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Ferritinophagy, the selective autophagic degradation of ferritin to release iron, is
emerging as a critical regulator of iron homeostasis and a key player in the
pathogenesis of various liver diseases. This review comprehensively examines the
mechanisms, regulation, and multifaceted roles of ferritinophagy in liver health
and disease. Ferritinophagy is intricately regulated by several factors, including
Nuclear Receptor Coactivator 4 (NCOA4), Iron regulatory proteins and signaling
pathways such asmTOR and AMPK. These regulatory mechanisms ensure proper
iron utilization and prevent iron overload, which can induce oxidative stress and
ferroptosis. In liver diseases, ferritinophagy exhibits dual roles. In liver fibrosis,
promoting ferritinophagy in hepatic stellate cells (HSCs) can induce cell
senescence and reduce fibrosis progression. However, in non-alcoholic fatty
liver disease (NAFLD), chronic ferritinophagy may exacerbate liver injury through
iron overload and oxidative stress. In hepatocellular carcinoma (HCC),
ferritinophagy can be harnessed as a novel therapeutic strategy by inducing
ferroptosis in cancer cells. Additionally, ferritinophagy is implicated in drug-
induced liver injury and sepsis-associated liver damage, highlighting its broad
impact on liver pathology. This review also explores the crosstalk between
ferritinophagy and other selective autophagy pathways, such as mitophagy
and lipophagy, which collectively influence cellular homeostasis and disease
progression. Understanding these interactions is essential for developing
comprehensive therapeutic strategies targeting multiple autophagy pathways.
In summary, ferritinophagy is a complex and dynamic process with significant
implications for liver diseases. This review provides an in-depth analysis of
ferritinophagy’s regulatory mechanisms and its potential as a therapeutic
target, emphasizing the need for further research to elucidate its role in liver
health and disease.
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Introduction

The phenomenon of autophagy was first discovered by scholars Ashford and Porter in
1962. However, at that time, they interpreted their observations as the process of lysosome
formation and believed that lysosomes were not independent organelles but rather a part of
mitochondria (Ashford and Porter, 1962). It was not until 1967 that Duve and his colleagues
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formally named this phenomenon “autophagy” and identified
lysosomes as the sites where autophagy occurs (Deter et al.,
1967). Over the next 30 years, numerous researchers conducted
studies based on this foundation, discovering and naming several
autophagy-related proteins. To minimize confusion and
complications arising from different naming conventions, a
unified gene and protein nomenclature was established (Klionsky
et al., 2003).

Autophagy is an intracellular degradation and recycling
pathway. It involves encapsulating target substances into
autophagosomes, which are then sent to lysosomes for
degradation. This process, which helps to mitigate damage
caused by metabolic stress and clear out unnecessary or harmful
substances within the cell, plays a crucial role in maintaining cellular
homeostasis (Patel et al., 2013). Ferroptosis, another emerging
research hotspot, was initially regarded as a novel form of cell
death dependent on intracellular iron. Unlike traditional apoptosis,
autophagy, and necrosis, ferroptosis is primarily caused by the
excessive accumulation of iron ions and lipid peroxidation within
cells (Dixon et al., 2012). However, in recent years, researchers have
discovered a close link between autophagy and ferroptosis. The most
representative example is ferritinophagy, which involves the
degradation of ferritin to release free Fe2+ ions. These Fe2+ ions
generate excessive ROS through the Fenton reaction, thereby
inducing ferroptosis (Qian et al., 2024).

Ferritin, the primary iron storage protein in the human body, is
crucial for maintaining iron homeostasis. It regulates intracellular
iron balance by storing and releasing iron as needed (Knovich et al.,
2009). Structurally, ferritin is a 24-subunit macromolecular iron-
storage complex composed of ferritin heavy chain (FTH1) and
ferritin light chain (FTL) subunits. FTH1 can oxidize ferrous iron
(Fe2⁺) to ferric iron (Fe3⁺), allowing it to be safely stored within the
ferritin complex. While FTL promotes iron nucleation, enhancing
the stability of the ferritin structure (Pantopoulos et al., 2012). As
early as 2005, Theodros and his colleagues discovered that lysosomes
play a crucial role in degrading ferritin and releasing iron ions
(Kidane et al., 2006). But It was not until 2014 that a paper published
in Nature demonstrated that NCOA4 is a key receptor for
ferritinophagy. NCOA4 mediates the localization of ferritin to
autophagosomes, which then fuse with lysosomes to complete the
degradation process. (Mancias et al., 2014). Under normal
circumstances, ferritinophagy adjusts according to intracellular
iron levels. When there is an excess of iron, NCOA4 can be
ubiquitinated and degraded, promoting the storage of surplus
iron and preventing its toxic effects. In conditions of iron
deficiency, NCOA4 selectively binds to ferritin, facilitating its
degradation through autophagy to release iron, thereby
maintaining normal cellular iron levels and physiological
activities (Mancias et al., 2015; Wu H. et al., 2023).

Recent research has found that ferritinophagy is not only crucial
for maintaining iron balance under normal physiological conditions
but also closely related to the development and progression of
various diseases. Under conditions of toxicity or oxidative stress,
overexpression of ferritinophagy can lead to a range of liver diseases.
For example, exposure to metals and chemicals such as cadmium,
copper, and arsenic (As) can induce ferritinophagy and result in
liver damage (He et al., 2022; Yu L. et al., 2023; Zhong et al., 2024). In
patients with NAFLD, short-term ferritinophagy can reduce

lipotoxicity. However, chronic ferritinophagy often indicates
worsening of the condition, progressing from reversible fatty liver
to irreversible liver cirrhosis (Li et al., 2022). From another
perspective, harnessing ferritinophagy to target specific
detrimental factors can also benefit certain diseases. Such as, in
liver fibrosis, employing specific drugs to enhance ferritinophagy in
HSCs can effectively mitigate the progression of liver fibrosis (Kong
et al., 2019). In this context, this review aims to summarize the
fundamental mechanisms and regulatory pathways of
ferritinophagy, along with its potential roles in various diseases.
The goal is to offer new insights and advance research in this field.

Regulation of ferritinophagy

Ferritinophagy is a specialized form of autophagy. It shares
many similarities with the classical autophagy pathway, primarily
involving three steps: the formation of autophagosomes, the fusion
of autophagosomes with lysosomes, and the degradation and
recycling of the contents (Figure 1). Ferritinophagy plays a
crucial role in regulating cellular iron balance, ensuring that iron
is properly utilized in metabolism. If ferritinophagy is impaired, it
can lead to iron overload, where excess iron participates in the
Fenton reaction. This generates reactive hydroxyl radicals (•OH),
which are highly oxidative and can damage cell membranes,
potentially triggering lipid peroxidation and ferroptosis, a form of
cell death that can disrupt liver function (Qian et al., 2024; Szarka
et al., 2021).

