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Cancer remains a significant global challenge, with escalating incidence rates and
a substantial burden on healthcare systems worldwide. Herein, we present an in-
depth exploration of the intricate interplay between cancer cell death pathways
and tumor immunity within the tumor microenvironment (TME). We begin by
elucidating the epidemiological landscape of cancer, highlighting its pervasive
impact on premature mortality and the pronounced burden in regions such as
Asia and Africa. Our analysis centers on the pivotal concept of immunogenic cell
death (ICD), whereby cancer cells succumbing to specific stimuli undergo a
transformation that elicits robust anti-tumor immune responses. We scrutinize
the mechanisms underpinning ICD induction, emphasizing the release of
damage-associated molecular patterns (DAMPs) and tumor-associated
antigens (TAAs) as key triggers for dendritic cell (DC) activation and
subsequent T cell priming. Moreover, we explore the contributions of non-
apoptotic RCD pathways, including necroptosis, ferroptosis, and pyroptosis, to
tumor immunity within the TME. Emerging evidence suggests that these
alternative cell death modalities possess immunogenic properties and can
synergize with conventional treatments to bolster anti-tumor immune
responses. Furthermore, we discuss the therapeutic implications of targeting
the TME for cancer treatment, highlighting strategies to harness immunogenic
cell death and manipulate non-apoptotic cell death pathways for therapeutic
benefit. By elucidating the intricate crosstalk between cancer cell death and
immune modulation within the TME, this review aims to pave the way for the
development of novel cancer therapies that exploit the interplay between cell
death mechanisms and tumor immunity and overcome Challenges in the
Development and implementation of Novel Therapies.
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1 Background

Cancer is a major global health concern, responsible for millions of deaths annually. The
International Agency for Research on Cancer (IARC) reports that cancer is the foremost or
second-leading cause of death before the age of 70 in 112 out of 183 surveyed countries
(Bray et al., 2021). Cancer cells possess unique characteristics enabling them to evade cell
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death and the immune system, making inducing cancer cell death an
crucial aspect of therapy (Chi et al., 2022a; Zhao S. et al., 2022; Chi
et al., 2022b).

The Nomenclature Committee on Cell Death (NCCD) has
categorized cell death into accidental (ACD) and regulated
(RCD) forms (Hanahan and Weinberg, 2011). RCD, orchestrated
by specific molecular mechanisms, includes apoptotic and non-
apoptotic variants such as ferroptosis, autophagy, pyroptosis, and
necroptosis (Gao et al., 2022). Targeting non-apoptotic RCD
pathways with drugs could overcome apoptosis resistance and
impact cancer treatment (Muppa et al., 2019; Koren and Fuchs,
2021). Necroptosis, ferroptosis, and pyroptosis interact with tumor
immunity in the TME, known as immunogenic cell death (ICD)
(Tang R. et al., 2020; Shen et al., 2022; Song et al., 2022).

ICD in the TME activates anti-tumor immune responses,
involving dendritic cells (DCs) presenting antigens to T cells,
leading to cancer cell elimination and anti-tumor immunity
development (Xie et al., 2017). Inducing necroptosis, ferroptosis,
or pyroptosis in tumor cells can enhance anti-tumor immune
responses and reduce tumor growth and metastasis (Xie et al.,
2017; Tang R. et al., 2020; Chen et al., 2021a). This review
explores the roles of both ICD (Immunogenic Cell Death) and
non-apoptotic RCD (Regulated Cell Death) in the modulation of
tumor immunity within the tumor microenvironment (TME). It
proposes the TME as a viable target for innovative cancer therapies.
Additionally, the aim is to provide readers with an understanding of
the various forms of cell death induced by different therapies and
their impact on anti-tumor immune responses. The review strives to
examine the potential therapeutic approaches for enhancing and
developing anti-tumor immunity through the utilization of these cell
death mechanisms. Furthermore, it discusses the challenges
associated with tumor resistance to cell death induction, the
complexity of the tumor microenvironment, and the possible
incorporation of new technologies to tackle these obstacles.

