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Mycotoxins are natural metabolites produced by species of filamentous fungi
belonging mainly to the genera Aspergillus, Fusarium, Penicillium, and Alternaria,
which can grow in various crops and foodstuffs. The South American climate is
diverse, varying from tropical, temperate, and arid to cold, ideal for the growth of
different types of fungi andmycotoxin production. Thismini review aimed to describe
the natural occurrence of mycotoxin in food in South America from 2018 to 2023,
identifying research gaps and challenges in an era of climate change. We analyzed
53 studies, 21 fromBrazil. Most of themycotoxins analyzed in South Americawere the
traditional and regulated mycotoxins, with variable occurrences depending on the
region, climatic conditions, and methodology used. Emerging and modified
mycotoxins have only been studied in Argentina and Brazil, where some studies
have shown high occurrences. Given this, it is essential to strengthen food safety
laboratories and surveillance capabilities and establish early warning systems. It is also
essential to continue working to raise awareness of mycotoxins as a public health
issue and to study and prevent the impact of climate change on soil microbial
population, the new prevalence of fungi, and the profile of toxigenic species. An
effective connection and collaboration between disciplines and sectors in different
countries is needed to meet this research challenge.
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1 Introduction

South America (14.6048°S, 59.0625°W) is a continent that has an
area of 17,840,000 square kilometers (6,890,000 sq mi). Consistent with
its size, it extends from a broad equatorial zone in the north to a narrow
sub-Arctic zone in the south and includes twelve sovereign states:
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana,
Paraguay, Peru, Suriname, Uruguay, and Venezuela. The South
American climate varies from tropical to temperate, arid, and cold
(Garreaud et al., 2009). This variable climate is ideal for different types of
fungal growth and mycotoxin production. Mycotoxins are secondary
metabolites produced by filamentous fungal species mainly belonging to
Aspergillus, Fusarium, Penicillium, and Alternaria, which can grow in
various crops and foodstuffs.Mycotoxins have a particular structural and
chemical characteristic, which determine their biological and
toxicological properties. Between 300 and 400 types are recognized,
and about a dozen of themare considered important threats to human or
animal health (Bennett and Klitch, 2003). Some mycotoxins stand out
for their high toxicity, such as aflatoxins, which are among the most
potent natural hepatocarcinogens known to date. Others, like ochratoxin
A (OTA) and citrinin (CIT), can affect the kidney, the nervous system
(patulin, PAT), or the reproductive system (zearalenone, ZEN). Some
have multiple toxic effects in humans and animals like deoxynivalenol
(DON), nivalenol (NIV), and T-2 toxin are most likely associated with
the high incidence of esophageal cancer in specific populations like
fumonisins B1 and B2 (FB1- FB2) (International Agency for Research on
Cancer, 2012). The latest mycotoxins are regulated in many countries of
South America and the rest of the world and have been widely studied
(van Egmond et al., 2007). However, it is also essential to study emerging
mycotoxins, which are increasing in incidence and are defined as
mycotoxins that are neither routinely determined nor have legislative
regulation (Vaclavikova et al., 2013). Some of the emerging mycotoxins
of interest are Fusarium metabolites fusaproliferin (FP), beauvericin
(BEA), enniatins (ENNs), and moniliformin (MON), fusaric acid (FA),
culmorin (CUL), and butenolide (BUT), the Aspergillus metabolites
sterigmatocystin (STE) and emodin (EMO), the Penicillium metabolite
mycophenolic acid (MPA), and the Alternaria metabolites alternariol
(AOH), alternariol monomethyl ether (AME), and tenuazonic acid
(TeA) (Gruber-Dorninger et al., 2017).

