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The emerging field of using titanium dioxide (TiO2)-based photosensitizers for
enhancing photocatalytic removal of thiazine dyes such as methylene blue (MB)
from water has long been recognized for its exceptional photocatalytic
properties, making it an attractive material for environmental remediation and
energy conversion. However, its wide bandgap limits its responsiveness to visible
light. As such, the utilization of TiO2-based photosensitizers for the removal of
thiazine dyes, presents a promising avenue for diverse applications. In addressing
the dual challenges of environmental pollution and harnessing sustainable energy
sources, this review focuses on the removal of thiazine dyes from water and their
subsequent application as photosensitizers for TiO2 materials. Thiazine dyes,
ubiquitous in industrial effluents, pose environmental concerns due to their
persistence and potential toxicity. Conversely, this innovative approach
involves employing TiO2 materials as photocatalysts, utilizing the unique
properties of thiazine dyes to enhance light absorption. Studies have shown
that beyond the conventional role of thiazine dyes as colorants, they can serve as
effective photosensitizers when coupled with TiO2. This tandem not only
facilitates the elimination of thiazine dyes, such as MB, from water but also
augments the improvement of the photocatalytic performance of TiO2 materials.
The synergy between dye sensitizers and TiO2 enhances the overall efficiency of
processes like dye degradation and water splitting. Dye sensitizers, acting as light
energy absorbers, can efficiently transfer this energy to TiO2, thereby promoting
electron transfer and generating reactive oxygen species (ROS). These ROS, in
turn, initiate chemical reactions, rendering dye sensitizers valuable in applications
such as wastewater treatment, solar energy conversion, and environmental
remediation. As such, it is crucial to acknowledge the potential drawbacks
associated with thiazine dyes, including toxicity and non-biodegradability.
Consequently, careful consideration must be given to thiazine dye application
and disposal. Therefore, this review manuscript delves into the comprehensive
exploration of TiO2-based photosensitizers, shedding light on their efficacy in
various photocatalytic processes for thiazine dye removal.
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1 Introduction to TiO2 as a
photocatalyst

Photocatalysis, a phenomenon that harnesses the power of light
to drive chemical reactions on the surface of semiconductors, has
garnered substantial attention in the realm of environmental and
energy-related research (Magalhães et al., 2017; Tahir et al., 2020; Li
et al., 2020). Among the diverse array of photocatalysts, titanium
dioxide (TiO2) has emerged as a paradigmatic and widely studied
material due to its exceptional photochemical properties and
versatile applications (AlSalka et al., 2023). This review delves
into the multifaceted aspects of TiO2 photocatalysis, emphasizing
its significance, its inherent limitations concerning visible light
utilization, and the pivotal role played by photosensitizers such
as thiazines in augmenting TiO2 photocatalytic efficacy.

TiO2 photocatalysis is a photochemical process that exploits the
semiconducting properties of this material to catalyze a myriad of
chemical reactions when exposed to ultraviolet (UV) or visible light
irradiation (Schneider et al., 2014; Pendergast et al., 2010). Its
significance lies in the potential to address a wide spectrum of
global challenges, ranging from environmental remediation to
renewable energy technologies (Zhang et al., 2022). The
pioneering work of Akira Fujishima and Kenichi Honda in the
late 1960s brought TiO2 photocatalysis to the forefront by
showcasing its ability to split water into hydrogen and oxygen
when illuminated by UV light, thereby initiating the exploration
of TiO2 as a photocatalyst for water splitting and pollutant
degradation (Kenichi Honda, 2023; Fujishima and Honda, 1972).
TiO2 photocatalysis has since emerged as a sustainable and eco-
friendly strategy for mitigating environmental pollution. Its ability
to mineralize a variety of organic pollutants into harmless by-
products has made it an invaluable tool for wastewater treatment
and air purification (Schneider et al., 2014; Dharma et al., 2022). The
ability to harness solar energy for these processes has the potential to
revolutionize the energy landscape by offering an environmentally
friendly alternative to conventional energy sources (AlSalka et al.,
2023; Esrafili et al., 2022; Peiris et al., 2021). As a result, TiO2

materials hold immense promise for the generation of clean energy
through processes such as photocatalytic hydrogen production and
photovoltaic applications.

Despite the myriad advantages of TiO2, one of the most
significant drawbacks as a semiconductor is the limited
responsiveness to visible light, which constitutes a substantial
portion of the solar spectrum. The intrinsic wide bandgap of
TiO2 (~3.2 eV for anatase and ~3.0 eV for rutile) only utilise UV
light energy for the excitation of electrons from the valence band
(VB) to the conduction band (CB) to enable photocatalytic
reactions, which was reported by Anucha et al. (2022) and
Rafique et al. (2020) in their studies (Anucha et al., 2022; Rafique
et al., 2020). This limitation restricts the overall efficiency and
practicality of TiO2-based photocatalysis, as UV light comprises
only a small fraction of the solar radiation reaching the Earth’s
surface (Anucha et al., 2022; Dong et al., 2015). This reliance on UV
light not only limits the range of applications but also results in
increased energy consumption for artificial UV light sources,
diminishing the overall sustainability of the photocatalytic
processes. To address these challenges and maximize the
utilization of solar energy for photocatalysis, there is a

compelling need to extend TiO2 photoresponsiveness into the
visible light region (Rafique et al., 2020; Dong et al., 2015).
Through expanded light absorption, efficient charge separation,
and improved catalytic activity, photosensitizers contribute to
making TiO2-based photocatalysis more versatile and effective for
applications such as environmental remediation and solar energy
conversion. A study by Tinoco et al. (2023) showed that TiO2 is a
widely used photocatalyst known for its ability to harness light
energy to drive chemical reactions, particularly in the degradation of
pollutants or the generation of clean energy (Tinoco Navarro and
Jaroslav, 2023). As a result, incorporation of photosensitizers could
play a crucial role in enhancing the photocatalytic activity of
materials like TiO2.

Anucha et al. (2022) have exhibited that the incorporation of
photosensitizers is a strategy employed to address these limitations
and improve the photocatalytic performance of TiO2. The following
are the key reasons why photosensitizers are important in the
context of TiO2 photocatalysis (Anucha et al., 2022). The TiO2

primarily absorbs UV light due to its wide
bandgap. Photosensitizers, on the other hand, can absorb light in
a broader range, including visible light (Tinoco Navarro and
Jaroslav, 2023; Yu et al., 2022). Through coupling a
photosensitizer with TiO2, the composite photocatalyst becomes
capable of utilizing a wider spectrum of sunlight, making it more
efficient under natural light conditions. The photosensitizers can
facilitate the separation of photoinduced electron-hole pairs more
effectively (Pawar et al., 2018). When light is absorbed by the
photosensitizer, it generates an excited state with an electron at a
higher energy level. This electron can then can be transfered to the
conduction band of TiO2, leaving behind a positive hole in the
photosensitizer (Carella et al., 2018). This separation of charges
helps to reduce electron-hole recombination rates, a common issue
in TiO2 photocatalysis that can limit its overall efficiency. In this
regard, the presence of photosensitizers can boost the photocatalytic
activity of TiO2 by promoting specific reactions or pathways (Kang
et al., 2019). For example, Shin et al. (2023) in their study showed
that certain photosensitizers have been found to enable the
generation of reactive oxygen species (ROS), which are highly
effective in the degradation of organic pollutants (Shin et al.,
2023). Such photosensitizers can also be engineered to have
enhanced ROS generation by controlling their excitation
wavelength. The formation of excited triplet states through
intersystem crossing (ISC) plays a crucial role in the generation
of ROS by organic photosensitizers (Wang et al., 2022). This showed
that enhanced catalytic activity could contributes to the overall
efficacy of TiO2-based photocatalysts. Lastly, photosensitizers can
modify the redox potential of TiO2, making it more favorable for
specific reactions. This modification can enhance the ability of TiO2

to participate in oxidation-reduction reactions, which are often
involved in photocatalytic processes (Kang et al., 2019; Al-Nuaim
et al., 2022; Jiang et al., 2021).

2 TiO2-based photosensitizers

Photosensitizers have emerged as a strategic solution to
circumvent photocatalysts limitations such as wide band gap
of TiO2, ZnO, etc., regarding visible light utilization. These
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molecular entities, which can absorb visible light, subsequently
transfer their photoexcited electrons to TiO2, extending its
absorption spectrum into the visible region (Hamza et al.,
2023; Escudero et al., 2021). This energy transfer mechanism
facilitates the excitation of TiO2 electrons from the valence band
to the conduction band, enabling the photocatalytic process to
occur under visible light irradiation. Incorporating
photosensitizers into TiO2-based photocatalytic systems has
become a pivotal strategy to enhance the efficiency and
versatility of TiO2 photocatalysis. Photosensitizers may
encompass a diverse range of compounds, including organic
dyes, metal complexes, and semiconductor quantum dots, each
possessing unique optical and electronic properties that can be
tailored to specific photocatalytic applications (AlSalka et al.,
2023; Esrafili et al., 2022; Anucha et al., 2022; Sakar et al., 2019).
TiO2 is a widely used semiconductor material in the field of dye-
sensitized solar cells (DSSCs) where it serves as the photoanode,
and its surface is sensitized with a dye to enhance light absorption
and electron injection. Various dyes have been developed over

the years for this purpose. Table 1 generally summaries typical
dye photosensitizers used to modify TiO2 material.

