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The dual-functional Ca12Al14O33: Tb
3+ and Ca12Al14O33: Sm

3+ materials were prepared

by the Self-Propagating Combustion Synthesis (SPCS) technology. The structure,

morphology and light absorption property were investigated by XRD, FT-IR, UV-Vis DRS

and SEM etc. The doping of Tb3+ and Sm3+ ions had not changed cubic structure

of Ca12Al14O33 but leaded to the slight lattice dilatation and the red-shifts of absorption

peaks/edges. The excitation and emission spectra indicated that Ca12Al14O33: Tb
3+ and

Ca12Al14O33: Sm
3+ are superior green and red luminescent materials, respectively, and it

displayed the distinctly refined structure characteristics which had importantly reference

value for the energy level investigation of Tb3+ and Sm3+ ions. Meanwhile, Ca12Al14O33:

Tb3+ and Ca12Al14O33: Sm
3+ also exhibited the improved photocatalytic degradation

for removing dye MB compared with bare Ca12Al14O33.

Keywords: SPCS, Ca12Al14O33: Tb
3+(Sm3+), pure phase, luminescent property, photocatalytic activity

INTRODUCTION

In recent years, the widespread application of rare-earth luminescent materials (RELMs) has been
proved to promote the upgrading of products in display area (Yang et al., 2001; Xie et al., 2002;
Zhang et al., 2017). RELMs have been a kind of essential materials in energy-efficient lighting
and electronic information industry owing to their low-cost, good color display, pollution-free,
long-life, nontoxic advantages and so on (Li et al., 2009; Yu et al., 2009). In addition, RELMs are
widely used in agriculture, environmental sanitation, medical care, simulate natural light source,
etc. special application fields (Li and Lin, 2010; Gai et al., 2014; Escudero et al., 2016, 2017).

It is always the intensive research subject to explore the novel oxide and composite oxide
RELMs with high luminescent efficiency and favorable thermal stability. Especially, the RELMs
based on alkaline-earth metal aluminates composite oxides have become the research focus due to
their unique advantages of high luminescent efficiency, stable chemical properties, high quenching
temperature, corrosion resistance, low-cost and nontoxic, pollution-free characteristics (Feng
et al., 2010; Yu et al., 2013; Min et al., 2014). For example, high-efficiency green MgAl11O19:
Ce3+, Tb3+ (Jung et al., 2005) and blue BaMgAl10O17: Eu2+ (Kim et al., 2002) luminescent
powders used Mg(Ba)O-Al2O3 as hosts had widely been applied in the world. Also, there are
many reports on the blue-luminescent materials using SrO-Al2O3 system as hosts, including
Sr2Al6O11 (Takeda et al., 2002), Sr4Al14O25 (Garcia et al., 2016), SrAl2O4 (Sohn et al., 2002),
and SrAl4O7 (Singh et al., 2016), etc., as well as red-luminescent materials using LiAlO2
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(Lee et al., 2012), LiAl5O8 (Singh and Rao, 2008), and CaAl12O19

(Brik et al., 2011) as hosts. However, many of above materials
are prepared by the traditional solid phase calcined method,
which has the obvious deficiency of energy consumption
because of high synthesis temperature. Especially for calcium
aluminate host materials, they are difficult to obtain pure
phase product owing to generation of many phases together in
the preparation. Existence of mixed phases may influence on
luminescence performance of RELMs when they are used as
host materials. Therefore, in this paper, two pure phase RELMs
using Ca12Al14O33 as host material and Tb3+(Sm3+) as active
ions are successful prepared by a simple SPCS technique. The
synthesis temperature is significantly reduced. It is worth noting
that both of Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ exhibit
dual-functional features, not only show outstanding luminescent
properties but also disply superior photocatalytic activities, which
may have potential application prospects in display and catalysis
fields.