Ferritinophagy is regulated by several factors that help maintain
iron balance in the body. IRPs, such as IRP1 and IRP2, play a central
role in controlling iron uptake, storage, and usage. When iron is
abundant, IRP1 binds to Fe-S clusters, losing its ability to regulate
ferritin production. However, in low iron conditions, IRP1 binds to
iron-responsive elements (IREs) in ferritin mRNA, reducing ferritin
synthesis to limit iron storage (Tong and Rouault, 2007). In contrast,
IRP2 does not have Fe-S clusters. When iron is sufficient, IRP2 is
degraded via the FBXL5-mediated ubiquitination pathway. Iron
deficiency affects the stability of FBXL5, thereby enhancing the
binding of IRP2 to IREs (Zhang et al., 2014; Sanchez et al., 2011).
Additionally, the expression of NCOA4 is adjusted according to
intracellular iron levels. When iron is sufficient, HERC2 recognizes
NCOA4 and degrades it via ubiquitination to prevent iron toxicity.
When iron is deficient, the expression of NCOA4 increases to
promote ferritinophagy, thereby releasing more iron ions
(Mancias et al., 2015). Besides, there are two classic pathways
that respond to external nutrients and energy: the mTOR
signaling pathway and the AMPK pathway. The mTOR pathway
remains active when nutrients are sufficient, inhibiting autophagy,
while the AMPK pathway acts in the opposite manner (Bao
et al., 2022).

Upon receiving activation signals, the ULK complex (including
proteins like ULK1/2 and ATG13) recruits and activates the PI3K
complex (composed of VPS34, ATG14L, VPS15, and Beclin1) to
generate phosphatidylinositol-3-phosphate (PtdIns3P). PtdIns3P
accumulates at the autophagy initiation site, the isolation
membrane (IM), and recruits other effector proteins, such as
DFCP1 and WIPI1/2 (23, 24). Among them, DFCP1 can
promote the formation and expansion of the isolation membrane
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(Nähse et al., 2024),WIPI1/2 act as effector proteins of PtdIns3P and
are crucial for recruiting downstream ATG proteins (Gaugel et al.,
2012). WIPI2’s primary function is to recruit the ATG16L complex
(ATG5-ATG12-ATG16L). The ATG16L complex acts as an
E3 enzyme and facilitates the lipidation of microtubule-associated
proteins 1A/1B light chain 3 (LC3), converting it to LC3-II. And
LC3 is one of the most important markers in the autophagy process,
it integrates into the IM like bricks, providing essential structural
support for the formation of the autophagosome. Additionally, the
ATG16L complex can help in the expansion and closure of the IM
membrane by affecting membrane curvature (Wilson et al., 2014;
Noda and Yoshimori, 2009; Nakatogawa, 2013). How is the ATG16L
complex formed? The process is as follows: First, ATG12 is activated
through a process that requires ATP and interacts with other

proteins like ATG7 and ATG10. This activation is essential for
the formation of the autophagosome. Subsequently, under the
catalysis of ATG10, ATG12 is covalently linked to ATG5,
forming the ATG12-ATG5 covalent complex. Finally, the
ATG12-ATG5 complex binds with ATG16L1 to form the final
complex (Mizushima, 2020). It is also noteworthy that before
being acted upon by E3 ligase, LC3 must first be cleaved at its
C-terminus by ATG4, exposing a glycine residue that can conjugate
with phosphatidylethanolamine (PE). Subsequently, LC3 is
activated by ATG7 (E1) and ATG3 (E2), and finally conjugates
with PE (29, 31).

In addition to the proteins involved in forming the autophagic
membrane, certain transport proteins are essential for providing the
necessary lipids and other materials. ATG9 is a membrane protein

FIGURE 1
Ferritinophagy, a specific form of autophagy, is vital for maintaining cellular iron homeostasis. The process begins with the recognition of ferritin by
Nuclear Receptor Coactivator 4 (NCOA4), which directs ferritin to the isolation membrane (IM). Upon autophagosomematuration, ferritin is degraded in
the lysosome, releasing iron ions, which are exported by Ferroportin 1 (FPN1). Divalent Metal Transporter 1 (DMT1) mediates iron uptake through
endosomal formation. The autophagic process is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)
signaling in response to nutrient availability. The Autophagy-Related Gene 16-Like (ATG16L) complex facilitates the lipidation of Light Chain 3 (LC3),
essential for autophagosome formation. Transport proteins such as ATG9, ATG2, and ATG18 are involved in lipid transfer, supporting the expansion of the
autophagosome. Additionally, the protein WD Repeat Domain Phosphoinositide Interacting Proteins 1/2 (WIPI1/2) plays a crucial role in recruiting
downstream ATG proteins, while Double FYVE Domain Containing Protein 1 (DFCP1) promotes isolation membrane formation. P62 acts as an autophagy
adaptor protein, binding to NCOA4 and ferritin to target them to the autophagosome. The ESCRT system assists in the closure of the autophagosome
membrane during later stages. STX17 (Syntaxin 17) and SNAP29 (synaptosome associated protein 29) promote the fusion of autophagosomes with
lysosomes, aided by Vesicle-Associated Membrane Protein (VAMP) seven and VAMP8 on the lysosome membrane. Ras-Related Protein 7 (Rab7)
facilitates the maturation of autophagosomes and their fusion with lysosomes. Nuclear Factor Erythroid 2–Related Factor 2 (NRF2), a key regulator of
oxidative stress, controls ferroptosis via HERC2 and VAMP8, influencing NCOA4 degradation and the fusion process. Disruption in ferritinophagy can lead
to iron overload, generating reactive hydroxyl radicals, which can induce ferroptosis and disrupt cellular function.
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that helps transfer lipids and proteins from organelles like the
endoplasmic reticulum and Golgi apparatus to the site of
autophagosome formation, ensuring the membrane can expand.
ATG2 also aids in this process by facilitating lipid transfer between
the endoplasmic reticulum and the autophagic membrane.
Together, ATG2 and ATG18 help recruit lipids to the
membrane, which is crucial for the expansion of the
autophagosome (Obara et al., 2008; Osawa and Noda, 2019; He
and Klionsky, 2007).