As shown on Table 1, dye photosensitizers exhibited a
remarkable performance by efficiently harnessing light energy to
initiate intricate photochemical processes, facilitating enhanced
charge carrier generation and separation for applications ranging
from photocatalysis to sustainable environmental technologies. As a
result, researchers continue to explore novel dye structures and
sensitization strategies to improve the efficiency and stability of
TiO2-based photosensitizers. The judicious selection and design of
photosensitizers have thus opened up new horizons for harnessing
visible light and expanding the scope of TiO2 photocatalysis,
allowing for more sustainable and energy-efficient processes (Liu
et al., 2023; Wategaonkar et al., 2021). Therefore, TiO2

photocatalysis represents a powerful and versatile approach for
addressing environmental and energy challenges. However, its
limited responsiveness to visible light has prompted the
integration of photosensitizers as a strategic means to enhance its
photocatalytic activity. This comprehensive review explores the

TABLE 1 Summary of Dye photosensitizers used in TiO2 modification.

Dye-sensitizer
classification

Type of
photosensitizer

Examples of Dye Materials JSC Range
(mA cm−2)

Highest
EFF (%)

Refs

Organic Dyes Ruthenium Complexes Ruthenium-based dyes, such as N3 (cis-
bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-
dicarboxylato)ruthenium(II)), have been extensively
studied for DSSCs.

~14.13-18.14 7.42 Elmorsy et al.
(2023)

Cobalt Complexes Some cobalt-based dyes have been investigated as
alternatives to ruthenium-based dyes.

~0.12-4.40 2.49 Hegde et al. (2023)

Natural Dyes Dyes extracted from natural sources, such as
chlorophyll, anthocyanins, and other plant
pigments, have been used as eco-friendly
alternatives.

~2.76-3.39 0.84 Amogne et al.
(2020)

Inorganic Dyes Perovskite Materials Certain perovskite materials have been explored as
sensitizers for TiO2-based DSSCs.

~0.74 0.27 Sinha et al. (2019)

Quantum Dots Quantum dots, such as CdSe and PbS, have been
investigated as potential sensitizers due to their
tunable optical properties.

~8.98-12.22 2.35 Justin Raj et al.
(2014)

Metal-Free Organic Dyes Organic Sensitizers Some metal-free organic dyes, such as porphyrins,
squaraines, and organic polymers, have been
developed for TiO2 sensitization.

~5.92-8.85 5.87 Lee et al. (2018)

Transition Metal
Complexes

Copper Complexes Copper-based dyes have been studied for DSSCs. ~0.4-5.2 2.44 Jilakian and
Ghaddar (2022)

Cobalt Complexes Besides cobalt complexes mentioned earlier, other
cobalt-based dyes have been explored.

~0.06-0.22 25 Ursu et al. (2024)

Dye Design and
Engineering

Molecular Engineering Researchers have focused on designing and
engineering dye molecules to optimize their
absorption spectra, electron injection efficiency, and
stability.

~7.10-8.30 10.88 Liu et al. (2023)

Co-Sensitization Strategies Co-Sensitization Combining different dyes to create a co-sensitization
system has been explored to enhance light
absorption across a broader spectral range.

~3.71-17.02 8.15 Ananthakumar
et al. (2019)

Anchor Groups and
Linkers

Functional Groups The type of anchoring group and linker used in the
dye molecule plays a crucial role in adsorption onto
the TiO2 surface and electron injection efficiency.

~0.79-1.03 0.42 Zhang and Cole
(2015)

Electrolyte Systems Redox Mediators The choice of redox mediators in the electrolyte
system also influences the performance of TiO2-
based DSSCs.

~4.17-12.59 4.76 Hu et al. (2019)
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multifaceted aspects of TiO2-based photosensitizers for the removal
and reuse of thiazine dyes such as MB from water, shedding light on
their synthesis, characterization, and applications in diverse
photocatalytic processes, thereby advancing the field of
sustainable and efficient photocatalysis.

3 Thiazine dyes and their properties

Thiazines are classified as organic molecules, which can be
structured in many different ways, as shown in Figure 1. In
organic synthesis, thiazines are produced from the reaction of
thiourea and alkyl propiolates compounds (Danilkina et al., 2006;
Begum Sri Padmavati Mahila Visvavidyalayam et al., 2016;
Mohlala et al., 2021; Pirillo et al., 2018). These groups of
organic compounds have been extensively explored in the
literature for diverse applications, spanning biological
activities and material utilization. Although thiazine dyes are
considered toxic, they find application as photosensitizers in
pharmaceutical applications.

In the absence of light, thiazine dyes remain non-toxic.
However, upon exposure to an appropriate amount of light, they
undergo a transformation, becoming highly reactive (Mohlala et al.,
2021; Pirillo et al., 2018; Fabio et al., 2016). Thiazine dyes are among
the most significant organic dyes with established uses in technology
and science. They are employed in a variety of chemical, biological,
and medical research studies (Gilani et al., 2017). Because of their
acceptable biological, chemical, photochemical, and photophysical
properties, these cationic dyes are utilized as phototherapeutic
agents. The physiological and physicochemical characteristics of
the thiazine dyes influences the effectiveness of the photodynamic
therapy (PDT). To date the generation of thiazine dyes as
photosensitizers in the presence of light is driven to improve
properties such as cytotoxicity, chemical purity and composition
(Montes De Oca et al., 2013). These set of compounds are also
derived to be effective in the production of singlet oxygen,
photochemical reactivity, high extinction coefficient and
referential retention by the target tissue (Robertson et al., 2009;
Detty et al., 2004; Triesscheijn et al., 2006). The high singlet oxygen
quantum yields of thiazine dyes contribute to their efficacy in
inducing photodynamic reactions. This feature is particularly
advantageous for the degradation of organic pollutants present in
wastewater.

Global production of various dyes amounts to over 700,000 tons
per year, and the textile dye sector generates significant amounts of
highly coloured wastewater from dye processes (Eslami et al., 2015).
Since all of this wastewater is poisonous and has the potential to be

dangerous, it should be cleaned up before being dumped into rivers,
streams, or the ocean (Cunico et al., 2015). Table 2 provides an
overview of various thiazine dyes along with key properties relevant
to their application in photocatalysis and environmental processes.
The included dyes encompass a range of well-known compounds,
each distinguished by its unique chemical structure, absorption
wavelength, photocatalytic activity, and environmental impact.

The presented table offers a concise overview of various thiazine
dyes. Methylene Blue, with its high photocatalytic activity at a
665 nm absorption wavelength, emerges as a promising candidate
(jie Song et al., 2023; Khan et al., 2022; Tardivo et al., 2005).
Rhodamine B and Azure A exhibit moderate photocatalytic
activity, while Toluidine Blue and Janus Green B show varying
degrees of effectiveness. The choice of thiazine dye in photocatalysis
is multifaceted, considering factors like absorption wavelength,
environmental impact, and overall performance. Rhodamine B
and Toluidine Blue, despite moderate photocatalytic activity, may
find applications in scenarios where a balance between performance
and environmental impact is critical (Hamza et al., 2023; Valadez-
Renteria et al., 2022). Furthermore, continuous exploration and
understanding of the chemical structures and properties of thiazine
dyes will contribute to the optimization of photocatalytic processes
and the development of sustainable environmental technologies.

The majority of dyes have stable chemical structures that ae
challenging to break down; in particular, azo and cationic thiazine
variants, which are produced in vast quantities, and are most
challenging (Navarro et al., 2017). Treatments for the
degradation of azo and cationic thiazine dyes employing several
advanced oxidation processes (AOPs) have garnered a lot of
attention lately (Luo et al., 2017). Research on wastewater
treatment for the degradation of household wastes, agricultural
discharges, and industrial effluents has been conducted for a long
time. To identify and illuminate the hazardous emergence from the
pollutants, the plant needs its initial detection system. The sludge
extraction process reverses osmosis, membrane filtration,
photocatalysis, and flocculation are some of the cutting-edge
techniques for treating wastewater introduced by nanotechnology
(Asahi et al., 2001). According to a report, TiO2 and ZnO
nanostructures are employed as efficient photocatalysts for the
treatment of wastewater because they possess many advantages,
which include high activity, affordability, stability, and nontoxicity
(Bhatkhande et al., 2002).

Photocatalysis has emerged as a well-organized method for air
and water purification through the degradation of contaminants that
are commonly used in organic colorants on paper, plastics, food,
leather, textiles, and cosmetics. Because the effluents maximize
chemical oxygen demand, they are highly dangerous to aquatic
environments and species (Murray and Parsons, 2004). Since the
majority of organic dyes are both stable and resistant to
photodegradation, currently research is being done on the
removal of these released dyes. However, in typical wastewater
treatment, thiazine dye removal or incorporation into the
photocatalysts can in turn be tailored to selectively and further
target specific contaminants commonly found in wastewater, such as
organic matter, microbes, and other impurities. This selectivity
could minimize the impact on non-target components, ensuring
a more focused and efficient treatment process as well as the reuse of
thiazine dyes. As a result, the use of thiazine dyes as photosensitizers

FIGURE 1
Structures of 1,2- (A), 1,3- (B) and 1,4- (C) thiazine.
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in wastewater treatment presents a future prospect that can lead to
their reduced environmental footprint. Their low toxicity to healthy
organisms and tissues could make them a more sustainable
alternative compared to traditional water treatment chemicals
(Zhang et al., 2023).

In addition, the thiazine compounds ability to self-assemble has
significant implications for a variety of applications, including
photo-medicine, fluorescence depolarization diagnostics, tunable
lasers, molecular optoelectronics, and photographic technologies
(Arik and Onganer, 2003). Thiazine dyes are more stable in aqueous
solutions as they do not undergo demethylation (Abbott, 1962) and
they have low ionization potential due to the presence of two
heteroatoms, which could limit their toxicity in water
(Havelcovaâ et al., 2023). Intrinsically thiazine set of compounds
are ideal candidates for photodynamic treatment because they
exhibit selectivity for cancer cells in vivo (Paul and Suresh
Kumar, 2013) and have high singlet oxygen quantum yields
(Ronzani et al., 2014). Thiazine dyes as photosensitizers have also
shown to have antibacterial effects on a variety of harmful microbes,
which could be also beneficial in wastewater treatment (Pinto et al.,

2017; Decker et al., 2017; Monteiro et al., 2017). However, it
effectiveness as a dye photosensitizer for wastewater treatment is
still an unproven hypothesis. Meanwhile, despite these benefits of
thiazine dyes, it is well known that their planar and even ionic
structures tend to congregate in diluted fluids, producing dimers and
occasionally higher-order aggregates (Chakraborty et al., 2010; Dar
and Ankari, 2022). This phenomenon is mainly associated with the
hydrophobic character of the basic structure of thiazine dyes (Gilani
et al., 2017).