South America’s economy is centered on the export of natural
resources, including diverse food products prone to mycotoxins, like
nuts, coffee, and cacao, and industrial crops such as corn, wheat,
soybeans, rice, quinoa, and cotton (Cardenas and Orozco, 2022).
Likewise, South America is experiencing the effects of climate
change, including extreme weather events and changes in
temperature and precipitation patterns (Fernandez-Guzman
et al., 2023). Climate change is expected to increase and modify
mycotoxin contamination. Research has demonstrated that only a
slight elevation of CO2 levels will stimulate the growth of
mycotoxin-producing fungi. There is an increased risk for
mycotoxin contamination of corn, wheat, and other small grain
species. In a changing climate, mycotoxins will increase and
contaminate new crops and new geographical areas (Zingales
et al., 2022).

This mini review aimed to describe the natural occurrence of
mycotoxin in food in South America over the last 5 years
(2018–2023) and identify the research gaps and challenges in a
climate change era.

2 Occurrence of mycotoxins in food
by country

Bolivia, Guyana, Suriname, French Guiana, Trinidad and
Tobago, and Venezuela have not reported mycotoxin data in
food from 2018 to 2023. The collected data from the rest of the
countries (n = 53) are summarized in Table 1. Details of the studies
regarding occurrence, levels, and methodology are collected in the
Supplementary Table S1.

2.1 Argentina

This country has had eight studies in the last 5 years. Corn was
analyzed for DON and their metabolites 3-ADON, 15-ADON, also FB1,
FB2, NIV, and ZEN, finding DON and 3-ADON in 90% and 40% of the
samples, respectively (Castañares et al., 2019). Other cereals analyzed
were malting barley, which found 16% DON and 22% NIV (Nogueira
et al., 2018). In wheat: AOH, AME, and TeA were found with
occurrences of 19%, 38%, and 50–62%, respectively (Romero Bernal
et al., 2019), and FB1 and FB2 with occurrences ranging from 50 to 100%
in wheat flour (Cendoya et al., 2019). Regarding fruits, apples, tomatoes,
and grapes have been analyzed. Interestingly, apple baby food (n = 20)
was found to have AOH in 35%, AME in 100%, TeA in 70%, and
tentoxin (TEN) in 95% of the samples, while altertoxin-I (ATX-I) and
altenuene (ALT)were not found (Pavicich et al., 2023). This is important
as emerging mycotoxins are not regulated in Argentina or the rest of
South America. Regarding tomatoes, occurrences of AOH in 18%, AME
in 8%, TeA in 21%, TEN in 13%, ATX-Iin 5%, and ALT in 8% of the
samples (Maldonado Haro et al., 2023). Grapes for winemaking were
found to have TeA in 16% of the cases, ranging from 77 to 133 ng/g
(Prendes et al., 2018). Finally, milk samples were found (78%) with
AFM1 ranging from 3 to 64 ng/mL (Costamagna et al., 2019).

