The S 2p XPS spectrum (Figure 4E) can be divided into two peaks centered at 162.5 and 163.6 eV, respectively, corresponding to the S $2p_{3/2}$ and S $2p_{1/2}$ in the MoS₂. The spectrum of O 1s (Figure 4F) can be fitted into two peaks located at 530.8 and 532.5 eV, originating from the O^{2-} in the Ag₃PO₄ and the hydroxyl group, respectively.

It is well-known that the utilization of visible light is one of key factors affecting the activity of a photocatalyst, therefore, the light-harvesting properties of all samples were measured by UVvis DRS ranging from 200 to 800 nm and the absorption spectra are presented in **Figure 5A**. It can be seen that pure Ag_3PO_4 has a clear absorption edge around 530 nm, and black MoS_2 material reveals full-spectrum absorption in the range of 200-800 nm. The light absorption intensity of Ag₃PO₄/MoS₂ composite AM-200 in the wavelength range of 500-800 nm was increased when a certain amount of MoS₂ (200 mg) were employed to hybridize with Ag₃PO₄, implying that the integration of MoS₂ with Ag₃PO₄ favors a more efficient utilization of visible light. In addition to the light absorption, the separation of photoinduced electron-hole pairs is also believed to play a predominant role in determining the photocatalytic activity, thus the recombination of photogenerated charge carrier for the as-synthesized samples was analyzed by PL spectroscopy measurements. Figure 5B reveals Ag₃PO₄ has a strong excitation peak around 630 nm, stemming from the recombination of electrons and holes. After the addition of MoS₂, the Ag₃PO₄/MoS₂ composite AM-200 presented a similar position of excitation peak with Ag₃PO₄, and the PL emission intensity of AM-200 was weaker than those of pure MoS₂ and Ag₃PO₄, suggesting that the recombination efficiency of photoexcited charge carriers in the Ag₃PO₄/MoS₂ composite AM-200 has been effectively suppressed when the heterostructured composite was formed. A slower recombination rate of photogenerated electron-hole pairs boosts the enhancement in the photocatalytic performance.

To further determine the influence of the redox capacity of samples on the photocatalytic activity, as well as to investigate the mechanism behind the enhanced photocatalytic oxygen evolution from water splitting, the ESR measurement was carried out to confirm active radicals in-situ formed under light illumination. It can be observed in Figure 6A that no obvious peak was detected in dark. Under illumination, several strong peaks arising from DMPO-captured radicals can be detected in methanol dispersion for both pure Ag₃PO₄ and the Ag₃PO₄/MoS₂ composite AM-200, typical peaks are assigned to the spin adducts (DMPO- $O_2^{\bullet-}$). Compared with signals derived from pure Ag₃PO₄, higher signal intensities of DMPO-captured superoxide radicals were observed in the methanol dispersion of AM-200. It is shown in Figure 6B that no radical signal was detected in dark. A typical intensity ratio of 1:2:2:1 was determined from the spin adducts in aqueous dispersions of both Ag₃PO₄ and AM-200 under light irradiation, representing the generation of the spin adducts (DMPO- \bullet OH). Similarly, the intensity of radical signal for AM-200 increased largely comparable to that of Ag₃PO₄.On the basis of the above results, it is concluded that higher intensities of both photo-induced O₂^{\bullet -} and \bullet OH were recorded when a proper amount of MoS₂ was employed.

Furthermore, the band edge positions of valence band (VB) and conduction band (CB) also have an important effect on the redox catalytic capability, which can be deduced by the following formula (Li et al., 2016):

$$\begin{split} E_{VB} &= \chi - E_e + 0.5 E_g \\ E_{CB} &= E_{VB} - E_g \end{split}$$

Where E_{CB} and E_{VB} represent the CB and VB edge potentials, respectively; χ is the electro-negativity of the semiconductor, which is the geometric mean of the electro-negativities of the constituent atoms, and χ -values for Ag₃PO₄ and MoS₂ are 5.96 and 5.32 eV (Wan et al., 2017), respectively. Ee is about 4.5 eV, representing the free electron energy on the hydrogen scale. Eg was the band gap energy of the semiconductor, and Egvalues for Ag₃PO₄ and MoS₂ are about 2.45 and 1.9 eV (Yang et al., 2015c; Li et al., 2016), respectively. According to the calculation, the EVB-values of Ag₃PO₄ and MoS₂ are about 2.69 and 1.77 eV, the top of which for both Ag₃PO₄ and MoS₂ is more positive than the redox potential of O_2/H_2O (1.23 eV) (Xie et al., 2013), theoretically both two semiconductors are able to split water into oxygen. However, overpotential is generally required for practical water splitting, in this study, Ag₃PO₄ acts as the oxygen-evolving catalyst for solar-driven water splitting due to its more positive potential higher than that for water oxidation. Subsequently E_{CB} positions of Ag₃PO₄ and MoS₂ are determined to be 0.24 and -0.13 eV, respectively. Therefore, the enhanced photocatalytic oxygen-generating performance over the Ag₃PO₄/MoS₂ composite photocatalyst could be explained as follows: first, the electrons in the VB of Ag₃PO₄ could be initially excited into CB, and subsequently, may recombine with the holes in the VB of MoS₂ via a possible Z-scheme configuration. Thus, more efficient electron-hole separations and charge transporatation occur in the illuminated hybrid materials due to the existence of highly conductive MoS₂ sheets and possible Z-scheme pathway for electron transfer. The electronhole recombination on the surface of Ag₃PO₄ can be suppressed, as a result, active holes left on the VB position of Ag₃PO₄