On the other prospect, the removal of thiazine dyes,
particularly methylene blue, from wastewater has gained
significant attention, and TiO2-based photosensitizers have
emerged as effective agents. When combined with TiO2,
thiazine dyes like MB can serve as potent photosensitizers,
enhancing the photocatalytic activity of TiO2 and enabling the
efficient removal of these dyes from water (Khan et al., 2022; Kohle
et al., 2020; Basumatary et al., 2022). However, the interaction
between thiazine dyes and TiO2 involves the absorption of light
energy by the dyes, which is then transferred to TiO2. This process
promotes electron transfer and the generation of ROS, which play a

TABLE 2 Overview of thiazine dyes and their photocatalytic properties.

Thiazine
Dye

Chemical Structure Absorption
Wavelength (nm)

Photocatalytic
Activity

Environmental
Impact

Methylene Blue 665 High Moderate

Rhodamine B 554 Moderate Low

Azure A 631 High Moderate

Toluidine Blue 630 Moderate Low

Janus Green B 640 Low Low
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pivotal role in initiating chemical reactions (Sarfraz et al., 2023;
Rao et al., 2022; Lima and Reis, 2023). The photocatalytic activity
induced by TiO2-based photosensitizers proves valuable in the
degradation of thiazine dyes, contributing to the remediation of
wastewater. This environmentally friendly approach not only
addresses the removal of pollutants but also aligns with the
broader goals of sustainable water treatment technologies. The
integration of TiO2-based photosensitizers for thiazine dye
removal and reuse holds promise for advancing efficient and
eco-friendly wastewater treatment strategies.

4 Light absorption and energy transfer
by photosensitizers

The mechanisms of light absorption and energy transfer between
dye sensitizers and TiO2 involve a series of intricate steps that facilitate
the enhancement of photocatalytic activity. For example, organic dye, as
a photosensitizer, absorbs light energy, typically in the visible spectrum
(Zani et al., 2021). This absorbed energy excites the electrons within the
dye molecules to higher energy states. Subsequently, the excited
electrons in organic dye are transferred to the TiO2 surface through
a process known as energy transfer. TiO2, being a semiconductor,
effectively captures and utilizes the transferred electrons (Zani et al.,
2021; Zhao et al., 2021).

The interaction between dye sensitizers and TiO2 is governed by
the creation of electron-hole pairs on the TiO2 surface upon
absorbing the transferred electrons. This process promotes
efficient charge separation, where electrons move through the
TiO2 lattice while holes are left behind (Elmorsy et al., 2023;
Zani et al., 2021). The excited electrons on the TiO2 surface can
participate in redox reactions, leading to the generation of ROS, such

as superoxide ions and hydroxyl radicals. These ROS play a crucial
role in initiating chemical reactions and promoting the degradation
of organic pollutants, including the thiazine dyes. The synergistic
interaction between photosensitizers and TiO2 amplifies the
photocatalytic activity of TiO2, making it a powerful approach
for applications such as wastewater treatment and dye
degradation (Elmorsy et al., 2023; Ananthakumar et al., 2019).

4.1 Photosulfitochemistry mechanism of
MB dye

A study by Luo et al. (2021) reported the photosulfitochemistry
mechanism of MB dye as demonstrated in Figure 2. The mechanism
outlines a sequence of chemical reactions involved in the wastewater
treatment process using MB as a photosensitizer involving five
processes namely;

(i) Photo-excitation of MB+: where the ground state MB+

becomes excited to the single state 1MB⁺* after absorbing
visible light. This process is followed by the generation of
triplet state 3MB⁺* from 1MB⁺* after going through fast
intersystem crossing (ISC). For the sake of simplicity in
this process, the ISC reaction is not included here, and
MB⁺* stands for the excited MB+’s triplet state.

(ii) Electron transfer between MB⁺* and sulfite: When MB+*
removes an electron from sulfite, primary radicals MB⁺ and
SO3⁻ are created. At this point, the oxysulfur radical chain
reaction is currently at its starting phase.

(iii) Radical propagation: After reacting with an oxygen molecule
to generate secondary highly oxidative SO5, SO3⁻ next
interacts with sulfite to form SO4⁻.

FIGURE 2
The As(III) oxidation mechanism in the photo-MB⁺-sulfite system at neutral pH (Luo et al., 2021).
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(iv) Recovery of MB+: MB+ recovery is achieved by the radical
termination ofMB⁺ via disproportionation or radical transfer
to oxygen. As an intermediate from the disproportionation of
MB⁺, the colourless dye Leuco methylene blue (LMB) is
readily reoxidized by O2 back to MB+. When compared to
transitionmetals as a catalyst for sulfite activation, MB+/LMB
exhibits a substantially faster redox turnover, which
facilitates a significant As(III) oxidation and requires
significantly less MB+ concentration.

(v) As(III) oxidation: The primary radical oxidant that causes
As(III) oxidation is SO5⁻.

As a result, the use of MB⁺ and its recovery in this process
is advantageous due to its faster redox turnover compared to
transition metals as catalysts for sulfite activation. This
efficiency facilitates significant As(III) oxidation and requires
lower MB⁺ concentrations (Luo et al., 2021). Intrinsically, it is
worth noting that the overall success of this wastewater treatment
process depends on factors such as reaction kinetics, efficiency of
radical generation, and the ability to recycle thiazine dyes i.e., MB
effectively. Additionally, the specifics of the ISC reaction and any
possible side reactions not mentioned may influence the overall
performance of the system. Notably, MB has been widely employed
in the photooxidation of both synthetic and natural compounds
(Tardivo et al., 2005; Luo et al., 2021; Yhon et al., 2023). As shown

on Scheme 1, two main types of photochemical process can be
observed, which can be explained as follows:

Type I, is where reducing agents gives an electron to the MB
triplet, generating the semi-reduced radical MB, Reaction (3), in
Scheme 1, and Type II, is where the triplet energy is transferred to
oxygen, forming singlet oxygen (1O2, Reaction (2)) (Scheme 1). The
ground state MB molecules can function as reducing agents by
themselves at high dye concentrations (D − D* mechanism)
(Junqueira et al., 2002; Severino et al., 2003). As such, the
schematic representation demonstrates the effectiveness of using
thiazines such as MB as photosensitizers.

Scheme 1 also shows the photochemical pathways for MB in
which MB+, 1MB+*, 3MB+* represent the ground state, singlet, and
triplet excited states of MB, respectively, which was reported by
Tardivo et al. (2005) (Tardivo et al., 2005). In here, MB· and MB·2+
represent the semi-reduced and semi-oxidized radicals of methylene
blue, respectively; Ω1 denotes light absorption; Φf, Φnr, ΦT are
fluorescence, non-radiative, and triplet quantum yield.

4.2 The mechanism of dye-
sensitization process

The light that is typically applied in the visible and near-infrared
wavelengths must stimulate photosensitizers in order to start the

SCHEME 1
The photochemical reaction pathways of methylene blue (Tardivo et al., 2005).
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photodynamic process. The initial state of the photosensitizer is a
singlet state in which paired electrons in frontier molecular orbitals
have opposing spins (Zhao et al., 2021; Li and Pu, 2019). Upon
exposure to light of the appropriately designated wavelength, the
photosensitizers absorb the light, resulting in the excitation of a
single electron from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMO),
while the spin remains unchanged during the process (Rossi,
2023; Kenry and Liu, 2022). When the photosensitizer is exposed
to light with the right wavelength, it absorbs the light and one
electron is excited from HOMO to the LUMO, with the spin staying
unaltered throughout. This excited state, which lasts for only a few
nanoseconds at most, is referred to as the excited singlet state (Rossi,
2023; Kenry and Liu, 2022; Huang et al., 2014). The
photosensitization mechanism, as illustrated in Figure 3, involves
electrons from the dyes HOMO excited to their LUMO and then
injected to the CB of TiO2. This process occurs once the dyes absorb
photons in the visible light energy range of the solar spectrum (Li
et al., 2020).

The occurrence of this excited singlet state is pivotal in initiating
subsequent photochemical reactions and is fundamental to the overall
functionality of photosensitizers in diverse applications such as
photodynamic therapy, solar energy conversion, and photocatalysis
(Zhao et al., 2021; Li and Pu, 2019; Xu et al., 2022; Monro et al., 2019).
In this context, the singlet-excited state of photosensitizers can
manifest in different pathways. It may either emit light in the
form of fluorescence or undergo radiationless relaxation,
converting the excitation energy into heat internally (Ortiz-
Rodríguez et al., 2021). Alternatively, the excited electron has the
option to reverse its spin, a process that, for most organic compounds,
is relatively slow and requires a singlet state with an extended lifetime.
The majority of organic compounds exhibit a prolonged lifetime for
the singlet state due to the sluggish nature of the spin reversal process
(Ortiz-Rodríguez et al., 2021; Stoll and Schweiger, 2006; Li et al.,
2022). It is noteworthy that the excited electron, having a parallel spin

relative to its unexcited, paired electron, transitions into the triplet
state, which boasts a considerably longer lifetime. However, the return
of the excited electron to the ground state in the triplet state is
constrained by the Pauli exclusion principle, as this process is
considered “spin forbidden” (Stoll and Schweiger, 2006; Li et al.,
2022; Minaev et al., 2022). Consequently, the excited electron in the
triplet state cannot simply revert to the ground level, leading to a
substantially prolonged lifetime for the triplet state (Minaev et al.,
2022). These intricate dynamics play a pivotal role in determining the
fate of the excited state and influence the subsequent photochemical
and photophysical processes in which the photosensitizer is involved.
The triplet state is much longer lived because the excited electron
possesses a parallel spin to its paired, unexcited electron. In the triplet
state, the excited electron cannot easily fall back to ground level (a
“spin forbidden” process such as this would violate the Pauli Exclusion
Principle) (Ortiz-Rodríguez et al., 2021; Lynch et al., 2019).