Ferritinophagy, as a specific form of autophagy, relies on the
precise recognition of ferritin. NCOA4 is the key regulatory factor in
this process. It binds to ferritin and directs it to the IM. Once the
autophagosome matures and fuses with the lysosome, ferritin is
degraded, releasing iron ions. These ions are then transported out of
the cell by ferroportin1 (FPN1), participating in systemic iron
metabolism. It is also important to note that intracellular iron
uptake requires another transporter, Divalent Metal Transporter
1 (DMT1), and iron transport mediated by DMT1 is typically
facilitated through the formation of endosomes (Yanatori and
Kishi, 2019; Ajoolabady et al., 2021; Anderson and Frazer, 2017).
In this process, P62/SQSTM1 acts as an autophagy adaptor protein,
regulating NCOA4 and inducing the localization of the NCOA4-
ferritin complex to the autophagosome (Liu et al., 2023). In the later
stages of autophagy, the ESCRT system assists in the closure of the
autophagosome membrane, enabling the autophagosome to mature
into a complete vesicle (Lefebvre et al., 2018). STX17 and SNAP29,
which are localized on the autophagosome, can also promote the
fusion of autophagosomes and lysosomes by forming a complex
with VAMP7/8, which is located on the lysosome (Tian et al., 2021).
Meanwhile, Rab7 can also promote the maturation of
autophagosomes and their fusion with lysosomes by interacting
with effector proteins (Ao et al., 2014). The transcription factor
nuclear factor erythroid 2–related factor 2 (NRF2) is primarily
responsible for regulating the cellular antioxidant stress response.
Under normal conditions, NRF2 binds to Keap1, which promotes
NRF2 ubiquitination, thus maintaining its low levels within the cell.
When cells are exposed to oxidative stress or toxic substances, the
structure of Keap1 changes, allowing NRF2 to be released and
translocate into the nucleus. Once in the nucleus, NRF2 binds to
the antioxidant responsive element (ARE), initiating the
transcription of antioxidant and detoxifying genes (Fan et al.,
2017). Anandhan et al. discovered that NRF2 can regulate
ferroptosis through HERC2 and VAMP8. HERC2 is an
E3 ubiquitin ligase for NCOA4, facilitating its degradation, while
VAMP8 plays a role in the fusion of autophagosomes and lysosomes
(Anandhan et al., 2023).

Ferritinophagy in biochemical factor-
induced liver injury

With the rapid progress of urbanization and industrialization,
heavy metal pollution has become an increasingly severe issue.
These metals pose a significant threat to public health, as many
can induce liver damage through ferritinophagy. For instance,
cadmium (Cd), a high-risk heavy metal, is prominently used in
industries such as metallurgy, mining, battery manufacturing,
pigments, and plastics (Wang M. et al., 2021). Research has

shown that Cd induces liver damage in a dose-dependent
manner. The underlying mechanism is closely linked to the ER
stress-ferritinophagy axis. Intervening with an ER stress inhibitor,
such as GSK, can significantly inhibit ferritinophagy in cells exposed
to Cd, thereby alleviating ferroptosis (He et al., 2022). In addition, As
is also a common chemical pollutant. It poses serious health risks to
humans through food chain transmission and bioaccumulation
(Clemens and Ma, 2016). Although the toxicity of As is not as
high as that of heavy metals like Cd, lead, or mercury, its widespread
presence in the environment poses significant risks. As can enter the
human body through drinking water, food, air, and occupational
exposure, making it more frequently encountered than other heavy
metals. Consequently, the Agency for Toxic Substances and Disease
Registry (ATSDR) has placed arsenic at the top of its Substance
Priority List (Shakya et al., 2023; Chen and Costa, 2021; Garbinski
et al., 2019). Recent reports have increasingly highlighted the
hepatotoxic effects of arsenic. Wu and colleagues have found that
extended exposure to low levels of As compounds can result in liver
fibrosis (Wu M. et al., 2023). Wang et al. found that long-term
consumption of drinking water containing inorganic arsenic (iAs)
increases the risk of liver cancer (Wang et al., 2014). Additionally, As
has been shown to induce the accumulation of intracellular ROS and
trigger ferroptosis (Gao et al., 2024). However, it remains unclear
whether chronic As exposure induces ferroptosis by enhancing
hepatic ferritinophagy. To investigate this, Yu et al. conducted a
study and discovered that chronic arsenic exposure activates the
AMPK/mTOR/ULK1 axis, triggering ferritinophagy-mediated
ferroptosis and leading to liver damage (Yu L. et al., 2023).
Another heavy metal commonly encountered in daily life is
cuprum (Cu). The widespread misuse of cuprum-based
fungicides and fertilizers in agriculture, along with the
indiscriminate discharge of industrial wastewater, has led to
increasing soil contamination with cuprum (Li et al., 2020). The
hepatotoxic mechanisms of cuprum are complex and multifaceted.
On one hand, cuprum induces oxidative stress through a
mitochondrial-mediated caspase-dependent pathway (Yang et al.,
2019), On the other hand, it can cause mitochondrial autophagy
through the PINK1/Parkin pathway (Yang et al., 2021),
Additionally, it promotes ferroptosis by inducing NCOA4-
mediated ferritinophagy, inhibiting the antioxidant stress
signaling pathway NRF2/Keap1, and suppressing Ferroptosis
Suppressor Protein 1 (FSP1) (Zhong et al., 2024).

Silica nanoparticles (SiNPs) are inorganic materials with unique
physicochemical properties. Due to these properties, they are widely
used in various fields, including biomedicine, chemical engineering,
pharmaceuticals, and cosmetics, playing a crucial role in modern
technology (Huang et al., 2022; Wang et al., 2018). According to the
‘Guidelines on Protecting Workers from Potential Risks of
Engineered Nanomaterials’ published by the World Health
Organization, SiNPs are the second most produced engineered
nanomaterials globally, with an annual production reaching up to
1.5 million tons (WHO Guidelines Approved by the Guidelines
Review Committee, 2017). With the widespread use of SiNPs, the
potential for human exposure has increased, drawing significant
attention from researchers and regulatory agencies. Previous studies
have demonstrated that SiNPs can induce autophagy in various cell
lines (Ma et al., 2022; Zhu Y. et al., 2023). A 2018 study found that
silica nanoparticles can mediate autophagy in hepatocytes through
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the EIF2AK3 and ATF6 UPR pathways (Wang et al., 2018). Building
on this, Liang et al. found through both in vivo and in vitro
experiments that prolonged exposure to SiNPs exacerbates liver
fibrosis, with the underlying mechanism involving NCOA4-
mediated ferritinophagy. Furthermore, upon cessation of SiNPs
exposure, the activation of ferritinophagy decreased, thereby
alleviating the severity of liver fibrosis (Liang et al., 2023).
Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin
produced by certain Fusarium species, particularly Fusarium
graminearum and Fusarium culmorum. These fungi commonly
infect essential cereal crops such as wheat, barley, rye, oats, and
maize, posing a significant challenge to public food safety (Liao et al.,
2018). The liver, being the most important detoxification organ in
the body, is inevitably damaged by the metabolism of most
mycotoxins. In 2020, Peng et al. demonstrated that prolonged
exposure to DON impairs liver function, with molecular-level
observations showing significant increases in both apoptosis and
autophagy in hepatocytes (Peng et al., 2020). Jiang et al. further
explored the connection between ferritinophagy and DON-induced
liver injury. They found that DON promotes autophagy by
activating the expression of mammalian target of rapamycin
complex 1 (mTORC1). Additionally, DON enhances the
phosphorylation of NCOA4 through ataxia-telangiectasia mutated
kinase (ATM), increasing its affinity for ferritin and thereby
promoting ferritinophagy and ferroptosis (Jiang et al., 2024a).
Recent research has proposed a potential therapeutic approach
for DON-induced liver injury: glycyrrhetinic acid (GA) can bind
to programmed cell death protein 4 (PDCD4) to inhibit its
ubiquitination and degradation. The stabilization of
PDCD4 downregulates NCOA4 expression through the JNK-Jun-
NCOA4 axis, thereby inhibiting ferritinophagy and effectively
mitigating liver injury induced by DON(64).

