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A bifunctional nanocatalyst composed of iron containing SBA-15 material modified

with sulfonic acid groups was synthesized by a mechanochemical approach. A full

characterization of the obtained nanocatalyst was performed by N2 physisorption

isotherms analysis, transmission electron microscopy (TEM), X-ray powder diffraction

(XRD) and Fourier-Infrared Spectroscopy (FT-IR). The mechanochemically synthesized

nanocatalyst displays a high isoeugenol conversion to vanillin under mild conditions using

H2O2 as oxidizing agent. Interestingly, this conversion resulted to be higher than that one

obtained with the same material synthesized by an impregnation method. Additionally,

the nanocatalyst showed excellent reusability over four successive runs under the studied

reaction conditions.

Keywords: vanillin, nanocatalyst, catalytic oxidation, sulfonic groups, SBA-15

INTRODUCTION

Nowadays, in the field of Green Chemistry, the conversion of lignocellulosic biomass into
value-added chemicals has become a challenging topic in both academic and industrial research
areas (Zakzeski et al., 2010; Xu et al., 2014; Behling et al., 2016). Lignocellulosic biomass is
composed by three major components (cellulose, hemicelluloses, and lignin), which offers specific
opportunities to produce a myriad of valuable chemicals (Rinaldi et al., 2016). Among them, the
highly functionalized and aromatic structure of lignin facilitates the designing of desired chemical
platforms. In this sense, derived compounds of lignin such as eugenol, isoeugenol, and ferulic acid
have been employed to obtain vanillin through a simple oxidation route (Gusevskaya et al., 2012).
Vanillin (4-hydroxy-3-methoxybenzaldehyde) possesses a number of valuable applications for food,
beverages, perfumery and pharmaceutical industries owed to it represent the principal flavor and
aroma component in vanilla. Currently, the major amount of vanillin is obtained from petro-
based compounds, especially guaiacol and glyoxylic acid by non-environmental friendly synthetic
routes such as Riedel process, Huang et al. (2013) attaining low qualities of the final product.
To overcome these drawbacks, greener strategies based on the catalytic oxidation of lignin model
compounds have been developed using metal functionalized mesoporous silica material as efficient
nanocatalysts (Augugliaro et al., 2012; Franco et al., 2017).

Noteworthy, it have been reported that the anchorage of organic functional moieties like
–COOH and -SH can interact with silanol groups of the mesoporous silica framework and control
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its surfaces properties and consequently its catalytic performance
(Li and Yan, 2010; Rajabi et al., 2011). Among various
functionalized groups, sulfonic acid group cause a remarkable
increase on the catalytic performance of the catalysts due to its
favored interactions with the metal active sites and its surface
acid properties (Akiyama et al., 2011). Incorporation of sulfonic
groups on the surface of orderedmesoporous such as SBA-15 and
MCM-41 is performed generally by two step process (Kapoor
et al., 2008): co-condensation or anchoring of -SH containing
alkoxide precursors and the subsequence oxidation in the present
of H2O2, which are somewhat complicate and incomplete routes
(Melero et al., 2006). In previous works, the lack of order in few
domains of sulfonic groups at the pore surfaces have decreased
the catalytic yields caused by the aggregation of nanoparticles on
the outer surface of the nanocatalysts (Kim et al., 2009; Jackson
et al., 2013). For these reasons, the designing of novel efficient
synthetic routes toward the synthesis of high performance
nanocatalysts composed of metal containing mesoporous silica
modified with sulfonic acids groups is still a challenge.

In this work, we propose an unprecedented one-pot
mechanochemical synthesis of bifunctional nanocatalysts
(Figure 1) based on iron containing SBA-15 functionalized with
sulfonic groups (Fe-SBA15-HSOBM

3 ) for the selective oxidation
of isoeugenol to vanillin. The methodology used represents a
greener and innovative route to construct highly functionalized
mesoporous silica nanomaterials taking advantage of their
nanochannels with controllable pore size, high surface area
and tunable reactivity. Also, we have compared the catalytic
performance of the novel nanocatalysts with others synthesized

FIGURE 1 | Schematic illustration of the synthetic strategies of the two nanocatalysts.

by conventional methods such as the ball milled/ impregnation
method (Fe-SBA15-HSOBM−IM

3 ).

EXPERIMENTAL

Materials
All chemicals chloride were obtained from Sigma–Aldrich with
pure analytical degree.