2 Immunogenic cell death,
inflammation-associated pyroptosis,
necroptosis, and ferroptosis

2.1 immunogenic cell death

ICD is a type of cancer cell demise triggered by certain
treatments such as chemotherapeutic agents, oncolytic viruses,
therapies, and radiotherapy (Ahmed and Tait, 2020). The non-
immunogenic characteristics of tumor cells can transform into
immunogenic traits upon exposure to these stimuli, leading to
the production of anti-tumor immune responses (Galluzzi et al.,
2020). ICD can be induced by intracellular pathogens, different
types of drugs, and various physical therapies (Galluzzi et al., 2020).
After ICD, cells release molecules known as DAMPs, TAAs, and
pro-inflammatory cytokines. These molecules are captured by DCs
and macrophages, processed, and presented to immune cells,
ultimately resulting in antigen-specific immune responses (Duan
et al., 2019). Pattern recognition receptors (PRRs) like Toll-like
receptors (TLRs) and nucleotide-binding oligomerization domain-
like receptors (NLRs) identify these molecules, stimulating tumor-
specific immune responses. This process enhances the efficacy of

anti-cancer medications by directly eliminating cancer cells and
promoting anti-tumor immunity, including immune memory
(Kroemer et al., 2022). Although pyroptosis, necroptosis, and
ferroptosis can be considered forms of immunogenic cell death
to some extent, they differ in their specific mechanisms and effects
on immune system activation (Figure 1).

2.2 Inflammation-associated pyroptosis,
necroptosis, and ferroptosis

Inflammation-associated pyroptosis is a form of cell death
triggered by inflammasomes. It is characterized by cell swelling,
rupture, and release of cellular contents (Hsu et al., 2021). Apoptotic
caspases, including CASP1, CASP4, CASP5, CASP11, and murine
CASP3, can also activate pyroptosis (Lee et al., 2023).
NLRP3 inflammasomes are formed and caspase-1 is activated
when pathogen-associated molecular patterns (PAMPs) and
DAMPs bind to pattern recognition receptors. Caspase-1 cleaves
gasdermin D (GSDMD), generating the N-terminal pore-forming
domain (PFD) (Hou et al., 2020). The cleaved PFD of gasdermin
induces oligomerization in the plasma membrane, resulting in cell
death. It also promotes the maturation and release of active IL-1β
and IL-18 (Holler et al., 2000; Tong et al., 2022). Lipopolysaccharide
can directly activate CASP4, CASP5, and CASP11 to causes the
above mechanism.

Necroptosis is another form of regulated cell death triggered by
various factors, such as tumor necrosis factor (TNF),
lipopolysaccharide (LPS), and nuclear DNA damage (Degterev
et al., 2005; Galluzzi et al., 2017). Necroptosis shows
morphological characteristics similar to necrosis, including
organelle swelling, cell membrane rupture, and cytoplasmic and
nuclear disintegration (Weinlich et al., 2017). Unlike apoptosis,
necroptosis is caspase-independent. Under caspase-8 inhibition,
receptor-interacting protein kinase 1 (RIPK1), RIPK3, and
cylindromatosis (CYLD) remain active. The cellular death
pathway can transition from apoptosis to necroptosis, leading to
decreased cellular Adenosine triphosphate (ATP) levels (Temkin
et al., 2006; Gong et al., 2019). Upon factors binding to cell
membrane receptors, RIPK1 undergoes autophosphorylation and
forms functional amyloid-like proteins, aided by Caspase-8
inhibition or E3 ligase family inhibitors. RIPK1 then interacts
with RIPK3 to form the necrosome, initiating necroptosis.
Phosphorylated mixed-lineage kinase domain-like (MLKL)
translocates to the plasma membrane, forming an ion channel
that increases membrane permeability and eventually leads to
membrane rupture and DAMPs release, triggering necroptosis
(Kaczmarek et al., 2013; Seo et al., 2021).

Ferroptosis is a non-apoptotic form of cell death characterized by
the accumulation of lipid peroxidation (Dixon et al., 2012). It is
dependent on iron and exhibits morphological changes, such as
increased membrane density, mitochondrial shrinkage, reduced
mitochondrial cristae, and normal nuclear morphology without
chromatin condensation (Stockwell et al., 2017). Ferroptosis can be
induced by various factors. Glutathione peroxidase 4 (GPX4) inhibits
the generation of active lipid oxygen, but when the cystine-glutamate
transporter (system xc-) is inhibited, the uptake of glutathione (GSH)
decreases, leading to decreased GPX4 activity and initiation of
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ferroptosis (Yang et al., 2014). p53 can also trigger ferroptosis by
downregulating the expression of SLC3A2, decreasing GSH synthesis
and GPX4 activity (Chu et al., 2019). RSL3, DPI10, and mevalonate
pathway-targeting molecules directly influence GPX4 and induce
ferroptosis (Yu et al., 2017; Chen et al., 2021b). When iron is
present, the peroxidation of polyunsaturated fatty acids (PUFAs)
in cellular membrane lipids generates reactive oxygen species that
oxidize adjacent PUFAs, resulting in membrane phospholipid
peroxidation and ferroptosis (Lee et al., 2021). Components of the
autophagy machinery, such as ATG3 and ATG5, can also activate
ferroptosis (Zhou et al., 2020). Although the immunogenicity of
ferroptosis is not extensively studied, preliminary evidence suggests
that it may trigger immune responses by releasing DAMPs (Wen
et al., 2019; Tang D. et al., 2020).