4.3 Dynamics of photodynamic processes

The PDT exhibits its distinctive oxidative damage through the
capability of photosensitizers to interact with oxygen during their
prolonged triplet state. Exposure to light triggers electron-hole pairs in
TiO2, generating redox reactions that produce ROS, such as
superoxide ions and hydroxyl radicals, which can damage organic
pollutants in wastewater (Gilson et al., 2017). The extended triplet
state of photosensitizers in PDT and the resulting oxidative damage
pathways are analogous to the generation of ROS during the
photocatalytic activity of TiO2 in wastewater treatment (Tanielian
et al., 2003). The corresponding pathways are illustrated in Figure 4,
delineating the ensuing photochemistry and potential mechanisms of
damage to various targets. In this process, the photosensitizer, residing
in its triplet state with an extended lifetime, engages in interactions
with molecular oxygen. This interaction initiates a cascade of events
leading to the generation of ROS, such as singlet oxygen.

FIGURE 3
The mechanism of the dye sensitization process (Li et al., 2020).
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The ROS, particularly singlet oxygen, is highly reactive and can
induce oxidative damage to biomolecules and cellular structures.
These damaging effects are the basis for the therapeutic efficacy of
PDT, as the targeted generation of ROS selectively damages cancer
cells or other pathogenic targets (Das and Roychoudhury, 2014;
Zapata et al., 2022; Abdal Dayem et al., 2017). The pathways
depicted in Figure 4 provide a visual representation of the
intricate photochemical processes and the subsequent
mechanisms by which PDT induces oxidative damage to its
intended targets (Das and Roychoudhury, 2014). Understanding
these pathways is crucial for optimizing PDT protocols and
expanding its applications in medical treatments and other fields.
In the context of wastewater treatment, the oxidative damage caused
by the extended triplet state of photosensitizers aligns with the
oxidative degradation of pollutants facilitated by TiO2

photocatalysis (Lima and Reis, 2023; Zhao et al., 2021). The
pathways illustrated in Figure 4, along with the resulting
photochemistry and potential mechanisms of damage to various
targets, could be conceptually linked to the intricate processes
involved in the photocatalytic degradation of contaminants in
water using TiO2 (Lima and Reis, 2023; Monro et al., 2019).
Understanding these mechanisms aids in optimizing TiO2-based
photocatalysis for effective wastewater treatment and
pollutant removal.

4.4 Mechanism of TiO2-based
photosensitization

The elucidation of photocatalytic mechanisms involving TiO2-
based dye photosensitizers is crucial for a comprehensive
understanding of how these systems work and for optimizing
their performance in various applications (Schneider et al., 2014;
Sakar et al., 2019; Chen et al., 2020; Serpone, 2018). Researchers have

employed a combination of experimental techniques and theoretical
modelling to uncover these mechanisms. Figure 5 shows the
mechanism of the dye sensitization process with the dye
adsorbed onto the catalyst surface and dye in the bulk.

Thiazine dyes play a critical role in extending the light
absorption range of TiO2 (Rochkind et al., 2015; Bindhu et al.,
2022). When exposed to light, thiazine dyes can absorb photons in
the visible region, promoting electron excitation from their HOMO
to their LUMO ground state to higher energy levels (Luo et al., 2021;
Rochkind et al., 2015; Senthilkumar et al., 2010; Vara and Ortiz,
2016). Upon excitation, the thiazine dye molecules transfer electrons
to the conduction band of TiO2. This injection of photoexcited
electrons into TiO2 is facilitated by the difference in energy levels of
the dye LUMO and the bandgap of TiO2, particularly its CB
position, and this is a key step in the photocatalytic process
(Khan et al., 2022; Rochkind et al., 2015; Senthilkumar et al.,
2010; Parrino et al., 2022; Ronca et al., 2012; Mezyen et al.,
2023). The injected electrons can then participate in redox
reactions on the surface of TiO2 with adsorbed species or in the
reduction of oxygen to form superoxide radicals. Simultaneously,
when electrons are injected into the TiO2 conduction band, holes
(positive charge carriers) are created in the valence band of TiO2

(Ronca et al., 2012; Elg et al., 2021). These holes can participate in
oxidative reactions, such as the oxidation of water or organic
pollutants, which is crucial for overall photocatalytic activity.

The efficiency of a TiO2-based dye sensitizer system depends on
the extent of charge separation and minimization of electron-hole
recombination. Photogenerated electrons in the conduction band
and holes in the valence band should be efficiently separated to avoid
recombination, which would lead to a decrease in photocatalytic
activity (Elmorsy et al., 2023; Zani et al., 2021). Photogenerated
electrons and holes can interact with adsorbed species, leading to the
formation of intermediate radicals. These radicals can participate in
the degradation of organic pollutants or in other chemical reactions.

FIGURE 4
Photochemistry depicted in the Jablonski diagram (Das and Roychoudhury, 2014).
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For example, superoxide radicals formed from oxygen reduction can
contribute to the degradation of organic compounds. Oxygen and
water are often present in photocatalytic reactions. Oxygen can
accept electrons from the conduction band, forming superoxide or
other oxygen radicals. Water can serve as an electron donor to
reduce holes in the valence band (Chakhtouna et al., 2021; Goodarzi
et al., 2023; Humayun et al., 2022; Li et al., 2013). These reactions are
crucial for pollutant degradation and hydrogen production.

4.5 Probing photocatalytic dynamics

The interaction of thiazine dye-sensitized TiO2 with target
molecules or pollutants on the surface is essential for the
photocatalytic process (Zani et al., 2021; Senthilkumar et al.,
2010; Barakat et al., 2022). Surface adsorption, electron transfer,
and radical reactions play a significant role in the degradation or
transformation of target compounds. Researchers often study the
quantum yields of photocatalytic reactions to understand the
efficiency of the process. Additionally, reaction kinetics are
examined to determine rate constants, reaction pathways, and the
role of intermediates (Senthilkumar et al., 2010; Araujo et al., 2022;
Liu et al., 2014). To elucidate these mechanisms, researchers use
techniques like transient absorption spectroscopy, electron
paramagnetic resonance (EPR) spectroscopy, surface science
experiments, and computational modelling, including density
functional theory (DFT) calculations (Qin et al., 2023). These
methods provide valuable insights into the dynamic processes
occurring during photocatalysis, helping to optimize TiO2-based
thiazine dye systems for various applications, including water
treatment, pollutant degradation, and hydrogen production (Luo
et al., 2021; Senthilkumar et al., 2010; Acar et al., 2015; Yang and
Wang, 2018). Figure 6 demonstrates the application of EPR
spectroscopy in TiO2and Nb2O5 photocatalysis.

As shown in Figure 6, the application of EPR spectroscopy in the
observation of paramagnetic centres formed upon irradiation of
TiO2 and niobium oxide (Nb2O5) photocatalysts was reported by
Al-Madanat et al. (2021). They showed that electron paramagnetic
resonance spectroscopy is a powerful technique that can be used to

monitor the photoinduced phenomena occurring in semiconductors
like TiO2 and Nb2O5 photocatalysts. As such, the EPR spectroscopy
provides precise insights into the dynamic and reactivity of the
photocatalyst under different experimental conditions (Al-Madanat
et al., 2021). It can characterize paramagnetic centers formed upon
irradiation of these photocatalysts. The application of EPR in the
observation of paramagnetic centers formed upon irradiation of
TiO2 and Nb2O5 photocatalysts has been studied. The EPR
spectroscopy differentiates itself from other techniques by
providing exceptional sensitivity and specificity towards species
with unpaired electrons, including organic and inorganic radicals,
crystal defects, dopant atoms, and both free and trapped charge
carriers (Al-Madanat et al., 2021; Hurum et al., 2003). The results
obtained from EPR spectroscopy can help in understanding the
electron-hole recombination, the nature of trapped charge carriers,
and the reactions involved in the photocatalytic process.

4.6 Electron and energy transfer processes

Electron and energy transfer processes are fundamental
mechanisms that play a critical role in a wide range of scientific
and technological applications, including photophysics,
photochemistry, and photobiology (Parrino et al., 2022).
Understanding these processes is essential for optimizing various
technologies and advancing our knowledge of chemical and physical
systems. Electron transfer refers to the movement of an electron
from one molecular entity (donor) to another (acceptor). This
process can be categorized into two types such as chemical
electron transfer, where the transfer of electrons is accompanied
by changes in the chemical structure of the donor and acceptor
(Beranek, 2011; Bayard et al., 2021). This process is often observed in
redox reactions, where the donor loses an electron (oxidation), and
the acceptor gains an electron (reduction). Meanwhile,
photoinduced electron transfer (PET) refers to a special case of
electron transfer that occurs upon absorption of light by a
photosensitizer (Beranek, 2011; Speirs et al., 2023). In this
process, the excited photosensitizer (electron donor) transfers an
electron to an acceptor molecule. The PET is essential in various

FIGURE 5
Mechanism of charge carrier transfer in semiconductor-coupled (A) narrow band gap TiO2 and (B) dye-sensitized TiO2 (Vinu and Madras, 2011).
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photophysical and photochemical reactions, such as fluorescence
quenching and charge separation in photovoltaic devices (Speirs
et al., 2023; Buglak et al., 2022; El-Khouly et al., 2004). The
photosensitization mechanism and the role of electron energy
transfer in photosensitizers, including the generation of ROS and
the potential for tuning ROS generation through anionization are
shown in Figure 7.