Ferritinophagy in drug-induced acute
liver injury

Drug-Induced Liver Injury (DILI) is a common liver disease in
clinical practice. In severe cases, it can lead to liver failure and even
be life-threatening. Notably, in Western societies, DILI is the
leading cause of acute liver failure (Katarey and Verma, 2016).
Specifically, one of the major causes of DILI is acetaminophen
(APAP) overdose. As one of the most widely used analgesic and
anti-inflammatory drugs globally, APAP has been beneficial to
patients around the world. Excessive consumption, on the other
hand, can lead to severe liver damage (Ramachandran and
Jaeschke, 2019). The exact mechanism by which APAP impacts
liver function remains unclear. Existing research indicates that
APAP produces a toxic metabolite, N-acetyl-p-benzoquinone
imine (NAPQI). Normally, NAPQI is neutralized and rendered
non-toxic by binding with glutathione (GSH). When NAPQI
accumulates excessively in the liver, it leads to GSH depletion,
contributing to liver damage (Nguyen and Stamper, 2017). GSH, as
a crucial antioxidant in cells, plays a key role in preventing lipid
peroxidation. When GSH is depleted, the levels of ROS in the cell
increase, leading to lipid peroxidation and ultimately resulting in
ferroptosis (Niu et al., 2021). Researchers have explored this issue
by synthesizing a novel antioxidant enzyme nanomaterial—flower-

shaped MnO₂ nanoparticles (MnO₂Nfs). These nanoparticles
effectively improve acute liver injury induced by APAP. They
not only possess various antioxidant enzyme activities to reduce
ROS generation but also inhibit ferritinophagy by suppressing
FTH/L degradation and LC3-II expression (Wu et al., 2024).
Similarly, Shan and colleagues utilized manganese to create poly
(acrylic) acid-coated Mn₃O₄ nanoparticles (PAA@Mn₃O₄-NPs,
PMO). This material demonstrates antioxidant properties and
good biocompatibility, allowing for liver accumulation and
presence in lysosomes. By eliminating ROS, it inhibits
ferritinophagy and counters acute liver injury induced
by APAP (70).

Another noteworthy drug is methotrexate (MTX). As a folate
antagonist, MTX inhibits dihydrofolate reductase (DHFR) to block
the synthesis of DNA, RNA, and proteins. Low doses (5–25 mg/
week) of MTX are first-line treatments for rheumatoid arthritis and
other inflammatory joint diseases, while high doses, typically defined
as 500 mg/m2, are commonly used to treat various malignant tumors
(Pivovarov and Zipursky, 2019; Howard et al., 2016). However,
MTX’s hepatotoxicity has long been a concern for clinicians.
Although recent studies suggest that the risk of MTX-induced
liver fibrosis might be overestimated (Andrade and Björnsson,
2023), there is broad consensus that long-term use of MTX can
lead to liver damage (Ezhilarasan, 2021). Wang and colleagues
investigated the mechanism of MTX-induced hepatotoxicity and
found that MTX triggers ferritinophagy mediated by NCOA4 within
liver cells through high-mobility group box 1 (HMGB1), ultimately
leading to liver damage. Additionally, they discovered that GA, an
HMGB1 inhibitor, can effectively alleviate MTX-induced liver
injury (Wang C. et al., 2024).

Tuberculosis (TB) is a common infectious disease caused by
Mycobacterium TB and is a leading cause of death from infectious
diseases among adults worldwide. The standard treatment regimen
typically involves a 6-month multi-drug therapy, which commonly
includes isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and
ethambutol (EMB) (Furin et al., 2019). During anti-TB treatment,
one of the most frequent adverse reactions is anti-TB drug-induced
liver injury. Studies have shown that RIF, INH, and PZA can induce
hepatotoxicity through mitochondrial autophagy (Elmorsy et al.,
2017). Zhou and colleagues analyzed RIF-induced liver toxicity from
the perspective of ferritinophagy. They found that RIF exacerbates
liver damage by inhibiting the expression of Human 71 kDa heat
shock cognate protein (HSPA8), which increases ferritinophagy
(Zhou et al., 2022).

Ferritinophagy in liver fibrosis

Liver fibrosis is a pathological process in which normal liver
tissue is gradually replaced by fibrous tissue (scar tissue) due to
chronic injury. The development of liver fibrosis involves several key
steps: 1. Chronic liver damage from various causes, such as hepatitis
viruses, alcoholic hepatitis, and NAFLD. 2. Inflammatory cells
release cytokines and chemical signals that promote the
activation of HSCs. 3. Activated HSCs transform into
myofibroblast-like cells and begin to synthesize and secrete large
amounts of extracellular matrix (ECM), including collagen. 4. As
fibrous tissue accumulates in the liver, the liver’s structure is
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progressively destroyed, leading to a decline in liver function (Aydın
and Akçalı, 2018; Roehlen et al., 2020).

Previously, liver fibrosis was generally regarded as a passive and
irreversible process. However, current understanding suggests that
early-stage liver fibrosis can be slowed, arrested, or even reversed with
prompt and suitable intervention. Once fibrosis advances to late-stage
cirrhosis, reversal becomes highly challenging, and therapeutic
options are significantly constrained. In such advanced cases, liver
transplantation may be the only effective recourse (Aydın and Akçalı,
2018; Bataller and Brenner, 2005). The activation of HSCs is a
hallmark event in liver fibrosis. Regulating HSC activation could
enable precise antifibrotic therapies, offering the potential to
effectively treat liver fibrosis (Higashi et al., 2017).