REFERENCES

- Bi, Y. P., Hu, H. Y., Ouyang, S. X., Jiao, Z. B., Lu, G. X., and Ye, J. H. (2012). Selective growth of metallic Ag nanocrystals on Ag₃PO₄ submicrocubes for photocatalytic applications. *Chem. Eur. J.* 18, 14272–14275. doi: 10.1002/chem.201201435
- Botelho, G., Sczancoski, J. C., Andres, J., Gracia, L., and Longo, E. (2015). Experimental and theoretical study on the structure, optical properties, and growth of metallic silver nanostructures in Ag₃PO₄. *J. Phys. Chem. C* 119, 6293–6306. doi: 10.1021/jp512111v

may oxidize water into oxygen effectively, leading to highly efficient oxygen evolution performance over the Ag₃PO₄/MoS₂ composite photocatalysts.

CONCLUSIONS

In conclusion, effective Ag₃PO₄/MoS₂ composite photocatalysts were successfully fabricated by combining ion-exchange process and electrostatic assembly of Ag₃PO₄ nanoparticles on the surface of MoS₂ nanosheets. The Ag₃PO₄/MoS₂ hybrid materials demonstrated superior interfacial contact and wide-spectrum light-harvesting property in the visible light region. When employed as the catalyst for photocatalytic water splitting, it exhibited highly improved oxygen evolution performance than bulk Ag₃PO₄ under LED irradiation. The oxygen-evolving rate of the optimal Ag₃PO₄/MoS₂ composite (AM-200) is nearly five times faster than pure Ag₃PO₄. The combined characterizations and theoretical analysis on band structures suggest that the enhanced water oxidation efficiency is attributed to remarkable response to visible light, more efficient charge transportation and possibly specific Z-scheme pathway derived from matched band positions. The finding in this work offers a great opportunity in designing and synthesizing novel composite photocatalytic materials for applications in solar energy conversion, allowing us to develop an understanding of the fundamental mechanisms of Ag₃PO₄-based composite photocatalytic materials.

AUTHOR CONTRIBUTIONS

XY and QL: designed the project, guided the study, and polished the manuscript; XC, XX, and LT: conducted the experiments and characterized the samples; HT: revised the manuscript.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51672113), Six Talent Peaks Project in Jiangsu Province (2015-XCL-026), Natural Science Foundation of Jiangsu Province (BK20171299), State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201705), Fuzhou University, Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJZZ16_0192), and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (2016-KF-10), Wuhan University of Technology.

- Cao, Q., Yu, J., Yuan, K., Zhong, M., and Delaunay, J. J. (2017). Facile and large-area preparation of porous Ag₃PO₄ photoanodes for enhanced photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 9, 19507–19512. doi: 10.1021/acsami.7b03098
- Cui, X. K., Tian, L., Xian, X. Z., Tang, H., and Yang, X. F. (2018). Solar photocatalytic water oxidation over Ag₃PO₄/g-C₃N₄ composite materials mediated by metallic Ag and graphene. *Appl. Surf. Sci.* 430, 108–115. doi: 10.1016/j.apsusc.2017.07.290
- Dai, W. L., Yu, J. J., Deng, Y. Q., Hu, X., Wang, T. Y., and Luo, X. B. (2017). Facile synthesis of MoS₂/Bi₂WO₆ nanocomposites for enhanced CO₂

photoreduction activity under visible light irradiation. Appl. Surf. Sci. 403, 230-239. doi: 10.1016/j.apsusc.2017.01.171