As shown in Figure 7, the photosensitizers undergo excitation
upon absorbing a photon, transitioning from the singlet ground
state to a higher-energy state. In this regard, the energy is transferred
from one molecular entity to another without an actual transfer of
electrons. Hence, in photosensitizers, energy transfer occurs through

the process of intersystem crossing (Yu et al., 2022). There are two
main types of energy transfer, which are Radiative Energy Transfer
(Forster Resonance Energy Transfer, (FRET)) and Non-Radiative
Energy Transfer (Dexter Energy Transfer (DET)) (Calçada et al.,
2019; Enhanced Photodynamic et al., 2022; van der Meer, 2013;
Tavakkoli Yaraki et al., 2022). The FRET is an Radiative Energy
Transfer process that occurs between two molecules (usually
chromophores) nearby. When the energy levels of the donor and
acceptor molecules are appropriately matched, energy can be
transferred from the excited donor to the acceptor (Calçada
et al., 2019; van der Meer, 2013). FRET is widely used in
applications like fluorescence microscopy, molecular biology, and

FIGURE 7
The Jablonski diagram shows the mechanism of ROS formation from photosensitizers, as well as the mechanisms underlying PDT-induced cell
death (Yu et al., 2022).

FIGURE 6
Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis (Al-Madanat et al., 2021).
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energy transfer-based sensors. While the dexter energy transfer is a
non-radiative process, in which energy is transferred between
molecules through electron-electron interactions without the
emission of a photon (Chou and Dennis, 2015), (Sekar and
Periasamy, 2003). As a result, this process is more distance-
dependent than FRET and typically requires closer proximity
between donor and acceptor molecules.

The rate and efficiency of both electron and energy transfer
processes depends on various factors, such as the degree to which the
electronic states of the donor and acceptor molecules overlap the
distance between donor and acceptor, the solvent polarity,
temperature, and surrounding conditions. The quantum yield
represents the probability of a transfer event occurring and is a
measure of the efficiency of the process (Sekar and Periasamy, 2003),
(DeVine et al., 2015; Kubas, 2021; Roduner and Krüger, 2022).
Electron and energy transfer processes are essential in many
applications, such as light-harvesting systems in organic
photovoltaic cells and solar panels, photoluminescence and
fluorescent labelling techniques, sensors and probes for detecting
molecular interactions and electron transport in biological systems,
including respiration and photosynthesis (DeVine et al., 2015;
Kaushal et al., 2023; Wang and Lu, 2022; Chen et al., 2015).
Therefore, understanding and controlling electron and energy
transfer processes have led to numerous technological
advancements and continue to be areas of active research in

chemistry, physics, and biology. These processes are crucial for
the development of sustainable energy technologies, improved
sensors and imaging techniques, and a deeper understanding of
biological and chemical systems.

5 Advantages and disadvantages of
using thiazine dyes as photosensitizers

5.1 Thiazine dye toxicity in water

Thiazine dyes are a class of synthetic organic dyes that contain
a thiazine ring structure as shown in Figure 1. These dyes are
commonly used in various industrial applications, including textile
dyeing, paper colouring, and as biological stains. The toxicity of
thiazine dyes in water can vary depending on the specific dye and
its chemical composition (Handbook of Green and Sustainable
Nanotechnology, 2023; Rani and Shanker, 2023; Abilaji et al.,
2023). In general, some thiazine dyes may pose environmental
and health risks due to their potential toxicity. Many synthetic
dyes, including MB dyes, are known to be persistent in the
environment and may be resistant to biodegradation.
Consequently, they can accumulate in water bodies, leading to
potential adverse effects on aquatic ecosystems (Selvaraj et al.,
2021; Zosenko et al., 2022). Scheme 2 outlines general

SCHEME 2
Toxicity effect of thiazine dyes in water.
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considerations regarding the potential toxic effects of
thiazine dyes.

To assess the toxicity of a specific thiazine dye, it is necessary to
consider factors such as its chemical structure, concentration in
water, and the sensitivity of the organisms present in the aquatic
environment. Toxicity studies and risk assessments are typically
conducted to evaluate the potential harm of specific chemicals,
including dyes, to aquatic organisms and human health (Oladoye
et al., 2022; Khan et al., 2023). It is important to note that regulations
and guidelines exist to limit the release of certain dyes into water
bodies to mitigate potential environmental and health risk.

5.2 Applications of thiazine dyes in
water treatment

Thiazine dyes, particularly exemplified by methylene blue, are
recognized as versatile organic dyes with well-established
applications in various scientific and technological domains.
Their significance extends across chemical, biological, and
medical applications, making them indispensable in these fields.
In the realm of wastewater treatment, thiazine dyes such as
methylene blue play a crucial role in addressing environmental
concerns (Paul and Suresh Kumar, 2013). Notably, thiazine dyes

exhibit unique properties, including solva-tochromism and
metachrosis, making them highly sensitive to changes in their
surroundings. Additionally, their high singlet oxygen quantum
yields contribute to their efficacy in specific applications. In the
context of wastewater treatment, these dyes can be strategically
modified to create derivatives with enhanced functionality, allowing
for the introduction of new substituents at the nitrogen or CH
groups (Montalti et al., 2006; Talman and Atun, 2006). As such,
thiazine dyes, like many other synthetic dyes, have both advantages
and disadvantages in various applications, including their use in
water-based systems. Scheme 3 outlines of some potential
advantages and disadvantages of thiazine dyes in water.

The majority of dye producers and consumers, especially those
in the textile industry, discharge large amounts of wastewater that
contains dye in amounts between 0.001 and 0.7% w/v (see Figure 8)
(Langhals and Zollinger, 2004). A review of papers on textile
industry wastewater treatment for the removal of different dyes
revealed that advanced oxidation processes, such as photocatalysis
and Fenton reactions, showed the highest colour removal efficiency
(GilPavas et al., 2018; Rashid et al., 2021). However, the research did
not clearly demonstrate the impact of green technologies on energy
consumption, carbon footprint, and waste generation. New
technologies need to be developed and evaluated in a sustainable
context with real wastewater. The denim textile industry generates

SCHEME 3
Some potential advantages and disadvantages of thiazine dyes in water.
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wastewater with persistent pollutants, which can be toxic and
carcinogenic. Wastewater treatment is important to reduce risks
to aquatic life and public health (GilPavas et al., 2018; Rashid et al.,
2021; Kishor et al., 2021).

As shown in Figure 8, the textile dyeing and finishing processes
involve the extensive use of dyes, and the wastewater generated
during these processes often contains significant amounts of dye
residues. The most widely used thiazine dyes i.e., MB is applied in
dye silk, cotton, and wood. The wastewater containing dyes is
characterized by elevated alkalinity, low biodegradability, total
dissolved solids (TDS), chemical oxygen demand (COD), and
biochemical oxygen demand (BOD) (Srinivasan and
Viraraghavan, 2010). Since dye is colourful, it is simple to detect
its presence in water bodies, and it easily blocks sunlight and
eventually the water bodies ability to reoxygenate thereby
interfering with aquatic life’s biological processes. Industrial dye
effluent can be colored-free using a variety of techniques. However,
due to the wide variety of dyes on the market and the presence of
additional chemicals in industrial effluent, many treatment
techniques may not be effective when used alone and may need
to be combined with other techniques to remove most of the
colouring. There are three types of dye wastewater treatment
methods viz., chemical, biological, and physical treatments (Crini
and Lichtfouse, 2019; Hung et al., 2017; Hung et al., 2020).When not
properly treated, this wastewater can be discharged into rivers and
other water bodies, causing environmental pollution thiazine dye
derivatives, when employed as photosensitizers in PDT processes,
offer several advantages. These include high selectivity, resulting in
reduced toxicity to healthy tissue, improved cosmetic outcomes, dual
functionality during application, a lower risk of infection, absence of
organ damage, diminished likelihood of inducing resistance, and
minimal side effects such as infertility. Moreover, thiazine
photosensitizers in PDT hold promise for combination therapies
due to their unique method of action, which makes them resistant
tomany common chemotherapeutic resistancemechanisms (Callaghan
and Senge, 2018; Senge and Radomski, 2013; Spring et al., 2015).

Despite these strengths, PDT faces challenges in becoming the primary
treatment choice for certain tumours, primarily due to limitations in
tissue penetration, light dosage management, and photosensitivity.
Nevertheless, PDT remains a clinically useful therapy, and there is a
pressing need for innovative approaches to enhance existing therapies.
This involves accelerating the development of the third or fourth
generation of thiazine photosensitizers to overcome current limitations
and potentially revolutionize treatment modalities in relevant fields.
Efforts should focus on refining existing methodologies, exploring
novel techniques, and fostering collaboration between disciplines to
drive transformative advancements in the application of thiazine dyes,
such as methylene blue, in wastewater treatment and related areas
(Spring et al., 2015).