Kong et al. discovered that artesunate, a stable derivative of
artemisinin, can promote ferritinophagy in activated HSCs in vitro,
thereby inhibiting the progression of liver fibrosis. PCR results
indicated that artesunate can enhance the expression of several
ferritinophagy-related genes, including Atg3, Atg5, Atg6/beclin1,
Atg12, and LC3 (17). Another compound, Oroxylin A (OA),
extracted from the traditional Chinese herb Scutellaria baicalensis,
was shown by Sun and colleagues to mediate ferritinophagy through
the cGAS-STING pathway, inducing HSC senescence and ultimately
inhibiting liver fibrosis. In their experiments, they found that
increasing doses of OA led to a corresponding increase in
NCOA4 expression, while the expression of FTH1 decreased. FTH
is a crucial protein responsible for storing and regulating iron ions
within cells. A decrease in FTH1 implies an increase in intracellular
free iron ions, which typically leads to increased ferritinophagy.
Additionally, autophagy markers and initiators such as LC3 and
Beclin1 showed dose-dependent expression increases. This
indicates that OA can induce ferritinophagy in HSCs.
Furthermore, when HSCs were treated with NCOA4 siRNA, the
expression of senescence markers (p16, p21, and HMGA1) was
significantly downregulated compared to the control group, leading
to the conclusion that OA regulates HSC senescence through
ferritinophagy. Subsequently, using cGAS siRNA to inhibit the
cGAS-STING pathway in HSCs resulted in decreased expression of
NCOA4, LC3, and Beclin1, along with reduced intracellular ROS
levels and iron ion content. This demonstrated that the effect of OA
on ferritinophagy in HSCs is regulated by the cGAS-STING pathway
(Sun et al., 2023). Schisandra chinensis, another traditional Chinese
herb, has recently been found to possess various biological activities,
including antioxidant, anti-inflammatory, hepatoprotective, and anti-
tumor properties (Zhang W. et al., 2020). Recent studies have shown
that Schisandrin B, an active compound extracted from Schisandra
chinensis, inhibits the activation of HSCs and induces macrophage
polarization, thereby alleviating liver fibrosis (Chen et al., 2017; Chen
et al., 2021). Ma et al. studied Schisandrin B from the perspective of
HSCs senescence. They found that Schisandrin B can regulate
ferritinophagy mediated by NCOA4 in HSCs, inducing iron
overload and subsequent oxidative stress. This promotes the
senescence of activated HSCs, ultimately improving the degree of
liver fibrosis (Ma et al., 2023). Taurine, one of the most abundant
amino acids in mammals, has a protective effect against liver fibrosis
caused by cellular oxidative stress (Miyazaki et al., 2005). Although Li
et al. did not conduct NCOA4 knockout and overexpression
experiments to confirm the relationship between taurine and
ferritinophagy, their bioinformatics analysis revealed a strong

molecular docking interaction between taurine and NCOA4,
suggesting that taurine may potentially target NCOA4-mediated
ferritinophagy, thereby promoting ferroptosis in HSCs and
reducing ECM deposition (Li et al., 2024). Future researchers
could use this as a starting point to further investigate and
elucidate the underlying mechanisms.

In addition to the natural compounds mentioned above, research
in molecular biology has also explored this area. BECN1 was
discovered as early as 2018 to promote lipid peroxidation and iron
death by inhibiting the important regulatory system of iron death,
system xc−(90). Zhang et al. found that the RNA-binding protein
ELAVL1/HuR can bind to the 3′untranslated region of
BECN1 mRNA, increasing its stability and thereby activating
ferritinophagy to induce ferroptosis in HSCs. Additionally,
sorafenib (SF) has been shown to upregulate ELAVL1 expression,
which alleviates the severity of liver fibrosis. This suggests a potential
therapeutic pathway where SFmodulates ferroptosis-related pathways
tomitigate liver damage (Zhang et al., 2018). Mesenchymal StemCells
(MSCs) are recognized for their pluripotency, immune regulation, and
self-renewal capabilities, which suggest their potential clinical
application value. Previous studies have demonstrated that MSCs
and their derived exosomes (MSC-ex) have shown considerable
abilities in inhibiting liver fibrosis, acute liver injury, and acute
liver failure (Shokravi et al., 2022; Shao et al., 2020; Li et al., 2013).
After a deeper understanding of MSCs’ mechanisms, Tan and
colleagues found that MSC-ex promotes the expression of
BECN1 to increase intracellular LC3 and Fe2+ levels, thereby
inducing ferritinophagy and promoting HSCs iron death to reduce
liver fibrosis (Tan et al., 2022). On the other hand, another RNA-
binding protein, ZFP36/TTP, exhibits a contrasting role. It binds to
ATG16L1 mRNA, promoting its degradation and thus leading to
inactivation of ferritinophagy in HSCs and resulting in resistance to
ferroptosis (Zhang Z. et al., 2020).

Ferritinophagy in liver cancer

HCC is the most common type of primary liver cancer.
According to the Global Cancer Statistics 2020, HCC ranks sixth
in global cancer incidence and third in cancer-related mortality
(Sung et al., 2021). While SF is a first-line treatment for advanced
HCC, it offers limited improvement in patient survival, and many
HCC patients develop adaptive resistance to SF(98, 99). Therefore,
finding suitable adjunctive drugs to enhance the efficacy of SF may
be highly beneficial for HCC patients.

Caryophyllene Oxide, a naturally occurring sesquiterpene
compound, possesses various biological activities. Historically used
in cosmetics and food additives for its unique aroma, recent studies
have highlighted its significant antitumor and analgesic properties
(Fidyt et al., 2016; Kim et al., 2014). Research in 2019 demonstrated
that β-Caryophyllene Oxide could indirectly increase the sensitivity of
HCC to SF, enhancing its cytotoxic effects (Di Giacomo et al., 2019).
Further investigation by Xiu and colleagues explored the association
between Caryophyllene Oxide and ferritinophagy in HCC cells. They
found that Caryophyllene Oxide could trigger ferritinophagy and
mediate ferroptosis in HCC cells by increasing the expression levels of
NCOA4 and LC3Ⅱ, while decreasing FTH1 expression. This led to a
significant reduction in liver tumor volume, suggesting that
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Caryophyllene Oxide could be a potential therapeutic agent for
HCC(103). Additionally, Artesunate, recognized for its ability to
induce ferritinophagy, is considered an ideal adjunctive therapy. Li
and colleagues investigated the combined effects of Artesunate and SF
on HCC cells, finding that the combination treatment enhanced
mitochondrial damage, lysosomal activation, and ferritinophagy,
ultimately leading to ferroptosis. These findings highlight the
potential value of the synergistic effects between artemisinin
derivatives and SF in HCC treatment, suggesting that this
combination could offer an innovative and clinically promising
strategy for managing HCC(104).