- Gyawali, G., and Lee, S. W. (2016). Microwave hydrothermal synthesis and characterization of Ag₃PO₄/MoS₂ composite photocatalyst. J. Nanosci. Nanotechnol. 16, 11158–11163. doi: 10.1166/jnn.2016.13471
- He, Y., Li, L., Fan, W. G., Zhang, C. X., and Leung, M. K. H. (2018). A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO₄ film with high photoelectrochemical performance. J. Alloys Compd. 732, 593–602. doi: 10.1016/j.jallcom.2017.10.153
- Hu, H. Y., Jiao, Z. B., Yu, H. C., Lu, G. X., Ye, J. H., and Bi, Y. P. (2013). Facile synthesis of tetrahedral Ag₃PO₄ submicro-crystals with enhanced photocatalytic properties. *J. Mater. Chem. A* 1, 2387–2390. doi: 10.1039/c2ta01151d
- Iqbal, S., Pan, Z. W., and Zhou, K. B. (2017). Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS₂/CdS nanosheet-based van der Waals heterostructures. *Nanoscale* 9, 6638–6642. doi: 10.1039/C7NR01705G
- Koroteev, V. O., Bulusheva, L. G., Asanov, I. P., Shlyakhova, E. V., Vyalikh, D. V., and Okotrub, A. V. (2011). Charge transfer in the MoS₂/Carbon nanotube composite. J. Phys. Chem. C 115, 21199–21204. doi: 10.1021/jp205939e
- Kudo, A., and Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. *Chem. Soc. Rev.* 38, 253–278. doi: 10.1039/B800489G
- Li, S. P., Gu, X. Q., Zhao, Y. L., Qiang, Y. H., Zhang, S., and Sui, M. R. (2016). Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS₂ into Ag₃PO₄ microcrystals. *J. Mater. Sci. Mater. Electron.* 27, 386–392. doi: 10.1007/s10854-015-3765-x
- Lukowski, M. A., Daniel, A. S., Meng, F., Forticaux, A., Li, L. S., and Jin, S. (2013). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS₂ nanosheets. J. Am. Chem. Soc. 135, 10274–10277. doi: 10.1021/ja404523s
- Lv, J. L., Dai, K., Lu, L. H., Geng, L., Liang, C. H., and Zhu, G. P. (2016). Cu/Ag/Ag₃PO₄ ternary composite: a hybrid alloy-semiconductor heterojunction structure with visible light photocatalytic properties. *J. Alloys Compd.* 682, 778–784. doi: 10.1016/j.jallcom.2016.04.313
- Maeda, K., and Domen, K. (2010). Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661. doi: 10.1021/jz1007966
- Mikkelsen, M., Jorgensen, M., and Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. *Energy Environ. Sci.* 3, 43–81. doi: 10.1039/B912904A
- Sun, M. X., Wang, Y., Fang, Y. L., Sun, S. F., and Yu, Z. S. (2016). Construction of MoS₂/CdS/TiO₂ ternary composites with enhanced photocatalytic activity and stability. J. Alloys Compd. 684, 335–341. doi: 10.1016/j.jallcom.2016.05.189
- Takanabe, K. (2017). Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 7, 8006–8022. doi: 10.1021/acscatal.7b02662
- Tian, L., Xian, X. Z., Cui, X. K., Tang, H., and Yang, X. F. (2018). Fabrication of modified g-C₃N₄ nanorod/Ag₃PO₄ nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. *Appl. Surf. Sci.* 430, 301–308. doi: 10.1016/j.apsusc.2017.07.185
- Wan, J., Du, X., Liu, E. Z., Hu, Y., Fan, J., and Hu, X. Y. (2017). Z-scheme visiblelight-driven Ag₃PO₄ nanoparticle@MoS₂ quantum dot/few-layered MoS₂ nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. J. Catal. 345, 281–294. doi: 10.1016/j.jcat.2016.11.013
- Wang, L., Chai, Y. Y., Ren, J., Ding, J., Liu, Q. Q., and Dai, W. L. (2015). Ag₃PO₄ nanoparticles loaded on 3D flower-like spherical MoS₂: a highly efficient hierarchical heterojunction photocatalyst. *Dalton Trans.* 44, 14625–14634. doi: 10.1039/C5DT01961C
- Wang, P. F., Shi, P. H., Hong, Y. C., Zhou, X. J., and Yao, W. F. (2015). Facile deposition of Ag₃PO₄ on graphene-like MoS₂ nanosheets for highly efficient photocatalysis. *Mater. Res. Bull.* 62, 24–29. doi: 10.1016/j.materresbull.2014.10.016
- Wang, P., Xu, S., Xia, Y., Wang, X., Yu, H., and Yu, J. (2017). Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag₃PO₄. *Phys. Chem. Chem. Phys.* 19, 10309–10316. doi: 10.1039/C7CP01043E
- Wang, W., Cheng, B., Yu, J., Liu, G., and Fan, W. (2012). Visible-light photocatalytic activity and deactivation mechanism of Ag₃PO₄ spherical particles. *Chem. Asian J.* 7, 1902–1908. doi: 10.1002/asia.201200197