EXPERIMENTAL

Al(NO3)3·9H2O, Ca(NO3)2·4H2O, urea and concentrated nitric
acid are analytical reagent. The purity of Tb4O7 and Sm2O3

were ≥99.9%. The reaction materials were weighted making
use of electronic balance in accordance with Ca12−xAl14O33:
xTb3+(Sm3+) (x = 0.01–0.05) stoichiometric ratio, respectively.
The appropriate ratio Tb4O7 and Sm2O3 were transferred
to 100ml beakers and dissolved via a little concentrated
HNO3 (A.R.), respectively. After evaporating to dryness,
Al(NO3)3•9H2O, Ca(NO3)2•4H2O, CO(NH2)2 and appropriate
distilled water were added. Keeping on stirring, dissolving
and heating until the solution was evaporated to be viscous,
Subsequently, the beaker was put into a muffle furnace at
500◦C. After a few minutes, the reaction material burned quickly
and emited a bright flame. The entire combustion process
was completed within 5–7min. The white mushroom-shaped
precursors with loose, porous and soft property were obtained.
Finally, the precursors were grinded 30min and transferred into
the corundum crucible and calcined in the muffle furnace at
1,100◦C for 6 h to obtain white products.

X-ray powder diffraction (XRD) patterns of products were
recorded on Rigaku Dmax-2200 powder diffractometer (Cu Kα1

= 1.54056 × 10−10 m, scanning speed 6◦ min−1, scanning
2θ range 3–80◦ with steps of 0.02◦). Luminescent spectra
were measured via F4500 fluorescence spectrophotometer using
Xe lamp as the excitation source (EX slit 2.5 nm/EM slit
2.5 nm, scanning speed 12,000 nm min−1). Morphologies were
observed with S-3000N scanning electron microscopy (SEM).
All the measurements were carried out at room temperature.
FT-IR absorption spectra were measured on FT-IR360 infrared
spectrometer using KBr pellets in the region of 4,000–400 cm−1.
The UV-vis diffuse reflectance spectra (DRS) of the samples were
recorded on a UV–vis spectrophotometer (PG, TU-1900) with
BaSO4 as the background at room temperature.

The dye methylene blue (MB) solution (10mg L−1, 100ml)
containing 0.1 g sample was irradiated under the UV-Visible light
with a 300W Xe arc lamp. Before the irradiation, it was stirred

for 30min in the dark to achieve the adsorption-desorption
equilibrium between dye MB and sample. The absorbance of dye
MB solution was monitored by UV-vis spectrophotometer (PG,
TU-1901) every 5min.

RESULTS AND DISCUSSION

Structure Analysis of the As-Prepared
Samples
Figure 1 shows the X-ray powder diffraction (XRD) patterns of
Ca12Al14O33, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+. All
diffraction patterns accord with JCPDS PDF#09-0413 cards well.
No other miscellaneous diffraction peaks are observed, which
proves that the three samples are completely transformed into
Ca12Al14O33 crystalline phase without generating other types of
calcium aluminates. Meanwhile, the sharp and intense diffraction
peaks indicate that the as-prepared samples have high crystalline.
We used PowderX (Dong, 1999) to execute smooth, deduct
back bottom, and isolate Kα2 line diffraction peak of Cu target,
seek peak and perform the index treatment of each diffraction
peak for the obtained XRD patterns. The results demonstrate
that crystal cells of Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+

belong to the cubic crystal system with an I-43d space group,
and the crystal cell parameters are a = 11.9895 Å and a =

11.9892 Å, Z = 2, respectively. The crystal cell parameters of
two samples are slightly bigger than that of Ca12Al14O33 (11.9820
Å), which means that lattice mild expansion takes place after a
small amount of Tb3+ or Sm3+ ions entering the crystal lattice to
replace Ca2+ ions in Ca12Al14O33.