Esculetin, a natural dihydroxycoumarin commonly derived from
the bark of Fraxinus chinensis Roxb, has garnered significant research
interest due to its diverse pharmacological activities, including
antioxidant, anti-inflammatory, antitumor, and antibacterial effects
(Garg et al., 2022). As early as 2015, studies demonstrated that
esculetin could induce ROS accumulation and apoptosis in gastric
cancer cells through a caspase-dependent pathway, achieving its
antitumor effects (Pan et al., 2015). However, research on
esculetin’s role in inducing ferritinophagy in HCC cells is limited.
Xiu et al. investigated this aspect and found that, similar to
Caryophyllene Oxide, esculetin can regulate ferritinophagy through
the NCOA4/LC3-II/FTH1 signaling pathway. This regulation helps
suppress HCC cell proliferation and differentiation (Xiu et al., 2023).
Eupatorium chinense L., a traditional Chinese medicinal herb, is
known for its antitumor, antibacterial, and anti-inflammatory
properties. Zhu and colleagues extracted a sesquiterpene from
Eupatorium chinense L. and discovered that this compound can
upregulate NCOA4 expression to mediate ferritinophagy and
disrupt mitochondrial function, thereby enhancing HCC cell
apoptosis (Zhu ZH. et al., 2023).

Research from the molecular biology perspective has provided
valuable insights into the treatments of liver cancer. Polypyrimidine
Tract Binding Protein 1 (PTBP1) is a crucial RNA-binding protein
with significant regulatory roles across various systems, including the
nervous, immune, and cardiovascular systems, as well as in tumors
(Yu Q. et al., 2023). Yang and colleagues discovered that PTBP1 can
promote ferritinophagy in HCC cells by binding to NCOA4 mRNA,
which enhances the sensitivity of HCC cells to ferroptosis following SF
treatment (Yang et al., 2023). Additionally, Wang and colleagues
found that in HCC cell models, activators of ferroptosis (such as SF,
erastin, and sulfasalazine) induce ferritinophagy, leading to the
activation of AMPK phosphorylation. BCAT2 is a key enzyme in
glutamate production, and the function of system Xc–is directly
regulated by glutamate levels. AMPK/SREBP1 signaling pathway
inhibits the nuclear translocation of the transcription factor
SREBP1 and suppresses the transcription of BCAT2. Inhibition of
BCAT2 results in decreased intracellular glutamate, causing reduced
cystine uptake and thereby inducing ferroptosis in tumor cells (Wang
K. et al., 2021).

Ferritinophagy in Non-Alcoholic fatty
liver disease

Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by
the accumulation of fat in the liver without the involvement of
excessive alcohol consumption. As one of the most prevalent

chronic liver diseases worldwide, NAFLD’s high prevalence is
closely linked to modern dietary and lifestyle habits. Metabolic
syndrome (MS) is a key risk factor for NAFLD, encompassing
conditions such as obesity, hypertension, hyperglycemia, and
hyperlipidemia (Friedman et al., 2018; Huang, 2009). Research
and epidemiological studies have demonstrated that dysregulation
of iron homeostasis, leading to iron overload, plays a significant role
in the development of NAFLD (114). Kobi et al. discovered that iron
overload can promote the nuclear translocation of transcription
factor EB (TFEB) in NAFLD, which enhances lysosomal expression
and increases the occurrence of ferritinophagy, and ultimately
aggravating the severity of disease (Honma et al., 2023).
Ferritinophagy plays a critical role in releasing iron from ferritin
stores, aiding in the oxidative desaturation of fatty acids and the
synthesis of triglycerides and cardiolipins, which helps mitigate
lipotoxicity. This process plays a critical role in cellular
metabolism, ensuring that iron is available for key biochemical
pathways. While beneficial in the short term by preventing the
accumulation of toxic lipid intermediates, chronic induction of
ferritinophagy can have detrimental effects. Over time, the
sustained mobilization of iron may lead to excessive iron
accumulation in the liver, promoting oxidative stress and
inflammation. This contributes to the development of hepatic
steatosis, a condition characterized by the abnormal retention of
fat in liver cells, and can progress to more severe liver diseases such
as non-alcoholic steatohepatitis (NASH), fibrosis, and ultimately
cirrhosis. Therefore, while ferritinophagy is a vital adaptive response
to metabolic stress, its persistent activation underscores the delicate
balance required to maintain liver health and prevent long-term
hepatic damage (Li et al., 2022).

Insulin resistance, characterized by the reduced sensitivity of the
body to insulin and the diminished ability to promote glucose
uptake and utilization (Samuel and Shulman, 2016), is a
common feature of metabolic disorders. The prevailing view is
that insulin resistance and the resulting hyperinsulinemia are key
factors in the pathogenesis of NAFLD (117). Prolonged high-fat
diets have been found to inhibit ferritinophagy, disrupting iron
homeostasis, leading to endoplasmic reticulum stress, and ultimately
mediating the development of insulin resistance. This may explain
why individuals who excessively consume high-fat foods are more
prone to NAFLD (118). Chronic intermittent hypobaric hypoxia
(CIHH) refers to a treatment method that induces adaptation and
enhances tolerance to hypoxic environments through intermittent
exposure to low oxygen conditions. Although CIHH has shown
potential in some studies and experiments, its widespread clinical
use requires further research and validation (Zhang et al., 2020c).
Cui and colleagues discovered a link between CIHH and
ferritinophagy. They found that CIHH treatment in MS rats
upregulated the expression of NCOA4, promoting ferritinophagy
and the expression of FPN, thereby reducing oxidative stress and
iron overload. This ultimately inhibited hepatocyte ferroptosis and
alleviated NAFLD (114). Insulin Growth Factor Binding Protein 7
(IGFBP7) is a protein that regulates the activity of insulin-like
growth factors (IGF), which are crucial for cell growth,
differentiation, and metabolism. IGFBP7 modulates the biological
functions of IGF by binding to it (Jin et al., 2020). Previous studies
have found that IGFBP7 exacerbates hepatic steatosis in the
development of NAFLD, although the exact mechanisms remain
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unclear (Yan et al., 2019). Wang and colleagues conducted further
research and discovered that IGFBP7 promotes the progression of
NAFLD by inducing ferroptosis through NCOA4-mediated
ferritinophagy. Depletion of IGFBP7 effectively improved liver
inflammation, fibrosis, and steatosis (Wang et al., 2023).

Ferritinophagy in sepsis-associated
liver injury

Sepsis is characterized by a systemic infection and a strong
inflammatory response, potentially leading to multiple organ
dysfunction or failure, and even death. The liver, as a critical
metabolic and detoxification organ, is a primary target of sepsis-
associated damage. Liver dysfunction frequently occurs in the early
stages of sepsis and is often considered a marker of poor prognosis.
Understanding the underlying mechanisms of sepsis-induced liver
injury is essential for developing effective therapeutic strategies (Yan
et al., 2014).