2.2 Brazil

Brazil is the country with the most studies made in the period (n =
21) on all types of foods. The first study analyzed aflatoxins andOTA in
various spices, finding aflatoxins in fennel at 27% and 20% in rosemary
(Valle Garcia et al., 2018). Also, in spices, Persson da Silva et al. (2021)
found OTA in 55% of black pepper samples. Regarding nuts, Silva et al.
(2018) found aflatoxins in 64% of peanut samples (n = 42) and 28% in
blanched peanuts (n = 18). No aflatoxins were found in Pecan nuts (n =
52) (Valle Garcia et al., 2019), while Kluczkovski et al. (2022) found 28%
of aflatoxin contamination in Brazil nut oil (n = 25). Milk and milk
products were also analyzed for different mycotoxins, most frequently
AFM1. This mycotoxin was found in raw milk (12.5%), pasteurized
milk (36%), UHT milk (48%), Minas cheese (47%), and yogurt (25%)
(Corassin et al., 2022); was also present in all samples (n = 7) of artisanal
mozzarella, manufactured mozzarella, artisanal rennet and
manufactured rennet (Costa da Silva et al., 2021), and goat milk
(n = 108) (de Matos et al., 2021). Frey et al. (2021) analyzed AFM1,
DOM-1, OTA, FB1, FB2, alpha-zearalenol, and beta-zearalenol in
different types of milk, finding occurrences from 9% to 25%, 8.8%
to 9.4%, 18.7% to 25%, 12.5% to 50%, 4.4% to 25%, 25% to 57.4%, and
25% to 50%, respectively. Most of the studies have been done on cereals
and cereal products. Regarding breakfast and infant cereals, Mallmann
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et al. (2020) analyzed aflatoxins, fumonisins, ZEN, DON, T-2 toxin,
HT-2, NIV, fusarone-x, 3-AcDON, 15-AcDON, Diacetoxyscirpenol,
andOTA, finding 9% aflatoxins, 27% fumonisins, 15%ZEN, 13%DON
and 3% OTA in breakfast cereals and 28% fumonisins (mean 196.2 ng/
g), 7% ZEN (mean 47.5 ng/g), and 10% DON (mean 351.6 ng/g) in
infant cereals. Another study found that 100% of the samples of
breakfast cereals had fumonisins, and 10% had DON (Andrade
et al., 2020). These authors also analyzed popcorn (n = 13) finding
fumonisins in all samples, DON in 8% and ZEN in 15% of the samples;
cornstarch and corn pasta (n = 7) finding fumonisins in all samples;
corn grits-canjiquinha (n = 3), finding fumonisins in all samples, also
DONandZEN; and corn flour (n= 248) with an occurrence of 95.5%of
fumonisins, 36%DON and 11% ZEN. The authors also analyzed wheat
flour, pasta, crackles, and snacks, finding fumonisins, DON and ZEN in
0–97-2.5%, 13–100-66%, 0–100-100%, and 0–67-67%, respectively. The
rice sampled was not contaminated (Andrade et al., 2020).
Furthermore, Dos Santos et al. (2021) found DON in all wheat flour
samples (n= 200), alongwith a 51%occurrence of ZEN and 13.5%of T-
2 toxin. Iwase et al. (2023) found high occurrence and levels of DON
(70%,mean 1,112 ng/g) in barley, also finding ZEN (40%,mean 256 ng/
g). Also, in barley, dos Santos Caramês et al. (2022) found a 70%
occurrence of enniatins. In cassava and tapioca, a low occurrence of
aflatoxin was found in cassava flour (Ono et al., 2021). In oats samples,
Pinheiro et al. (2021) found DON (44%), NIV (29%), 3-ADON (19%)
and 15-ADON (8%). In beer, 80–100% of aflatoxins have been reported
(Reboucas Rocha et al., 2023), and 21% of OTAwas found in fermented
coffee (Silva et al., 2023). In tilapia muscle, 19% of AFB1 was found by
Seraphin de Godoy et al. (2022). Finally, Abreu et al. (2023) analyzed
135 samples of cocoa beans by amultimycotoxin analysis, findingAFB1

(17%), AFB2 (8%), AFG1 (6%), AFG2 (1%), AFBG (14%), OTA (20%),
STG (8%), roquefortine C (1%), FB2 (6%), CIT (26%), mycophenolic
acid (9%), paxilline (34%), ZEN (15%), cyclopiazonic acid (27%) and
TeA (21%).

2.3 Chile

Five studies have been published regarding the occurrence of
mycotoxins in foods for human consumption. Two studies focused
on the presence of OTA and aflatoxins in capsicum, one of the most
contaminated foods observed in a previous study (Foerster et al.,
2020). The first study was part of the national monitoring program
and found OTA in 59%–63% of the samples of capsicum (chili,
paprika, merken, i.e., chili with spices), with levels of >LOQ-
39.6 ng/g (Palma et al., 2023). The second study found OTA in
all farmers’ and markets’ capsicum samples (n = 21) and 46%–75%
occurrence of aflatoxin B1 (Costa et al., 2022). A current study
described the findings of OTA and aflatoxins of the mycotoxin
monitoring program in all food samples; spices were the most
contaminated, and aflatoxins were mainly found in nutmeg,
pepper, and ginger, and their levels exceeded the limits of
international regulations. For OTA, the occurrence was found in
spices, coffee, cocoa, and flour (Calderon et al., 2023). The last two
studies were in milk and milk formulas, where AFM1 was found in
29% and 63%, respectively (Foerster et al., 2023), and in breakfast
cereal, where DON, ZEN, fumonisins, OTA, and aflatoxins were
found. Levels were below the Chilean regulatory limits but above the
EU regulation for processed cereal-based foods and baby foods for

TABLE 1 Studies of mycotoxins natural contamination in food for human consumption, with data collected 2018–2023 in countries of South America.