5.3 Application of thiazine dyes in dye-
sensitized solar cells

Thiazine dyes, such as phenothiazine dyes, have limitations that
restrict their further optimization for high-efficiency DSSCs (Buene
and Almenningen, 2023). However, recent studies have shown the
importance of these dyes in achieving higher photovoltaic
conversion efficiency (Han et al., 2023). For example,
N-phenylphenothiazine dyes with different π-bridges have
demonstrated improved JSC and VOC, leading to higher overall
efficiency in DSSCs (Hirakawa and Mori, 2021). Additionally, the
inclusion of auxiliary acceptors, such as benzothiadiazole, in
phenothiazine-based dyes has been shown to broaden their
spectral response range and improve device performance (Li
et al., 2021). These findings suggest that thiazine dyes can still
play a role in sustainable environmental solutions, particularly in the
development of highly efficient DSSCs (Wang et al., 2022). However,
it is important to consider the potential secondary pollution caused
by these dyes and explore alternative options for sustainable
environmental solutions. Thiazine dyes have garnered
considerable attention for their unique properties, making them
promising candidates in various aspects of solar energy conversion.
From enhancing light absorption to serving as sensitizers in DSSCs,
thiazine dyes play a crucial role in advancing the efficiency and
versatility of solar cell technologies (Buene and Almenningen, 2023;
Han et al., 2023; Li et al., 2021). Table 3 provides an overview of key
applications, showcasing the potential of thiazine dyes across
different solar cell architectures and technologies.

As shown on the table, different types of dye sensitizers used in
various photovoltaic solar cell devices underscores the diverse
strategies employed to harness solar energy for electricity
generation. Organic dyes, inorganic dyes, and perovskite materials
represent distinct categories of sensitizers, each with unique
advantages and challenges (Li et al., 2022; Rani and Shanker, 2023;
Takahashi et al., 2023). Organic dyes, characterized by their tunable
chemical structures, offer versatility and ease of modification. They
have been extensively used in DSSCs, demonstrating good light
absorption and electron injection capabilities. However, challenges
related to stability and limited absorption in the red and near-infrared
regions have prompted exploration into alternative sensitizers (Liu
et al., 2023; Li et al., 2021; Lee et al., 2017).

Inorganic dyes, particularly metal complexes like ruthenium-
based compounds, exhibit remarkable photostability and extended

FIGURE 8
Percentage of global dye pollution across industries.
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absorption spectra (Roy et al., 2023). Their utilization in DSSCs has
shown significant efficiency improvements, yet concerns regarding
the scarcity and cost of some metal components stimulate ongoing
research for more sustainable alternatives. Perovskite materials have
emerged as a groundbreaking class of sensitizers, demonstrating
rapid advancements in photovoltaic technology (Takahashi et al.,
2023). Perovskite solar cells exhibit high efficiency, low-cost
fabrication, and a broad absorption spectrum. However, issues
related to stability, toxicity, and scalability remain focal points of
research efforts.

6 Synthesis and modification of TiO2-
based dye photosensitizers

6.1 TiO2-based dye photosensitizers

The TiO2 structure, morphology, and particle size are known to
have a significant impact on its optical properties and, consequently,
its photoactivity. There are several methods for achieving titanium
dioxide photosensitizers, including surface modification using the
right species (Moma and Baloyi, 2018). A visible-light-induced

TABLE 3 Summary of different types of dye sensitizers used in various photovoltaic solar cell devices

Dye Sensitizer Description Study Photovoltaic performance of DSSCs

JSC
[mAcm-2]

VOC
[mV]

FF
[%]

Ref

Thiazole-based Co-sensitizer Thiazine dyes are commonly used as
sensitizers in DSSCs. They absorb
sunlight and inject electrons into the
semiconductor material, initiating the
conversion of solar energy into
electrical energy.

Innovating dye-sensitized solar
cells: Thiazole-based Co-
sensitizers for enhanced
photovoltaic performance with
theoretical insights

19.50 650 64.18 Radwan et al.
(2023)

Thieno[3,4-b]pyrazine based
dyes

Thiazine dyes serve as effective light-
harvesting molecules, expanding the
absorption spectrum of solar cells into
the visible range. This enhances the
overall efficiency of solar energy
conversion.

Exploring Different Designs in
Thieno[3,4-b]pyrazine-Based
Dyes to Enhance Divergent
Optical Properties in Dye-
Sensitized Solar Cells

14.08 711 74.4 Franchi et al.
(2023)

Oxazine and Thiazine Thiazine dyes can be integrated into
various types of photovoltaic devices
to enhance light absorption, electron
transfer, and overall energy
conversion efficiency.

Comparison of dye (oxazine and
thiazine) materials as a
photosensitizer for use in
photogalvanic cells based on
molecular interaction with sodium
dodecyl sulphate by spectral study

19.0 654 69 Mall et al.
(2019)

D-A-π-A Phenothiazine-based Thiazine dyes are explored for their
potential in tandem solar cells, where
multiple layers of solar cells with
different absorption spectra are
stacked to optimize energy absorption
and conversion

The application of a novel D−A−
π −A phenothiazine-based organic
dye with N719 in efficient parallel
tandem dye-sensitized solar cells

20.62 720 72.8 Shi et al.
(2023)

Phenothiazine-based organic
dyes

Thiazine dyes may find applications
in organic photovoltaic cells,
contributing to the development of
lightweight, flexible, and cost-effective
solar energy harvesting devices.

The effect of conjugated groups for
favorable molecular planarity and
efficient suppression of charge
recombination simultaneously of
phenothiazine-based organic dyes
for dye-sensitized solar cells.

10.58 710 58.35 Huang et al.
(2022)

Dithizone Thiazine dyes can be incorporated
into hybrid solar cells, combining
organic and inorganic materials to
achieve synergistic benefits in terms of
efficiency and stability.

Improved efficiency and stability
of organic-inorganic hybrid
perovskite solar cell via dithizone
surface passivation effect

22.44 1005 77 Huang et al.
(2022)

Phenothiazine dyes Thiazine dyes play a role in sensitizing
semiconductor nanomaterials,
enhancing their photoelectrochemical
properties and contributing to
improved solar cell performance.

Phenothiazine dyes bearing
fluorenone unit for dye-sensitized
solar cells.

11.46 720 64 Han et al.
(2023)

2,2′-bithiophene dye sensitized
TiO2

Incorporation of this dye improved
absorption and reduced charge
recombination leading to the
higher PCE

Design, synthesis, and
performance evaluation of TiO2-
dye sensitized solar cells using 2,2′-
bithiophene-based co-sensitizers.

18.14 676 60.54 Elmorsy et al.
(2023)

3,8-substituted phenothiazine
dye sensitized TiO2

This dye lowered the oxidation
potential making it more positive
hence improved device performance.

Effect of Auxiliary Donors on 3,8-
Phenothiazine Dyes for Dye-
Sensitized Solar Cells.

10.2 791 76.5 Buene et al.
(2019)
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electron or hole injection into the conduction or valence band,
respectively, is necessary for the photosensitization process (Hamza
et al., 2023; Moma and Baloyi, 2018; Dlamini et al., 2021). The
photosensitizer moiety’s (surface complex) electrical interaction
with the TiO2 particle determines the process’s efficiency.
Quantum yields of photoinduced electron transfer processes are
also impacted by surface modification of TiO2 (Hamza et al., 2023;
Elmorsy et al., 2023; Monika et al., 2023). Specifically, TiO2

photosensitization attracts a lot of interest because this material
is used as a photoactive material in photovoltaics, optoelectronics,
and photocatalysis (Hagfeldt and Grätzel, 2000; Moser et al., 1998;
Szaciłowski et al., 2005).

At the surface of TiO2, several Ti(IV) complexes are generated in
situ. There may be correlations between the application of TiO2

phonium and the structures of Ti(IV) complexes, particularly those
involving oxygen-ligands (Hug and Bahnemann, 2006). In addition,
there are bidentate bridging structures made up of chelating ligand
binding two nearby Ti(IV) centres, which is the bidentate chelating
structure with the ligand occupying two coordination sites. One oxo
ligand must be substituted for other titanium centers coupled with
five ligands to create a bidentate chelating complex, although
monodentate or bridging complexes can be formed by any of the
five surfaces Ti(IV) sites. Meanwhile, the monodentate complexes
with coordination between aliphatic alcohols and the surface of
titanium dioxide is extensively researched, primarily due to its
significant impact on photocatalytic reactions that take place
when these molecules are present. The hydroxyl group on the
surface of TiO2 facilitates the physical (molecular) and chemical
adsorption of simple aliphatic alcohols, includingmethanol, ethanol,
and 1- and 2-propanol (Kim et al., 1988; Lusvardi et al., 1995). On
the other hand, both phenol and 4-chlorophenol bind to the TiO2

surface with a moderate affinity (Lusvardi et al., 1995; Al-ekabi et al.,
1989). The complexes that are produced exhibit poor stability
constants. The incapacity of phenol and 4-chlorophenol to form
ring-structured surface complexes could be the cause of the observed
weak chemisorption.

As summarised in Table 1, bidentate complexes are formed
only when the ligand has two donor group photosensitizers or
one group with two donor atoms. Physisorption and the
monodentate complexation mode are not excluded by the
potential for bidentate structures to be formed. Polynuclear
complexes results through anchoring of the group
photosensitizers, in which different organometallic complexes
of transition metals may be attached to the titanium surface
centers. In this regards, the carboxyl group photosensitizers can
act as anchors leading to the formation of a polynuclear complex
with bridging ligands that can coordinate with Ti(IV) and other
metal ions. There are many methods used to prepare TiO2-based
material to be used as sensitizers reported in the literature coated
on fluorine-doped tin oxide (FTO) glass substrate as thin films.
Vinaayak et al. (2022), used a doctor-blade approach to coat TiO2

nanoparticles on an FTO substrate as a photoanode. Meanwhile,
Dhanasekaran and Marimuthu (2023), reported the synthesis of
TiO2 paste from TiO2 nanopowders, actylacetone, and nitric acid.
It was Alaya et al. (2023), who prepared TiO2 thin films on FTO
glass substrates using spray pyrolysis deposition and annealed
them at different temperatures for at least 3 hours per thin film.
The preparation of these TiO2 materials was followed by

treatment with organic materials such as thiazine dyes, or
plant extracts to generate TiO2-based sensitizers.