FT-IR Absorption Spectra of the
As-Prepared Samples
The fourier transforming infrared (FT-IR) absorption spectra of
Ca12Al14O33, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ are
shown in Figure 2 which are basically coincide with the results
of the reported Ca12Al14O33 (Tas, 1998). The absorption band

FIGURE 1 | XRD patterns of the as-prepared samples.
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FIGURE 2 | FT-IR absorption spectra of the as-prepared samples.

of condensate and isolation AlO4 locates at the range of 900–
700 cm−1 and 800–650 cm−1, as well as the absorption band
of condensate and isolation of AlO6 locates at the range of
680–500 and 530–400 cm−1, respectively (Yi et al., 2015). As a
consequence, the strong broad band absorptions at around 800
cm−1 in Figure 2 are attributed to AlO4 stretching vibration,
which are composed by two absorption peaks at 850.40 and
773.4 cm−1. Those results demonstrate there are two AlO4

tetrahedral structures in the lattice, which is accordance with the
obtained structure in the Ca12Al14O33 unit cell (Boysen et al.,
2007). Because AlO6 octahedral structure is inexistence in the
Ca12Al14O33 unit cell and the absorption band located at 400–620
cm−1 shows two group strong peaks in Ca3Al2O6, Ca12Al14O33,
CaAl12O19, CaAl4O7, CaAl2O4, etc. calcium aluminate, the peaks
located 617.1, 574.71, and 462.8 cm−1 should derive from
characteristic vibration absorption of Al-O bonds. All the above
prove that Ca12Al14O33 crystal lattice structure is no more
obviously changed except only slight distortion when the Ca2+

ions are replaced by Tb3+ or Sm3+, which is consistent with XRD
analysis results.

UV–Vis DRS of the As-Prepared Samples
The light absorption ability of the as-prepared samples is
evaluated by the UV-vis diffuse reflectance spectra (DRS). As
shown in Figure 3 all samples exhibit strong ultraviolet light
absorption characteristics located at 240–320 nm. The steep
shapes indicate that the intense absorptions are not due to the
transition from the impurity level but band-gap transition (Li
et al., 2015, 2017). It is noted that the absorption peak and
absorption edge of pure Ca12Al14O33 are located at 263 nm and
309 nm, respectively. However, after doping Tb3+ and Sm3+ ions,
the absorption peaks and absorption edges of Ca12Al14O33: Tb3+

and Ca12Al14O33: Sm3+ have apparent red-shift compared with
that of original Ca12Al14O33 sample, which is red-shift of about 6
and 12 nm toward the longer wavelengths and located at 269 and
321 nm, respectively. The optical absorption change may result

FIGURE 3 | UV-Vis DRS spectra of the as-prepared samples.

from the doping effect of Tb3+and Sm3+ causing slight lattice
expansion of Ca12Al14O33.

SEM Images of the As-Prepared Samples
The morphologies of the as-prepared samples are observed
by photomicrographs measured via scanning electron
microscopy (SEM). As shown in Figures 4a–c the images
with low magnification of Ca12Al14O33, Ca12Al14O33: Tb3+

and Ca12Al14O33: Sm3+ present porous and irregular bulk
feature, which have the obvious agglomeration gathered by
some particles. It may result from high-temperature calcination
for a long time. Correspondingly, Figures 4a1–c1 are the
high-magnification SEM images of Ca12Al14O33, Ca12Al14O33:
Tb3+ and Ca12Al14O33: Sm3+, respectively. Those samples
exhibit honeycomb distribution composed of crystalline
granular adhesions with few microns, smooth surface and better
crystallization effect. This result can be attributed to the following
reasons: in the SPCS process, a lot of gases are released to damage
the formation of massive structures owing to urea burning, so
that crystal nuclei growth is along to direction to formation of
sphere shapes containing the lower surface energy. The shapes of
as-prepared samples influence the luminescence performance to
some extent and lots of researches have shown spherical surface
are conducive to enhancing luminescent intensity (Kang et al.,
2000).