Country Number
studies

Most
analyzed
mycotoxin

Most
analyzed
food item

Higher occurrence More used
methodology

Regulation in
mycotoxins in food
(internal)

Argentina 8 Fusarium and
Alternaria
mycotoxins

Malting-barley AME in apple infant food and
fumonisin B2 in wheat
flour (100%)

Chromatography (MS,
DAD, UV)

Yes (Health Ministry of
Argentina, 2019)

Brazil 21 Aflatoxins Cereal Fumonisins in corn and corn
products, AFM1 in cheese and
goat milk, DON, and ZEN in
wheat products (100%)

Chromatography (MS,
DAD, FLD)

Yes (Health Ministry of Brazil,
2021)

Chile 5 Aflatoxins
and OTA

Capsicum Aflatoxin, OTA, and DON in
breakfast cereals, OTA in
capsicum (100%)

Chromatography
(FLD) and ELISA

Yes (Health Ministry of Chile,
1997)

Colombia 2 Aflatoxins Corn arepas AFM1 in milk powder (100%) Chromatography
(FLD)

Yes (Health and Social
Protection Ministry of Colombia,
2013)

Ecuador 4 Aflatoxins Milk AFM1 in raw milk (100%) Chromatography and
ELISA

Only aflatoxins for raw milk
(Ecuadorian Institute of
Standardization, 2012)

Paraguay 4 Aflatoxins Milk AFM1 in milk and milk
formulas (100%)

ELISA Only aflatoxins for yerba mate
(National Institute of
Technology, Standardization and
Metrology of Paraguay, 2023)

Peru 3 Fusarium
mycotoxins

Corn Fumonisins in corn (100%) Chromatography (MS) No

Uruguay 6 Fusarium
mycotoxins

Barley grain Fumonisins in corn (97%) Chromatography
(FLD, DAD)

Yes (Republic of Uruguay, 1994)
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infants and young children. Fumonisins were above 1,000 ng/g in
three cornflake samples and DON >750 ng/g in one cornflake
sample (Foerster et al., 2022).

2.4 Colombia

In the last years, only aflatoxins have been analyzed: in corn
arepas (n = 168), 27% of AFB1 was found (Blanco-Lizarazo et al.,
2019), and in milk powder (n = 51), AFM1 was found in 100% of the
samples, and no positives for AFB1 were found (Marimón Sibaja
et al., 2019).

2.5 Ecuador

Four studies were conducted in Ecuador, mainly on milk. Puga-
Torres et al. (2020) found AFM1 in 100% of the 209 samples of raw
milk and ZEN in 99.5% (Puga-Torres et al., 2021). Also, 78 breast
milk samples were analyzed for aflatoxins, finding 13% of AFM1 and
9% of AFB1 (Ortiz et al., 2018). Finally, 28 samples of corn were
analyzed for aflatoxins, finding a 50% occurrence and levels of
0.42–107.7 μg/kg (Abel-Palacios et al., 2022).

2.6 Paraguay

Four studies have been reported in Paraguay, including wheat,
beer, wine, milk, and milk formulas. The first described DON in
wheat flour, bread, and crackers found high levels in most
manufactured food (crackers, 0.038 ± 0.049 ng/g) (Arrua
Alvarenga et al., 2019a). Furthermore, Arrua Alvarenga et al.
(2019b) reported 25% OTA in wine and 24% of DON in beer. In
milk formulas, AFM1 was found in all fluid formulas analyzed
(median 33.6 ng/kg) and in 9.75% of the powder formulas, but
with greater levels (median 1820 ng/kg) (Arrua Alvarenga et al.,
2021a). Finally, in UHT and pasteurized milk (sachet and cartons),
Arrua Alvarenga et al. (2021b) found AFM1 in 100% of the samples
analyzed (n = 80).