6.2 Thiazine and methylene blue-based
photosensitizers

Thiazine dyes known as phenothiazines have two benzene
rings condensed to the thiazine ring in addition to a central
thiazine core. These dyes have lately been explored as
photosensitizers due to their biological, photochemical, and
photophysical properties (Padnya et al., 2023) with an emphasis
on the inactivation of bacterial, viral, and parasite strains (Vara
and Ortiz, 2016; Almeida et al., 2020; Shen et al., 2020). Methylene
blue and toluidine blue O are two of the most well-known
phenothiazines. Methylene blue has been used in clinical
settings to treat bacterial infections, including dental conditions,
and has shown to be safe, effective, and aesthetically pleasing (Shen
et al., 2020; Theodoro et al., 2021). Moreover, methylene blue
derivatives, or 3,7-disubstituted dyes of the phenothiazine nucleus,
have been produced and functionalized at these sites with a variety
of amines for further research into photobiological and
optoelectronic uses (Lusvardi et al., 1995). Some compounds
derived from phenothiazines are still developed within the
purview of their application in cancer PDT, albeit being less
prevalent than their antibacterial action. One of the most
appealing instances happens when the conjugation of methylene
blue with camptothecin via an activatable linker containing a
disulfide bond that is prone to breakage by GHS (Yang et al.,
2022). When administered in vivo, no physiological toxicity was
observed, indicating safety and biocompatibility.

Thiazine-based photosensitizers hold significant promise for
innovative and effective wastewater treatment strategies. These
photosensitizers, derived from thiazine dyes like methylene blue,
exhibit unique characteristics that can be harnessed for
environmental remediation purposes (Vara and Ortiz, 2016;
Bindhu et al., 2022). As such, thiazine dyes are well known for
their versatility and well-established applications in various
scientific fields. When applied as photosensitizers in wastewater
treatment processes, these compounds can demonstrate exceptional
photodynamic properties (Bindhu et al., 2022). The key attributes
that make thiazine and methylene blue-based photosensitizers
advantageous in this context include high sensitivity to
environmental changes, which thiazine dyes, with their solva-
tochromism and metachrosis properties, become highly
responsive to alterations in the surrounding environment. This
sensitivity is crucial for detecting and targeting contaminants in
wastewater (Luo et al., 2021; Acar et al., 2015; Bindhu et al., 2022).
The high singlet oxygen quantum yields of methylene blue,
contribute to their efficacy in inducing photodynamic reactions.
This property is particularly beneficial for the degradation of
organic pollutants in wastewater.

In this regard, the thiazine-based photosensitizers can also be
tailored to selectively target specific contaminants in wastewater
(Thandu et al., 2015). This selectivity minimizes the impact on non-
target organisms and reduces the overall environmental toxicity of
the treatment process. As such, the use of thiazine and methylene
blue-based photosensitizers ensures low toxicity in water, which is a
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critical factor for sustainable and environmentally friendly
wastewater treatment practices (Kenry and Liu, 2022; Thandu
et al., 2015). They also offer the potential for combination
therapies, allowing for synergistic approaches to enhance
wastewater treatment effectiveness. This can involve coupling
photodynamic processes with other treatment methods to
address a broader range of contaminants. The unique method of
action of thiazine photosensitizers makes them less prone to
common chemotherapeutic resistance mechanisms (Kenry and
Liu, 2022; Barakat et al., 2022; Thandu et al., 2015). This
characteristic enhances their reliability and effectiveness in the
treatment of wastewater. While thiazine-based photosensitizers
present these advantages, it is essential to acknowledge the
existing challenges in wastewater treatment, such as the need for
optimized dosages, penetration depth, and potential
photosensitivity issues (Barakat et al., 2022; Anjum et al., 2019).
Ongoing research and development efforts should focus on refining
the application methodologies, exploring novel delivery systems,
and addressing these challenges to maximize the potential of
thiazine-based photosensitizers in wastewater treatment
technologies. Through harnessing the unique properties of these
compounds, we can advance towards more sustainable and efficient
approaches for treating wastewater and safeguarding our
environment (Barakat et al., 2022). This led to the conclusion
thiazine dye-sensitized TiO2 could overcome the limits of both
camptothecin and methylene blue in terms of their uniqueness.

7 Enhanced photocatalytic applications

Photocatalysis, the process of using a semiconductor material to
harness light energy and drive chemical reactions, has gained
significant attention in recent years due to its potential to address
environmental and energy-related challenges (Jing et al., 2023).
Titanium dioxide has emerged as one of the most widely studied
photocatalysts, owing to its stability, low cost, and excellent
photoactivity in the ultraviolet (UV) region (Magalhães et al.,
2017; Yang and Wang, 2018; Lakhera and Neppolian, 2021). The
incorporation of MB dyes with TiO2 for photocatalytic applications
has been explored for its ability to enhance light absorption and
promote specific chemical reactions (Gonuguntla et al., 2023).
However, MB dye remains a health hazard to the environment.
Figure 9 demonstrates the efficiency of photocatalytic degradation of
organic dyes by AgNP/TiO2/Ti3C2Tx MXene composites under UV
and solar light.

The degradation of organic pollutants in water is a crucial aspect
of water treatment. Thiazine dyes, which are often used in the textile
industry and can be harmful to the environment, can be effectively
removed through photocatalysis using TiO2-based systems. Studies
have focused on the degradation of methylene blue, rhodamine B,
and other thiazine dyes (Vara and Ortiz, 2016; Acar et al., 2015).
Researchers have investigated the optimal conditions for
photocatalytic water treatment, including dye concentration, pH,
and TiO2 catalyst loading. The process not only degrades the dyes

FIGURE 9
Efficient photocatalytic degradation of organic dyes by Silver nanaoparticles/TiO2/Ti3C2Tx MXene composites under UV and visible light (Othman
et al., 2021).
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but can also lead to the formation of less harmful or non-toxic
intermediates.

Beyond thiazine dye removal, TiO2-thiazine dye systems have
been extended to the degradation of other organic pollutants.
Barakat et al. (2022) successfully used methylene blue dye as a
photosensitizer in the water photo-splitting process, which exhibited
enhancement in the hydrogen and oxygen production rates under
visible light radiation. As such, the hydrogen and oxygen obtained
were in good stoichiometric rates (Barakat et al., 2022). The SiO2

nanoparticles incorporated into nanostructured TiO2 was observed
to greatly enhance dye photodegradation (Barakat et al., 2022;
Senthilkumar et al., 2010). The use of use of methylene blue as a
photosensitizer in the form of a methylene blue derivate MB2, which
was encapsulated or grafted onto ultrasmall silica nanoparticles for
photodynamic therapy applications was reported by Kohle et al.
(2020). They found out that singlet oxygen quantum yields
improved with particle designs while the encapsulation improved
photostability.

Various organic compounds, such as pharmaceuticals,
pesticides, and industrial effluents, have been studied in the
context of AOP. The synergistic effect of the dye sensitizer with
TiO2 enhances the degradation efficiency of these pollutants under
UV or visible light irradiation. Figure 10 demonstrates advanced
oxidation processes in the removal of organic substances from
produced wastewater: potential, configurations, and research needs

Photocatalytic water splitting is a promising method for
hydrogen production, which is a clean and renewable energy
source. TiO2-based photocatalysts, with or without dye sensitizer,
have been investigated for their ability to generate hydrogen gas
through water splitting (Tentu and Basu, 2017; Villa et al., 2021).
The presence of dye sensitizer can extend the absorption range of
TiO2 into the visible region, increasing the overall efficiency of the
process. Understanding the mechanisms underlying TiO2-based dye
sensitizer systems is essential for optimizing their performance
(Elmorsy et al., 2023; Zani et al., 2021). Studies have employed
various techniques, including transient absorption spectroscopy,
EPR, and DFT calculations, to gain insights into the charge

transfer processes, radical formation, and energy levels of the
materials involved (Qian et al., 2019; Bonke et al., 2021).

TiO2 nanoparticles have been extensively studied for their
photocatalytic activity in the degradation of toxic dyes and
typical application are summarised on Table 4. As shown on the
table, the addition of fluorine and tin dopants to TiO2 nanoparticles
has been shown to enhance their photocatalytic activity (Bindhu
et al., 2022). The doped TiO2 nanoparticles exhibit a reduced
crystallite size and an increased band gap, indicating improved
photochemical activity (Bindhu et al., 2022; Zioui et al., 2022).
The morphologies of TiO2 nanoparticles also change significantly
with the addition of fluorine and tin dopants (Bindhu et al., 2022).
These doped TiO2 nanoparticles have been found to be effective in
the degradation of methylene blue dye under both visible and UV
light irradiation. Additionally, nanocomposite membranes based on
chitosan biopolymer containing TiO2 nanoparticles have been
developed and shown to have high photocatalytic activity in the
degradation of tartrazine dye under solar light irradiation (Zioui
et al., 2022). Overall, TiO2 nanoparticles, especially when doped with
fluorine and tin, have shown promise in the photocatalytic
degradation of thiazine dyes.

Table 4 presents a comprehensive summary of TiO2-based
photocatalytic applications in dye removal, highlighting key studies
and outcomes in the realm of environmental remediation. This
compilation offers a concise overview of the diverse approaches and
methodologies employed in utilizing TiO2 as a photocatalyst for the
degradation and removal of various dyes from aqueous solutions. The
studies included cover a spectrum of dyes, showcasing the versatility
and effectiveness of TiO2-based photocatalysis in addressing
environmental challenges associated with dye pollutants.