Luminescent Properties of the
As-Prepared Samples
The bare Ca12Al14O33 has no luminescence property without
doping earth ions. However, when Ca12Al14O33 is doped by
Tb3+ and Sm3+ ions, it will produce characteristic luminescent
emission of these two ions. Figure 5 is the luminescent emission
intensity of Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ with
different doping amount, where the standard of comparison is
evaluated by the strongest energy level transition of 5D4→

7F5
for Tb3+ and 4G5/2→

6H7/2 for Sm3+ ions. Obviously, the

Frontiers in Chemistry | www.frontiersin.org 3 March 2018 | Volume 6 | Article 69

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. Luminescent Properties and Photocatalytic Activities

FIGURE 4 | SEM images of Ca12Al14O33 (a,a1), Ca12Al14O33: Tb
3+ (b,b1), and Ca12Al14O33: Sm

3+ (c,c1) samples.

FIGURE 5 | Effect of doped amount on the luminescent intensity of the

as-prepared samples.

luminescent intensity of Ca12Al14O33: Tb3+ and Ca12Al14O33:
Sm3+ present increase first and then decrease with increasing
the doping amount of Tb3+ and Sm3+ ions. When the doping
amount of Tb3+ and Sm3+ is 0.02 of molar fraction, the
luminescent emissions reach up the strongest intensity, because
the excess rare earth ions usually produce fluorescence quenching
effect that results in reduction of luminescent emission intensity.

Figure 6 shows the excitation (λem = 545 nm) and emission
spectra (λex = 359 nm) of Ca12Al14O33: Tb3+. Because the 4f7

state of Tb3+ ions has a stable semi-filled electron configuration,
Tb3+ ions can be excited by the relative low energy, whose

FIGURE 6 | Excitation and emission spectra of Ca12Al14O33: Tb
3+.

excitation band is always composed by f→ f and f→d transition.
Therefore, from the excitation spectrum of Ca12Al14O33: Tb3+,
we can draw to a conclusion that the excitation band at the short-
wave 220–315 nm corresponds to the 4f8→ 4f75d1 transition
absorption of Tb3+ ions, and the excitation band located at
320–400 nm originates from f→ f transition absorption, where
the energy level transition of different absorption peaks at
381, 360, 354, 344, 333, 326, and 322 nm may be attributable
to the energy level transition absorption of 7F6→ (5D3/5G6),
5G5, (5D2/5G4/5L9), (5G3/5L8/5L7), (7F6→ 5L6/5G2), 5D1, 5D0,
respectively (Fu et al., 2010). Furthermore, from the emission
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spectrum of Ca12Al14O33: Tb3+, we can find that the common
linear emission peak of Tb3+ ion presents wide band distribution,
which is different from other common fluorescent materials
(Fu et al., 2010; Dong, 2011). The emission peaks located at
(495, 511), (529, 547), 597, and 623 nm come from the energy
level transition of 5D4→

7F6, 7F5, 7F4, 7F3, respectively (Fu
et al., 2010). Due to the large J-value of the transition, the
crystal field will result in the splitting of these energy levels.
Meanwhile, to eliminate the parity-forbidden transition of Tb3+

ions, the opposite parity energy level of 4f configuration is not
the charge transfer band, but is the 4f75d1 energy level with
low energy. 5D4→

7F6 electric dipole transition of Tb3+ ions is
not as sensitive to ligand environment as the 5D0→

7F2 electric
dipole transition of Eu3+ ions. Therefore, 5D4→

7F5 magnetic
dipole transition is the strongest in the emission spectra, so
that the Ca12Al14O33: Tb3+ sample emits green light when it
is excited under the ultraviolet light. Meanwhile, the stronger
emission peaks located at 456, 463, and 482 nm origin from the
higher excited states 5D3→

7F3, 7F2, 7F1 energy level transitions,
respectively, which indicates that there is lightly cross relaxation
between 5D3 and 5D4 energy levels (Fu et al., 2010; Dong, 2011).