YAP1 (Yes-associated protein 1) and TAZ (WW domain-
containing transcription regulator 1) are important downstream
effectors of the Hippo signaling pathway, which regulates gene
expression through transcription factors. The Hippo/
YAP1 pathway plays significant roles in tissue growth, organ size
regulation, and cancer development (Panciera et al., 2017).
Additionally, there is evidence that YAP1 has positive effects in
liver-related diseases, such as promoting liver regeneration and
repair and inhibiting liver fibrosis (Liu et al., 2019; Wang et al.,
2020). Wang et al. discovered that in a sepsis-induced liver injury
model, YAP1 can inhibit NCOA4-mediated ferritinophagy, thereby
suppressing the expression of SFXN1 (a mitochondrial membrane
iron transport protein). This inhibition prevents ferroptosis in
hepatocytes and effectively alleviates liver damage (Wang et al.,
2022). Similarly, Qi et al. observed comparable effects in a NAFLD
model. They found that curcumol can reduce NCOA4 expression
through YAP, regulating ferritinophagy and ultimately preventing
hepatocyte senescence (Qi et al., 2021). There are few studies on
ferritinophagy and sepsis-associated liver injury, but based on
literature review, I believe the following targets may be related to
ferritinophagy: GPR116, an adhesion G protein-coupled receptor
(GPCR), can inhibit key ferroptosis targets such as system Xc, GSH,
and GPX4, inducing sepsis-related liver injury (Yan et al., 2014). GLI
Family Zinc Finger 2 (GLI2) is a key regulator in the Hedgehog (Hh)
signaling pathway, which plays an important role in tissue
development during embryogenesis and is thought to promote
liver regeneration (Omenetti et al., 2011), Sun et al. found that
GLI2 exacerbates sepsis-related liver injury by regulating the
expression of synovial apoptosis inhibitor 1 (SYVN1), which
inhibits PPARα-mediated autophagy (Sun et al., 2024). Hypoxia-
Inducible Factor 1-Alpha (HIF-1α) is a transcription factor induced
under hypoxic conditions. Several studies have shown that HIF-1α
can inhibit ferritinophagy under hypoxia, protecting cells from
ferroptosis (Ni et al., 2021; Wang Y. et al., 2024). In sepsis-
associated liver injury, Zhu et al. discovered that fibroblast
growth factor 21 (FGF21) can promote HIF-1α expression,
effectively suppressing macrophage activation and reducing
inflammation after liver injury. However, whether ferritinophagy
is involved in this process requires further investigation (Zhu et al.,

2024). While analyzing recurrently dysregulated genes in sepsis,
Deng et al. discovered that the long non-coding RNA Mir22 hg
contributes to ferritinophagy-mediated ferroptosis by recruiting the
m6A reader YTHDC1 and stabilizing Angptl4 mRNA. This finding
suggests that Mir22 hg could serve as a potential therapeutic target
for treating sepsis through the modulation of ferroptosis (Deng
et al., 2024).

At the end of this article, we provide a summary of the role of
ferritinophagy in various liver diseases, as well as its regulatory
factors. To facilitate comprehension, we have compiled (Table 1),
which lists factors that can exacerbate liver diseases through
ferritinophagy related pathways, and (Table 2), which lists factors
that may ameliorate liver diseases through these pathways.

Interactions of ferritinophagy with other
forms of selective autophagy

Ferritinophagy is not an isolated process, it interacts with other
forms of selective autophagy, such as mitophagy (mitochondrial
autophagy) and lipophagy (lipid droplet autophagy). These
interactions play a critical role in maintaining cellular homeostasis
and can significantly impact disease progression. Under conditions of
oxidative stress, ferritinophagy is upregulated to release iron for
essential metabolic processes. However, excessive iron release,
through the Fenton reaction, leads to the generation of ROS,
which in turn causes a reduction in mitochondrial membrane
potential and mitochondrial dysfunction. This dysfunction
activates the PINK1/Parkin signaling pathway to inhibit mitophagy
(Zhang et al., 2020d). Furthermore, iron overload activates
autophagy-related signaling pathways by generating ROS and
increasing intracellular calcium levels. Concurrently, lipophagy,
mediated by specific receptors such as Rab10 and DNM2,
promotes ferroptosis, thereby exacerbating the pathological
progression of non-alcoholic steatohepatitis (Honma et al., 2023).
Understanding the complex crosstalk between ferritinophagy and
other autophagy pathways is essential for the development of
comprehensive therapeutic strategies. Future research should focus
on elucidating these interactions and exploring the potential for
combined therapeutic approaches targeting multiple autophagy
pathways to better manage NASH and related diseases.

Discussion on the clinical application
prospects of traditional
Chinese medicines

Several Traditional Chinese Medicines (TCMs) have been
reported to modulate ferritinophagy, suggesting their potential
therapeutic applications in liver diseases. For example, artesunate
(a derivative of artemisinin) and Oroxylin A (extracted from
Scutellaria baicalensis) have been shown to induce ferritinophagy
in HSCs, thereby mitigating liver fibrosis. Another compound,
Schisandrin B from Schisandra chinensis, has demonstrated
potential in regulating ferritinophagy and alleviating liver fibrosis.
While these compounds show promise in preclinical studies, none
have been specifically approved for clinical use targeting
ferritinophagy.
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Future directions for drug discovery:

1. Target Identification and Validation: Future research should
focus on identifying specific TCM compounds that modulate
ferritinophagy and elucidate their mechanisms of action.

2. Clinical Trials: Conducting well-designed clinical trials to
assess the safety and efficacy of TCMs in modulating
ferritinophagy is essential for their approval and integration
into clinical practice.

3. Combination Therapies: Exploring the combination of TCMs
with conventional therapies (e.g., for cancer or fibrosis) may
enhance therapeutic outcomes by targeting multiple pathways,
including ferritinophagy.

4. Biomarker Development: Developing biomarkers to monitor
ferritinophagy activity in clinical settings could facilitate the
evaluation of TCM efficacy and guide personalized treatment
strategies.

Conclusion

Ferritinophagy has garnered significant attention for its pivotal
role in liver health and disease, influencing not only iron
metabolism and cellular homeostasis but also various
pathological liver conditions. Abnormal activation or inhibition
of ferritinophagy is strongly linked to liver damage, fibrosis, and
the development of cancer. Therefore, a comprehensive
understanding of the mechanisms underlying ferritinophagy

and its involvement in liver diseases is critical for the
development of novel therapeutic strategies. Future research
must focus on precisely regulating ferritinophagy to offer new
insights into the prevention and treatment of liver diseases.