As shown on the table, the ZnO-TiO2 and ZnO-TiO2-reduced
graphene oxide (ZT-rGO) nanocomposites were synthesized using a
pulse laser ablation protocol (Manda et al., 2023). The effect of
reduced graphene oxide (rGO) loading on the crystalline
nanostructures, thermal stability, and removal of methylene blue
dye was investigated by Manda et al. (2023). The ZT-rGO
5 nanocomposite showed the best photocatalytic activity, with a

FIGURE 10
Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs (Coha
et al., 2021).
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preferential rate constant of 0.149 min-1 and 98.5% methylene blue
removal within 30 minutes. The rGO component in the
nanocomposites acts as an electron trap, enhancing the formation of
holes and contributing to the photocatalytic process (Manda et al.,
2023). Chaudhari et al. (2022) conducted a novel TiO2CaIn2S4rGO
composites (rGO-C1 to rGO-C3) synthesis for rapid degradation of
organic dye. In their study, the rGO-C2 exhibited significant
photocatalytic degradation activity for MB CR within 15-30 min.
Analysis by the LC-MS technique discovered the degradation
pathway of both dyes. As such, the rGO-C2 catalyst showed
excellent degradation activity for real wastewater from the textile
industry and landfill leachate (Chaudhari et al., 2022). A study by
Song et al. (2023) reported that the direct band gap of the titanium
dioxide carbon (TiO2C-550) composite was 2.7 eV, which lead to the
improved photodegradation performance of MB under visible light
irradiation. As such, the degradation ratio of MB aqueous solution
reached nearly 100% within 30 minutes in the presence of TiO2C-550
composites, and the efficiency was maintained at about 95% after
5 cycles (jie Song et al., 2023). The Au-TiO2 nanospindles were found to
be the most efficient catalyst for photocatalytic degradation ofMB, with
a pseudo-first order reaction rate of 0.1570 min-1 by Khalil et al. (2019).
They showed that TiO2 nanospindles exhibited superior photocatalytic
performance compared to TiO2 nanocubes, which was primarily due to
the exposure of the (001) crystal facet (Khalil et al., 2019).

It is clear that researchers have explored different approaches to
modify TiO2 and thiazine dyes to enhance their photocatalytic
properties. Other modifications include doping TiO2 with various
elements, such as nitrogen or metal ions, and designing new thiazine

dyes with tailored properties. Such modifications aim to extend the
absorption range, improve charge separation and transportation, and
increase the overall efficiency of the photocatalytic systems (Chakhtouna
et al., 2021; Humayun et al., 2018). The exploration of photocatalytic
processes using TiO2-based dye sensitizer systems has shown great
promise in addressing various environmental and energy-related
challenges. The field continues to evolve, with researchers focusing
on optimizingmaterials and conditions, gaining a deeper understanding
of the mechanisms involved, and expanding the range of applications
(AlSalka et al., 2023; Anucha et al., 2022; Zani et al., 2021; Tentu and
Basu, 2017). Further research is needed to bridge the gap between
laboratory-scale experiments and practical, large-scale implementations
for water treatment, pollutant degradation, and hydrogen production.
Comparison of the performance of thiazine dye-sensitized TiO2 with
other sensitization strategies still require extensive exploration.

8 Future directions and prospects TiO2-
based thiazine dye photosensitizers

This comprehensive review meticulously delves into the current
challenges and future prospects of TiO2-based thiazine dye sensitizers,
aiming to significantly enhance their performance and broaden their
applicability. Overcoming the formidable challenge of achieving optimal
photocatalytic efficiency in TiO2-based thiazine dye systems necessitates
a nuanced understanding of the intricate dynamics involved in charge
carrier generation, separation, transportation, and the reduction of
electron-hole recombination. Innovative strategies, including fine-

TABLE 4 Summary of TiO2 based Photocatalytic application in Dye removal

Photocatalyst
Material

Dye
Pollutant

Rate Constant
(/min)/Period (min)

Photodegradation
(%)

Light
Source

Eg
(eV)

Ref

Sn–F/TiO2 NPs MB 0.0345 and 0.987 91 and 94.4 UV and
Visible Light

~3.28 Bindhu et al. (2022)

TiO2-Chitosan Tartrazine dye ~ 83 Solar Light ~ Zioui et al. (2022)

ZnO-TiO2-rGO MB 0.149 98.5 UV ~2.53 Manda et al. (2023)

TiO2/CaIn2S4@rGO MB and CR 0.027 99 UV ~ Chaudhari et al. (2022)

TiO2/C MB ~ 100 Simulated Sun
Light

~2.7 jie Song et al. (2023)

Au-TiO2 MB 0.1570 ~ UV ~ Khalil et al. (2019)

TiO2 nanostructure RB ~0.120 and 0.107 93.8 UV ~3.0 Kiwaan et al. (2020)

N719 Dye-sensitized TiO2 MB 25 min 99 UV-Visible 3.2 Herath et al. (2020)

chlorophyll Dye-sensitized
TiO2

MB 120 min 85 Visible light 2.83 Krishnan and
Shriwastav (2021)

Chlorophyll/TiO2:W
composite

RB 120 min 94 - 100 UV-Visible ~ Valadez-Renteria et al.
(2022)

mangosteen dye-sensitized-
TiO2

MB 120 min 78 Visible light 2.95 Ghosh et al. (2020)

Eosin Y (Ey) Dye-sensitized
TiO2

Acetaminophen 180 min 71 UV-Visible Not
reported

Diaz-Angulo et al.
(2019)

Quinazoline-derivative dye-
sensitized-TiO2

RB 0.0226 and 0.0146 98% under UV UV -Visible 2.6 Hamza et al. (2023)

83% under Visible

NPs, nanoparticles; rGO, reduced graphene oxide; CR, Congo Red; MB, Methylene Blue; RB=Rhodamine B.
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tuning the chemical composition of thiazine dyes, optimizing TiO2

morphology, and integrating co-catalysts, offer avenues for addressing
existing drawbacks. Elucidating the detailed mechanisms and dynamics
of TiO2-based thiazine dye photosensitization is crucial for successful
optimization, although the complexity of these processes poses a
significant challenge.

The stability and longevity of TiO2-based thiazine dye systems
emerge as critical factors for sustained photocatalytic activity. Effectively
addressing challenges such as dye desorption, catalyst radiation, and the
loss of active sites over time requires exploration into surface
modification techniques and material engineering. This involves the
development of new materials or coatings to mitigate issues related to
catalyst degradation and dye desorption. Despite the efficacy of thiazine
dyes in photocatalysis, concerns regarding potential toxicity necessitate
rigorous toxicity studies and risk assessments. Concurrently, researchers
actively explore alternative dye structures or modifications to mitigate
environmental and health risks associated with these dyes.

The scalability of TiO2-based thiazine dye photosensitizers for
practical applications introduces challenges related to cost, efficiency,
and feasibility. Therefore, collaboration between researchers and industry
partners is essential to work towards scalable synthesis methods, cost-
effective production, and exploring viable applications, ensuring the
practical implementation of TiO2-based thiazine dye systems.
Addressing these multifaceted challenges demands a multidisciplinary
approach encompassing materials science, chemistry, and engineering.
Ongoing research efforts are dedicated to overcoming these challenges,
propelling TiO2-based thiazine dye systems towards their full potential
for sustainable and effective environmental applications. This
interdisciplinary journey holds the promise of delivering innovative
solutions and ushering in a new era of environmental technologies.

9 Conclusion

TiO2-based dye photosensitizers have shown potential to enhance
the performance of TiO2-based photocatalysis, particularly in
applications such as water splitting to produce hydrogen and
pollutant degradation in wastewater. The presence of thiazine dye-
sensitizer extends the absorption range of TiO2 into the visible region,
increasing overall efficiency as a photocatalyst or a light adsorbing
material in photovoltaic cells. Various modifications, including doping
TiO2 with elements like nitrogen or metal ions, and designing tailored
thiazine dyes, aim to extend adsorption range, which inherently leads to
improved charge carrier generation, separation, and transportation, and
increase overall efficiency of the photocatalytic systems. Mechanistic
insights into charge transfer processes, radical formation, and energy
levels of thematerials involved have been gained through techniques such
as transient absorption spectroscopy, electron paramagnetic resonance,
anddensity functional theory calculations. The exploration of TiO2-based
dye sensitizer systems continues to evolve, with researchers focusing on
optimizingmaterials and conditions, expanding the range of applications,
and bridging the gap between laboratory-scale experiments and large-
scale implementations. In this regards, the use of TiO2-based
photosensitizers shows promise in enhancing the photocatalytic
removal of thiazine dyes, such as methylene blue, from wastewater,
thereby addressing environmental remediation and energy conversion
needs. Thiazine dyes, when coupled with TiO2, act as effective
photosensitizers, promoting electron transfer and generating reactive

oxygen species that initiate chemical reactions, making them valuable in
applications like wastewater treatment and solar energy conversion.
However, it is important to acknowledge the potential drawbacks of
thiazine dyes, including toxicity and non-biodegradability. Non-radiative
energy transfer processes, such as Förster resonance energy transfer and
dexter energy transfer, play a significant role in fluorescence microscopy,
molecular biology, and energy transfer-based sensors. Electron
Paramagnetic Resonance spectroscopy provides exceptional sensitivity
and specificity in characterizing paramagnetic centers formed upon
irradiation of photocatalysts like TiO2, aiding in understanding
electron-hole recombination and the nature of trapped charge
carriers. Efforts should focus on refining existing methodologies,
exploring novel techniques, and fostering collaboration between
disciplines to enhance TiO2-based thiazine photosensitizers and
revolutionize treatments modalities in wastewater and related areas.
Therefore, TiO2-based thiazine dye photosensitizers hold promise for
improving the efficiency and expanding the applications of TiO2-based
photocatalysis, with ongoing research aimed at further optimization and
practical implementations.

NB: This review aims to provide a comprehensive
understanding of TiO2-based dye photosensitizers and their role
in enhancing the photocatalytic activity of TiO2, with a focus on
applications in environmental remediation and renewable energy
generation. As such, it will be valuable for researchers, chemists, and
engineers interested in harnessing visible light for efficient and
sustainable photocatalytic processes.
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