Moreover, the excitation (λem = 604 nm) and emission spectra
(λex = 382 nm) of Ca12Al14O33: Sm3+ are exhibited in Figure 7

As can be seen from the excitation spectrum, there are five
groups of excitation peaks in the range from 320 to 420 nm. It
corresponds to the high energy f→ f configuration transition
absorption of Sm3+ ions, where the excitation peaks located at
406, 379, 372, 367, and 348 nm may be belong to the transition
absorption of 6H5/2→ (4F7/2/4L13/2),(4D1/2/6P7/2),(6H5/2→
4L17/2/4K13/2),4F9/2,4K15/2, respectively (Zhang et al., 2010).
From the emission spectrum, the emission peaks located at
568 nm, 604 nm, 655 nm and 714 nm come from the energy
level transition of 4G5/2 →

6H5/2, 6H7/2, 6H9/2, 6H11/2,
respectively (Zhang et al., 2010). P. S. May and coworkers (May
et al., 1992) found that, 4G5/2→

6H5/2 mainly belongs to a
magnetic dipole transition, and partly belongs to electric dipole

FIGURE 7 | Excitation and emission spectra of Ca12Al14O33: Sm
3+.

transition; though 4G5/2→
6H7/2 is magnetic dipole transition,

the electric dipole transition plays a predominance function;
4G5/2→

6H9/2 is assigned to electric dipole transition, but the
magnetic dipole transition is forbidden. In addition, according
to the results reported by Tamura (Tamura and Shibukawa,
1993), if Sm3+ ion mainly occupies the asymmetry center, it
can produce typical emission near 650 nm. On the contrary, if
Sm3+ ion mainly occupies the symmetry center, it can produce
typical emission near 602 nm. Therefore, as can be seen from
the emission spectrum of Ca12Al14O33: Sm3+, the transition
emission intensity of 4G5/2→

6H7/2 is bigger than that of
4G5/2→

6H9/2, and the transition emission intensity of 4G5/2→
6H5/2 is bigger than that of 4G5/2→

6H9/2, which indicate the
Sm3+ ions mainly occupies the symmetry center in the lattice.
Besides, a strong and refined-structure transition emission peak
is observed at 450–580 nm, which may come from the transition
emission of high energy level of Sm3+ ions.

Photocatalytic Activities of the
As-Prepared Samples
The dye methylene blue (MB) is typical organic pollutant, which
is usually used as target molecule to evaluate the photocatalytic
ability of the photocatalytic materials (Dong et al., 2014c).
Figures 8A, 9A show the degradation dynamic curves of dye MB
over the Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ samples,
respectively. After running 15min, two samples all show the
high degradation rates is more than 98% for removing dye
MB, respectively, whose photocatalytic activities are obviously
higher than that of bare Ca12Al14O33. Moreover, the kinetic
curves of dye MB degradation can be approximated as the
pseudo-first-order process (Dong et al., 2013, 2014a,b,c; Li et al.,
2014, 2016). By plotting the ln(c0/c) vs. time and making linear
fitting for dynamic curves in Figures 8B, 9B the removal rate
constants (k) of dye MB are estimated to be 0.186 and 0.167
min−1, respectively, which is distinctly higher than that of
bare Ca12Al14O33 (0.131 min−1). Moreover, according to the
absorbance variations of dye MB solutions in Figures 8C, 9C in
the photocatalytic reaction process, there are no shifting of the
maximum absorption position of dye MB solution at 664 nm. In
addition, the absorption peak at 293 nm in the ultraviolet range
also vanishes, which implies that the benzene/heterocyclic rings
of dye MB molecule may be completely decomposed, leading
to the thorough mineralization of dye MB (Dong et al., 2013,
2014a,b,c; Li et al., 2014, 2016).Meanwhile, in order to investigate
the reusability of the Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+

samples, the circle degradation experiments of dye MB solution
over the Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ samples are
all performed. As shown in Figures 8D, 9D the experimental
results indicate the photocatalytic ability of two samples does not
show obviously loss after four recycles, indicating that they have
superior stability and reusability.

The Possible Luminescent and
Photocatalytic Mechanism
The possible transfer behavior of charge carriers, luminescent
emission and photocatalytic mechanism are shown in Figure 10
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FIGURE 8 | Dynamic curves (A) and plots of ln(c0/c) vs. time (B) of dye MB solution over Ca12Al14O33 and Ca12Al14O33: Tb
3+, absorbance variations (C) and cycle

degradation runs (D) of dye MB solution over Ca12Al14O33: Tb
3+.