Synthesis of SBA-15
The orderedmesoporous silica SBA-15 was synthesized following
a procedure described in the literature (Jarry et al., 2006). The
triblock copolymer Pluronic P123 (0.41 mmol) was dissolved in
a HCl aqueous solution (2M) at 35◦C. Subsequently, Tetraethyl
ortho-silicate (TEOS) (25 mmol) was added drop wise to the
solution mentioned above. The resulted solution was agitated
for 24 h at 35◦C. After that the mixture was subjected to a
hydrothermal treatment in an oven at 100◦C for 48 h. The
resulting material was filtered and dried at 60◦C. Finally, the
template was calcined at 550◦C for 8 h to remove it.

Preparation of Fe-SBA-HSOBM
3

Nanocatalysts
Fe-SBA-HSO3

BM catalyst was prepared using 0.5 g of SBA-15
as silica support, 1.34 g of Fe(NO3)3·9H2O as iron precursor,
0.25mL of propionic acid and 0.5mL of sulfuric acid in a
planetary ball mill (Retsch PM-1000) at 350 rpm for 15min,
employing a 125mL reaction chamber and eighteen 10mm
stainless steel balls (Pineda et al., 2012). Subsequently the
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obtained composite was heated up slowly to 800◦C for 8 h using
an extractor to remove the possible gases formed during the
calcination process.

Preparation of Fe-SBA-HSO3
BM-IM

Nanocatalysts
The Fe-SBA-HSOIM

3 catalyst was prepared by a two-step protocol.
Firstly, 0.5 g of SBA-15, 1.34 g of Fe(NO3)3·9H2O and 0.25mL of
propionic acid were milled in a planetary ball mill (Retsch PM-
1000) at 350 rpm for 15min. The obtained material was calcined

at 600◦C for 8 h. Secondly, 10mL of sulfuric acid was added drop
wise to 1 g of the obtained Fe-SBA-15. After filtration, the solid
was washed with distilled water, was heated up slowly to 800◦C
for 8 h using an extractor to remove the possible gases formed
during the calcination process and dried overnight.

Catalyst Characterization
Low-angle XRD pattern were recorded on a Bruker D8 Discover
diffractometer equipped with a goniometer Bragg Brentano θ/θ
of high precision, and coupled to a Cu X-ray tube. The surface

FIGURE 2 | TEM images of (A) SBA-15, (B) Fe-SBA15-HSOBM
3 nanocatalyst, (C) Fe-SBA15-HSOBM−IM

3 , and (D) small-angle XRD patterns of the nanocatalysts.

FIGURE 3 | N2 adorption-desorption isotherm for (A) Fe-SBA15-HSOBM
3 and (B) Fe-SBA15-HSOBM−IM

3 nanocatalysts.
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area and pore volume were calculated from N2 adsorption–
desorption isotherms at liquid nitrogen temperature (77K) in
a Micromeritics ASAP 2000 instrument. The samples were
previously degassed for 24 h at 130◦C at vacuum conditions
(p < 10−2 Pa).

TEM analysis was performed in the FEI Tecnai G2
system, integrated to a charge coupling device camera. To the
preparation, the samples were diluted in ethanol and deposited
on a copper grid.

The FT-IR spectra of both nanocatalysts were recorder on an
infrared spectrophotometer (ABBMB3000 with HorizonMBTM
software), equipped with an ATR PIKE MIRacleTM sampler and
a ZnSe window employing 256 scans at a resolution of 16 cm−1.

The metal content of the catalysts was obtained by ICP–MS
in an Elan DRC-e (PerkinElmer SCIEX) spectrometer. Prior to
the analysis, the samples (≈25mg) were digested using an acid
mixture of HF/HNO3/HCl 1:1:1. Dilutions were performed with
miliQ water up to a maximum of 1% of HF−2 in acid solution.

Energy dispersive X-ray spectroscopy (EDX) of the obtained
materials was carried out using a JEOL JSM-6300 Scanning

TABLE 1 | Textural properties of the synthesized nanocatalysts.

Material SBET
a (m2 g−1) DBJH

b (nm) VBJH
c (cm3 g−1)

SBA-15 629 5.9 0.75

Fe-SBA15-HSOBM
3 194 5.3 0.27

Fe-SBA15-HSOBM−IM
3 373 5.4 0.35

aSBET , specific surface area was estimated by the Brunauer-Emmett-Teller (BET) equation.
bDBJH, mean pore size diameter was estimated by the Barret-Joyner-Halenda (BJH)

equation.
cVBJH, pore volume was estimated by the Barret-Joyner-Halenda (BJH) equation.