Despite promising findings in animal models, translating these
results to clinical applications for human patients presents several
challenges. First, significant physiological and pathological
differences exist between animal models and humans. Liver
metabolic pathways, the regulation of ferritinophagy, and drug
responses can vary across species, meaning that dosages,
mechanisms of action, and therapeutic effects effective in
animals may not directly apply to humans. Moreover, human
diseases are far more complex and heterogeneous than those
observed in animal models. For example, the pathogenesis of
NAFLD involves a range of factors, including genetic
background, lifestyle, and metabolic syndrome components,
which are difficult to fully replicate in animal models. Even
when modulation of ferritinophagy shows positive effects in
animals, the same therapeutic strategy may yield varying results
in human patients due to individual variations.

Furthermore, drug safety and side effects pose critical
challenges in the translational process. Drugs that appear safe
in animal studies may lead to unpredictable side effects in human
clinical trials, as they may interfere with other essential cellular
processes while regulating ferritinophagy. This underscores the
need for comprehensive toxicological evaluations in preclinical
studies and close monitoring of patient responses during
clinical trials.

TABLE 1 Regulatory core substances participate in the aggravation of liver diseases by regulating ferritinophagy.

Substance Mechanism Effect (positive or
negative)

Disease References

Cd ER Stress-Ferritinophagy Axis Negative biochemical factor-induced liver
injury

He et al. (2022)

As AMPK/mTOR/ULK1 Axis Activation by Chronic
Arsenic Exposure

Negative biochemical factor-induced liver
injury

Yu et al. (2023a)

Cu Mitophagy, NCOA4 Induction, Nrf2/Keap1 and
FSP1 Pathway

Negative biochemical factor-induced liver
injury

Zhong et al. (2024)

SiNPs NCOA4-Mediated Ferritinophagy Negative biochemical factor-induced liver
injury

Liang et al. (2023)

DON Activates mTORC1, Promoting
NCOA4 Phosphorylation

Negative biochemical factor-induced liver
injury

Jiang et al. (2024a)

MTX Induces NCOA4 through HMGB1 Negative Drug-Induced Liver Injury Wang et al. (2024a)

RIF HSPA8 Inhibition Increases Ferritinophagy Negative Drug-Induced Liver Injury Zhou et al. (2022)

ZFP36/TTP Promotes ATG16L1 mRNA Decay, Leading to
Ferritinophagy Inactivation in HSCs

Negative liver fibrosis Zhang et al.
(2020b)

MS Iron Overload Promotes Nuclear Translocation of
TFEB, Enhancing Lysosome Expression and
Ferritinophagy

Negative NAFLD Honma et al. (2023)

high-fat diets Inhibition of Ferritinophagy Disrupts Iron
Homeostasis, Induces ER Stress, and Mediates
Insulin Resistance

Negative NAFLD Jiang et al. (2020)

IGFBP7 Ferroptosis Induction via NCOA4-Mediated
Ferritinophagy

Negative NAFLD Wang et al. (2023)
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Clinical trial design and execution also present significant
hurdles. Recruiting the appropriate patient population, defining
valid treatment endpoints, and ensuring ethical and scientific
integrity require careful planning. For instance, in liver cancer
trials, factors such as tumor stage, treatment history, and
comorbidities must be considered to ensure the reliability of results.

In summary, while compelling evidence from biological models
supports the potential role of ferritinophagy in liver disease
treatment, substantial obstacles remain in translating these
findings to human clinical practice. Ongoing research must
continue to explore the mechanisms and regulation of
ferritinophagy and its implications for human liver diseases, with

TABLE 2 Regulatory core substances participate in the improvement of liver diseases by regulating ferritinophagy.

Substance Mechanism Effect (positive or
negative)

Disease References

GA Inhibits PDCD4 Ubiquitination, Leading to
Downregulation of NCOA4 via the JNK-Jun-
NCOA4 Axis

Positive biochemical factor-induced
liver injury

Jiang et al. (2024b)

MnO2Nfs Prevents FTH/L Degradation, Inhibits LC3-II
Expression, and Provides Antioxidant Protection

Positive Drug-Induced Liver Injury Wu et al. (2024)

PAA@Mn3O4-NPs Antioxidant Activity and Inhibition of ROS
generation

Positive Drug-Induced Liver Injury Shan et al. (2023)

GA Acts as an HMGB1 inhibitor Positive Drug-Induced Liver Injury Wang et al.
(2024a)

artesunate Enhances Ferritinophagy Gene Expression in
HSCs, Such as Atg3, Atg5, Atg6/Beclin1, Atg12,
and LC3

Positive Liver fibrosis Kong et al. (2019)

OA Induces HSC Senescence through cGAS-STING-
Mediated Ferritinophagy

Positive Liver fibrosis Sun et al. (2023)

Schisandrin B Regulates NCOA4 to Mediate Ferritinophagy in
HSCs

Positive Liver fibrosis Ma et al. (2023)

taurine Exhibits Strong Molecular Docking Interaction
with NCOA4

Positive liver fibrosis Li et al. (2024)

ELAVL1/HuR Binds to the 3′UTR of BECN1 mRNA,
Enhancing Stability and Activating
Ferritinophagy in HSCs

Positive Liver fibrosis Zhang et al.
(2018)

MSC-ex Promotes BECN1 Expression to Enhance
Intracellular LC3 and Fe2+ Levels

Positive Liver fibrosis Tan et al. (2022)

Caryophyllene Oxide Promotes Ferritinophagy in Tumor Cells
through Increased NCOA4 and LC3II
Expression and Decreased FTH1 Levels

Positive HCC Xiu et al. (2022)

artesunate Activates Lysosomes to Mediate Ferritinophagy Positive HCC Li et al. (2021)

esculetin Regulates Ferritinophagy via the NCOA4/LC3II/
FTH1 Signaling Pathway

Positive HCC Xiu et al. (2023)

Eupatorium chinense L Increases NCOA4 Expression, Mediating
Ferritinophagy and Disrupting Mitochondrial
Function

Positive HCC Zhu et al. (2023b)

PTBP1 Promotes Ferritinophagy in HCC Cells by
Binding to NCOA4 mRNA

Positive HCC Yang et al. (2023)

Ferroptosis activators (SF, erastin,
and sulfasalazine)

Activates AMPK/SREBP1 Signaling by
Regulating Ferritinophagy, Inhibiting
BCAT2 Transcription

Positive HCC Wang et al.
(2021b)

CIHH Upregulates NCOA4 and FPN to Promote
Ferritinophagy and Iron Export, Mitigating Liver
Injury

Positive NAFLD Cui et al. (2023)

YAP1 Inhibits NCOA4-Mediated Ferritinophagy and
SFXN1 Expression, Reducing Ferroptosis

Positive Sepsis-associated liver
injury

Wang et al. (2022)

curcumol Regulates Ferritinophagy by Reducing
NCOA4 Expression via YAP, Preventing
Hepatocyte Senescence

Positive NAFLD Qi et al. (2021)
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a focus on optimizing clinical trial designs and ensuring the safety
and efficacy of treatments for human patients.
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