- Wu, Q. F., Bao, S. Y., Tian, B. Z., Xiao, Y. F., and Zhang, J. L. (2016). Doublediffusion-based synthesis of BiVO₄ mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. *Chem. Commun.* 52, 7478–7481. doi: 10.1039/C6CC02737G
- Xiang, Q. J., Yu, J. G., and Jaroniec, M. (2012). Synergetic effect of MoS₂ and graphene as cocatalysts for enhanced photocatalytic H₂ production activity of TiO₂ nanoparticles. *J. Am. Chem. Soc.* 134, 6575–6578. doi: 10.1021/ja302846n
- Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L., and Gong, J. R. (2013). Graphenebased materials for hydrogen generation from light-driven water splitting. *Adv. Mater.* 25, 3820–3839. doi: 10.1002/adma.201301207
- Xin, G., Guo, W., and Ma, T. L. (2009). Effect of annealing temperature on the photocatalytic activity of WO₃ for O₂ evolution. *Appl. Surf. Sci.* 256, 165–169. doi: 10.1016/j.apsusc.2009.07.102
- Yang, L., Guo, S. H., and Li, X. H. (2017). Au nanoparticles@MoS₂ core-shell structures with moderate MoS₂ coverage for efficient photocatalytic water splitting. J. Alloys Compd. 706, 82–88. doi: 10.1016/j.jallcom.2017.02.240
- Yang, X. F., Chen, Z. P., Xu, J. S., Tang, H., Chen, K. M., and Jiang, Y. (2015a). Tuning the morphology of g-C₃N₄ for improvement of Z-scheme photocatalytic water oxidation. ACS Appl. Mater. Interfaces 7, 15285–15293. doi: 10.1021/acsami.5b02649
- Yang, X. F., Qin, J. L., Jiang, Y., Chen, K. M., Yan, X. H., Zhang, D., et al. (2015b). Fabrication of P25/Ag₃PO₄/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. *Appl. Catal. B Environ.* 166, 231–240. doi: 10.1016/j.apcatb.2014.11.028
- Yang, X., Tang, H., Xu, J., Antonietti, M., and Shalom, M. (2015c). Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. *ChemSusChem* 8, 1350–1358. doi: 10.1002/cssc.201403168
- Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S. X., Stuart-Williams, H., et al. (2010). An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. *Nat. Mater.* 9, 559–564. doi: 10.1038/nmat2780
- Yuan, Y. J., Chen, D. Q., Yang, S. H., Yang, L. X., Wang, J. J., Cao, D. P., et al. (2017). Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS₂ nanosheet modified CdS as a H₂ evolution photocatalyst. J. Mater. Chem. A 5, 21205–21213. doi: 10.1039/C7TA06644A
- Zeng, Q. Y., Li, J. H., Li, L. S., Bai, J., Xia, L. G., and Zhou, B. X. (2017). Synthesis of WO₃/BiVO₄ photoanode using a reaction of bismuth nitrate with peroxovanadate on WO₃ film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. *Appl. Catal. B Environ.* 217, 21–29. doi: 10.1016/j.apcatb.2017.05.072
- Zhang, J., Huang, L. H., Lu, Z. D., Jin, Z. L., Wang, X. Y., Xu, G. L., et al. (2016). Crystal face regulating MoS₂/TiO₂(001) heterostructure for high photocatalytic activity. *J. Alloys Compd.* 688, 840–848. doi: 10.1016/j.jallcom.2016.07.263
- Zheng, Y., Zhang, W. Q., Li, Y. F., Chen, J., Yu, B., Wang, J. C., et al. (2017). Energy related CO₂ conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. *Nano Energy* 40, 512–539. doi: 10.1016/j.nanoen.2017.08.049
- Zhou, T. H., Zhang, G. Z., Ma, P. J., Qiu, X. L., Zhang, H. W., Yang, H., et al. (2018). Efficient degradation of rhodamine B with magnetically separable Ag₃PO₄@MgFe₂O₄ composites under visible irradiation. J. Alloys Compd. 735, 1277–1290. doi: 10.1016/j.jallcom.2017.11.245
- Zhu, C. S., Zhang, L., Jiang, B., Zheng, J. T., Hu, P., Li, S. J., et al. (2016). Fabrication of Z-scheme Ag₃PO₄/MoS₂ composites with enhanced photocatalytic activity and stability for organic pollutant degradation. *Appl. Surf. Sci.* 377, 99–108. doi: 10.1016/j.apsusc.2016.03.143

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Cui, Yang, Xian, Tian, Tang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.