FIGURE 4 | FT-IR spectra of (A) Fe-SBA15-HSOBM
3 and (B) Fe-SBA15-HSO3

BM−IM.

Microscope with energy-dispersive X-ray analysis (EDX)
at 20 kV.

Oxidation of Isoeugenol to Vanillin
The oxidation reactions were carried in a carousel system using
isoeugenol (0.8mL, 5 mmol), 30% H2O2 solution (1.2mL, 0.04
mmol), 0.10 g of catalyst and acetonitrile (8mL) as solvent. The
reaction mixture was heated at 90◦C for 24 h. The progress of the
reaction was monitored by withdrawing samples at 20, 40min,
and then every 1 h for 24 h. Samples were analyzed in a HP5890
Series II Gas Chromatograph (60mL min−1 N2 carrier flow, 20
psi column top head pressure) using a flame ionization detector
(FID). The capillary HP-101 column (25m × 0.2mm × 0.2µm)
was employed.

RESULTS AND DISCUSSION

The synthesized materials showed a typical diffraction pattern
of SBA15-like hexagonal structure which displayed a high
intensity (100) peaks at 0.95◦ and additional order (110) peaks at
1.76◦ (Figure 2D). The transmission electron microscopy (TEM)
images (Figures 2B,C) depicted that Fe containing nanoparticles
with size ranging between 4 and 5.7 nm were successfully
incorporated inside the nanochannels of SBA-15 (Figure 2A)
through the two synthetic routes. However, significant changes
in the nanoparticles distribution patterns were observed for the
two nanocatalysts. The Fe-SBA15-HSOBM

3 frameworks have a
highly homogeneous and well-dispersed distribution (Figure 2B)
which is in agreement with similar materials reported for our
group (Pineda et al., 2011); while in the Fe-SBA15-HSOBM−IM

3
are highly aggregated. Also, the small shifts to lower diffraction
angles of the (100) peaks suggest a slight disordering around the
pores while maintaining the hexagonal pore structure upon the
synthesis of both nanocatalysts.

The nitrogen adsorption/desorption isotherms were
performed to investigate the surface area and pore size properties
of the synthesized nanocatalysts. The nanocatalysts possess the
typical type IV isotherms and H1 hysteresis loops between 0.6
and 0.75 P/P0 (Figure 3), which is a representative behavior of
mesoporous materials that contain uniform cylindrical pores
(Gao et al., 2007). Interestingly, nitrogen adsorption/desorption
experiments displayed a pronounced decay of the surface areas
and pore volumes of the nanocatalysts in comparison with
the SBA-15 (Table 1). These results can be attributed to the
occupation of the SiO2 nanochannels for the iron nanoparticles
during the synthesis of the nanocatalysts and possible calcination

TABLE 2 | Elemental composition of the nanocatalysts.

ICP-MS (wt%) EDX (wt%)

Fe Fe S

Fe-SBA15 22 21 –

Fe-SBA15-HSOBM
3 16 15 20

Fe-SBA15-HSO3
BM-IM 0.10 0.25 0.33
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effects for the case of Fe-SBA15-HSOBM−IM
3 nanocatalysts

(Zhang et al., 2015).
Figure 4 depicts the FT-IR results obtained for the Fe-SBA15-

HSOBM
3 and Fe-SBA15-HSOIM

3 nanocatalysts respectively. In
the high frequency regions the spectrum displays a broad
band in the region of 2,700–3,600 cm−1 which corresponds
to -OH stretching absorption of the SO3H groups. Bands
appeared in the absorption ranges of 1,165–1,248 and 1,007–
1,065 cm−1 have been ascribed to the O=S=O asymmetric
and symmetric stretching modes respectively. Also bands found
in the range of 560–608 cm−1 were assigned to the S-O
stretching mode. All these IR bands strongly support the
successful anchorage of the sulfonic groups on both nanocatalysts
(Amoozadeh et al., 2016; Kolvari et al., 2016; Veisi et al.,
2016).

The elemental composition of the Fe-SBA15-HSOBM
3 and Fe-

SBA15-HSOIM
3 nanomaterials was determined by both, ICP–MS

and EDX, as complementary techniques (Table 2). The ICP-MS

measurements of the Fe-SBA15-HSOBM
3 revealed an iron content

of 16 wt%. This result was corroborated by EDX analysis, which
displayed 15 and 20 wt% for iron and sulfur, respectively. These
values strongly support the successful incorporation of sulfonic
groups and iron in the SBA-15 by the applied mechanochemical
protocol. Additionally, the elemental content of Fe-SBA15-
HSOIM

3 was determined and compared with the values obtained
for Fe-SBA15 before the impregnation process. It was observed
a decrease in the iron content after the functionalization of the
Fe-SBA15, which have been attributed to the leaching of iron.
The high incorporation of iron oxide nanoparticles using the BM
method suggests that this approach could represent a new option
in the design of novel functionalized nanocatalysts.