2.7 Peru

Three studies were conducted in the period. The first study
found aflatoxin with levels over 20 ng/g in 6/20 samples of capsicum,
peanuts, and barley (Rojas Jaimes et al., 2021). Vásquez-Ocmín et al.
(2023) found beauvericin in 59% of the 27 samples of quinoa,
canihua, and kiwicha analyzed. Finally, Ducos et al. (2021) found
fumonisins in 100% of the corn samples (n = 14) and DON (51%),
NIV (6%), and ZEN (22%) in corn and wheat.

2.8 Uruguay

Six studies have data from 2018, five of them in grains and one of
them in milk. The first publication found 67% of NIV in n =
154 barley (Garmendia et al., 2018), and the second found DON
(90%) and ZEN (9%) also in barley (n = 89) (Palladino et al., 2021).

The third study reported occurrences of fumonisins, DON, ZEN,
and NIV in corn during 2018 and 2019, highlighting the high
occurrences and levels of FB1 (96.7%, mean 4,860 ng/g) and FB2
(90.2%, mean 1,695 ng/g) in 2018 (del Palacio et al., 2023). The
fourth publication found AFB1 (8%) and fumonisins (4%) in
sorghum grains (n = 50) (García y Santos et al., 2022). The fifth
publication found 30% of AFs in 80 samples of wheat and sorghum
grains (del Palacio and Pan, 2020). Finally, Capelli et al. (2019)
found AFM1 in 91.8% of cow milk samples from 18 farms in
the country.

3 Discussion

Different mycotoxins produced by toxigenic fungi were detected in
foods from all over South America. Most of the contaminated products
have great economic importance in the region. The type of food and
climate conditions of each country influenced the occurrence of
mycotoxins (Figure 1A). Fungal contamination and mycotoxin
occurrence in the food and feed chains represent a high risk to
human and animal health and considerable economic losses due to
restrictions to the domestic and international markets. Studies on the
occurrence of mycotoxins in crops and processed food are essential
because they are reliable approaches to evaluating the potential exposure
risk of the populations to these contaminants (Chiotta et al., 2020).

Most of the mycotoxins analyzed in South America were the
“traditional and regulated mycotoxins” like aflatoxins, AFM1, OTA,
fumonisins, DON, and ZEN, found with variable occurrences
depending on the region, climatic conditions, and methodology
used. Emerging and modified toxins like AOH, AME, TeA, TEN,
ATX-I, and ALT have been studied only in Argentina and Brazil,
where some studies have shown high occurrences. Also, in Brazil
and Argentina, the methodology is more complex, using
chromatography-mass spectrometry (LC-MS) with MS/MS
detection, which can give more precise results. Robust analytical
methods are crucial to ensuring food safety. LC-MS-based methods
are becoming increasingly popular as they allow sensitive
simultaneous determination of multiple fungal metabolites in
many matrices (Gruber-Dorninger et al., 2017). ELISA methods
are widely used in South America for being inexpensive and easy to
use but tend to overestimate the levels because they usually detect
other forms of mycotoxins (Gerding et al., 2015). Also, frequently,
the limits of detection and quantification of these methods are
higher than recommended. Despite these limitations, ELISA has
proven to be an excellent qualitative method with high sensitivity,
but additional quantification and validation must be made by
chromatographic methods for reliable results (Gerding et al.,
2015). In this regard, strengthening food safety laboratories and
surveillance capabilities and establishing early warning systems is
paramount. Also, countries must continue working and searching
for efficient, cost-effective sampling and analytical methods to detect
traditional and modified mycotoxins in the region.