FIGURE 9 | Dynamic curves (A) and plots of ln(c0/c) vs. time (B) of dye MB solution over Ca12Al14O33 and Ca12Al14O33: Sm
3+, absorbance variations (C) and

cycle degradation runs (D) of dye MB solution over Ca12Al14O33: Sm
3+.

Under the UV-vis light excitation, the Ca12Al14O33 host and
Tb3+ and Sm3+ ions are all excited at the same time. Electrons
in the VB of Ca12Al14O33 host transfer into the corresponding
CB, as well as electrons in the ground state 7F6 of Tb3+

and 6H5/2 of Sm3+ ions transfer into the (5D3/5G6), 5L10,
5G5, (5D2/5G4/5L9), (5G3/5L8/5L7), (5L6/5G2), 5D1, 5D0 states
and (4F7/2/4L13/2), (4D1/2/6P7/2), (4L17/2/4K13/2), 4F9/2, 4K15/2

states of them, respectively. At the luminescent process, the
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FIGURE 10 | The possible transfer behavior of charge carriers, luminescent emission and photocatalytic mechanism.

electrons in the excitation states 5D4 and 5D3 return to 7F
states of Tb3+ ions to generate luminescence, such as 5D4→
7F6, 7F5, 7F4, 7F3 and 5D3→

7F3, 7F2, 7F1 transition emission.
It should be pointed out that parts of electrons in the CB
of Ca12Al14O33 host and the high energy levels of Tb3+ can
transfer into 5D4 and 5D3 states by means of multi-phonon
assisted relaxation effect to enhance luminescent performance.
Similarly, the electrons in the excitation state 4G5/2 return
to 6H states of Sm3+ ions to generate luminescence, such as
4G5/2→

6H5/2, 6H7/2, 6H9/2, 6H11/2 transition emission. The
parts of electrons in the CB of Ca12Al14O33 host and the high
energy levels of Sm3+ also can transfer into 4G5/2 state by
means of multi-phonon assisted relaxation effect to enhance
luminescent performance. In the photocatalytic degrading MB
process, parts of the electrons in the CB of the calcium aluminate
host migrate to Ca12Al14O33 host surface and are captured
by O2 molecules in water to yield superoxide radicals (•O−

2 ).
The superoxide radicals may react with H+ ions to further
transform into hydroxyl radicals (•OH). Finally, the superoxide
radicals, hydroxyl radicals and holes all decompose MB dye
molecules. In MB degradation process, the optical absorption
increase may result from slight lattice expansion of Ca12Al14O33

host owing to the doping effect of Tb3+ and Sm3+ ions,
which may be the main reason for the improved photocatalytic
performance.

CONCLUSIONS

The dual-functional Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+

materials with single phase and good crystallinity are prepared
by the SPCS technology. The investigation results indicate that

there are no changes of cubic crystal structure after introducing
Tb3+ or Sm3+ ions into Ca12Al14O33 besides a slight lattice
expansion. When the doping amount of Tb3+ and Sm3+ is
0.02 of molar fraction, both two samples show the maximum
luminescent intensity. The excitation spectra of two samples are
mainly from the f→ f transition absorption, and Ca12Al14O33:
Tb3+ sample also appears 4f8→ 4f75d1 transition absorption at
the short-wave region. In the emission spectra of two samples, the
refined character emission can be observed, in which the transfer
emissions of Tb3+ ions mainly come from 5D4→

7F6, 7F5, 7F4,
7F3 and 5D3→

7F3, 7F2, 7F1, as well as the transfer emissions
of Sm3+ ions come from 4G5/2 →

6H5/2, 6H7/2, 6H9/2, 6H11/2

and high-energy transition emission at 450-580 nm, respectively.
Meanwhile, two samples also exhibit the high photocatlytic
degradation activity, stability and reusability for removing dye
MB pollution. These two dual-functional materials may possess
the potential application in the display device and dye wastewater
treatment.
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