The catalytic behavior of both nanocatalysts was subsequently
investigated to get insights on the effects of their structural
variations over the selective oxidation of isoeugenol (Table 3,
Figures 5, 6). Low activities were observed in the systems in
the absence of the nanocatalysts and in the presence of the

TABLE 3 | Catalytic performances of the nanocatalysts toward the ioseugenol oxidationa.

Entry Catalyst Time (h) Conversion (% mol) Selectivity (% mol)

vanillin Diphenyl ether Unidentified products

1 Blank 1 18 13 64 23

2 15-SBA 1 34 31 49 20

3 FeSBA-15HSOBM
3 1 93 50 1.8 47

4 FeSBA-15HSOBM−IM
3 1 22 20 63 11

aReaction conditions: 0.1 g catalyst, 8mL acetonitrile, 0.8mL isoeugenol, 1.2mL H2O2, T = 90◦C, time: 1 h.

FIGURE 5 | Time dependent conversion and selectivity to vallinin profiles for (red circles) Fe-SBA15-HSOBM
3 and (blue circles) Fe-SBA15-HSOBM−IM

3 nanocatalysts.

Reaction conditions: 0.1 g catalyst, 8mL acetonitrile, 0.8mL isoeugenol, 1.2mL H2O2, T = 90◦C, time: 1 h.
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FIGURE 6 | Recycle activities obtained for (A) Fe-SBA15-HSO3
BM and (B) Fe-SBA15-HSOBM−IM

3 toward the selective oxidation of isoeugenol to vanillin. Selectivity

data for both nanocatalysts is inserted by the black squares representation. Reaction conditions: 0.1 g catalyst, 8mL acetonitrile, 0.8mL isoeugenol, 1.2mL H2O2, T

= 90◦C, time: 1 h.

SBA-15 (Table 3 entry 1, 2). Under optimized reaction conditions
(Table 3, entry 3), the Fe-SBA15-HSOBM

3 nanocatalyst showed
a remarkable higher conversion and selectivity values of 93 and
51% respectively for the selective oxidation of the isoeugenol to
vanillin. The lower conversion of the Fe-SBA15-HSOIM

3 (Table 3
entry 4) could be associated to both, the leaching of the Fe content
during the synthesis of the material and the high aggregation
of the nanoparticles on specific areas of the mesoporous silica
materials which induces the disorganization of the sulfonic acid
groups domains.

The time dependent conversion and selectivity profiles of
the nanocatalysts are shown in the Figure 5. The nanocatalyst
synthesized by the mechanochemistry approach displayed a high
conversion and selectivity which validates its excellent catalytic
performance, while the Fe-SBA15-HSOBM−IM

3 nanocatalyst
achieved just a 33% after 8 h of reaction.

The reusability of the catalysts constitutes an important
parameter to take into account for future applications. At the
optimum conditions, the recycling experiments were performed
to investigate the stability of the reused catalysts (Figure 6).
Noteworthy, the Fe-SBA15-HSOBM

3 nanocatalyst could be
reutilized for at least four catalytic runs without a substantial
decay in the activity, suggesting that there is not leaching of
the iron nanoparticles during the reaction process. In summary,
it have been demonstrated that the iron containing sulfonic
acid-functionalized mesoporous silica framework synthesized by
a mechanochemical procedure induces a suitable stabilization
of the small iron NPs homogeneously distributed inside of
the mesoporous framework favoring the enhancement of the
catalytic activity of the nanoreactor.

CONCLUSIONS

In summary, we have prepared an efficient heterogeneous
nanocatalyst for the selective oxidation of the isougenol

to vanillin composed of sulfonic acid functionalized metal
mesoporous silica framework using a one-step mechanochemical
approach. The catalyst display a framework formed by a
highly disperse small iron nanoparticles on the mesoporous
silica stabilized by the sulfonic acids domains which
induces the enhancement of the catalytic performance
of the nanoreactors toward the selective oxidation of
the isoeugenol. The work presented here constitutes a
significant contribution, not only in the fabrication of
effective bifunctional heterogeneous catalysts for the selective
oxidation of the isoeugenol to vallinin, but also unraveling the
structure,function relationship of the synthesized bifunctional
catalysts.
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