Most studies in the region were conducted to find mycotoxins in
grains and cereals, with an increasing analysis of AFM1 in milk
(Figure 1A). These studies were independent of the climatic and
economic conditions of feed, so it was difficult to establish causality
of the occurrences. In some countries like Argentina and Paraguay,
feeding has been changed from grass to grains, which could increase
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aflatoxin occurrence. In Brazil, milk production comes from
different production systems, and frequently, there is no access to
production control and history. This fact is a significant research gap
in South America.

Furthermore, few countries have an estimation of exposure from
the occurrences and levels of mycotoxins in food. Most of South
America’s current food safety regulations were based on
international risk assessments like Codex Alimentarius (e.g.,

FIGURE 1
Scientific mapping of linked networks for different mycotoxins and foods in South America over the last 5 years. The methodology of the figure is
described in the Supplementary Material. (A) Connections between the mycotoxin research in the countries of the study. (B) Collaboration map of the
authors of the publications included in this mini review.
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Chilean Food Sanitary Regulation, 2023) and the Southern Common
Market, MERCOSUR (Organization of American States, 2022). This
last regulation typically applies to food exports. Although
harmonized regulatory limits would be beneficial from a
commercial point of view, this does not necessarily promote
equal protection of human health in a homogeneous way around
the world. The risks associated with mycotoxins depend on both the
hazard and the exposure. The danger posed by mycotoxins to
humans is probably similar worldwide, but not the exposure,
because of differences in the levels of contamination and diet
habits; therefore, reliable exposure assessments for mycotoxins in
each country are necessary (Food and Agriculture Organization,
2004). Some South American countries have an important gap in
surveillance and internal regulatory issues, having no regulations or
partial ones. For example, Paraguay only has an internal regulation
for aflatoxins for yerba mate (National Institute of Technology,
Standardization and Metrology of Paraguay, 2023) but lacks the rest
of the foodstuffs. Only Brazil and Argentina have a special regulation
for mycotoxins for foods destined for little children and infants
(Health Ministry of Argentina, 2019; Health Ministry of Brazil,
2021). In this sense, it is crucial to continue working to bring
awareness of mycotoxins as a public health issue.

Strategies to reduce mycotoxin contamination of foodstuffs
require a multifaceted approach combining pre- and post-
harvest interventions. In low- and middle-income countries
in South America, where technology and infrastructure are
not always adequate, ensuring low mycotoxin occurrence
remains a significant challenge (Ducos et al., 2021).
Furthermore, changes in climate systems suggest that slightly
elevated CO2 concentrations and interactions with temperature
and water availability may stimulate the growth of some
mycotoxigenic species, especially under water stress (Magan
et al., 2011). For example, Paterson and Lima (2010)
suggested that a significant risk of climate change will be
developed in countries with temperate climates, like Chile
and part of Argentina, which would be conducive to aflatoxin
production, and that in colder climates, mycotoxins such as PAT
and OTA may become more critical. The impact of climate
change will also be remarkable for soil microbial populations;
these will be affected and subsequently will affect the prevalence
of some fungi. Due to the changes of given fungal species to
colonize new environments, the profile of toxigenic species
occurring in different geographical areas could be modified,
leading to new mycotoxin risks in specific regions (Moretti
et al., 2019). Given these potential impacts, it is crucial for
research efforts to focus on monitoring the occurrence of
mycotoxins in foods, evaluating population exposure, and
understanding the prevalence of different toxigenic fungal
species in various regions.

The following steps for South American countries are to
increase food surveillance, internal mycotoxin regulation,
biomonitoring analysis, and estimation of human health
exposure based on contamination levels and dietary habits in
each country. Epidemiological studies are urgently needed to
understand the source of exposure in the population and the
chronic health consequences of this exposure. Evidence on the

intersection between climate change and health is limited in
South America and has been generated in silos, with limited
transdisciplinary research (Palmeiro-Silva et al., 2023). This
information was corroborated in this study, where
collaborations in research were null (Figure 1B). Effective
connection and collaboration between disciplines and sectors
in different countries is urgently needed to address this
challenging research.
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