3 Immunity and tumor cell death

Immune checkpoint inhibitors (ICIs) have revolutionized
cancer therapy, but many tumors do not respond well, it is often
due to low levels of tumor-infiltrating lymphocytes (TIL). This
limitation hinders the broader use of ICIs in immunotherapy
(Chi et al., 2022b). TILs reside in the TME, which surrounds
tumor cells and significantly impacts tumor progression through
various secreted factors. The TME includes stromal cells, immune
cell populations (T and B lymphocytes, neutrophils, TAMs et al.),
among others (Junttila and de Sauvage, 2013). Modulating the TME
and TIL composition by inducing immunogenic cell death
(e.g., necroptosis, ferroptosis, or pyroptosis) shows promise in
enhancing anti-tumor immunity (Niu et al., 2022).

3.1 Immunogenic cell death

During immunogenic cell death in cancer cells, various
substances enhance the immune response and kill more tumor
cells (Xie et al., 2022). High mobility group box 1 protein
(HMGB1), alone or in combination with Toll-like receptors
and receptor for advanced glycosylation end-products
(RAGE), promotes inflammatory reactions (Although it
mainly exists in the serum of arthritis patients and at the
inflammatory sites of patients with septicemia, some studies
suggest that it may also be a therapeutic target for cancer
patients.), produces pro-inflammatory cytokines, and enhances
antigen presentation by DCs, resulting in powerful anti-tumor
immune effects (Lotze and DeMarco, 2003; van Beijnum et al.,
2008). Calreticulin (CRT) engagement with CD91 fosters the
maturation and activation of DCs, culminating in the cross-
presentation of tumor antigens and the elicitation of tumor-
specific cytotoxic T lymphocyte (CTL) responses. This
progression concurrently stimulates the secretion of pro-
inflammatory cytokines such as TNF-α and IL-6, bolstering
the anti-tumor immune response through diverse mechanisms
(but total or membrane-exposed CALR levels are closely
associated with prognosis in different cancer types, such as
patients with myeloproliferative neoplasms carrying CALR
mutations showing better outcomes compared to patients with
wild-type CALR.) (Pawaria and Binder, 2011; Fucikova et al.,
2021). The binding of ATP to its receptor also triggers the
activation of cytotoxic T lymphocytes (CTLs), propels DC
activation and maturation, and expands macrophage
populations (Elliott et al., 2009; Troitskaya et al., 2022).

FIGURE 1
The mechanism of ROS and ICD.
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3.2 Inflammation-related pyroptosis

In the immune defense mechanism, pyroptosis occurs more
frequently than necroptosis and ferroptosis (Hsu et al., 2021).
Gasdermin (GSDM) proteins act as key executors of pyroptosis,
directly inducing cancer cell lysis and the release of immune-
stimulating cellular contents. Additionally, they aggregate and
activate immune cells such as CD4 andCD8 T cells, thus
promoting tumor cell death (CT26 colorectal carcinoma and
B16 melanoma in mouse) (Kong and Zhang, 2023). Pyroptosis
transforms the immunosuppressive “cold” TME into an
immunogenic “hot” TME, facilitating the infiltration of tumor-
infiltrating lymphocytes (Zhu and Li, 2023). A recent study
demonstrated that delivering metal ions and immune adjuvant
R848 together to the tumor tissue can enhance anti-tumor
immunity through pyroptosis regulation (Feng et al., 2023).
NLRP3 inflammasome activation can also promote intestinal
epithelial cells to secrete IL-18, exerting an anti-tumor effect on
immune cells such as CD4+ T cells (in AOM-induced colorectal
cancer) (Du et al., 2016).

3.3 Necroptosis

Currently, there are two ways to induce anti-tumor immunity
through necroptosis: using necroptotic tumor cells or fibroblast
vaccines (Tang R. et al., 2020). Aes et al. (2016) demonstrated
that necroptotic cells release DAMPs, which activate DCs, promote
antigen presentation, and stimulate cytotoxic CD8+ T lymphocytes
(Aaes et al., 2016). However, recent research has highlighted the
crucial roles of BATF3+ cDC1 cells and CD8+ leukocytes in tumor
control mediated by necroptotic cells (Snyder et al., 2019).
Transplanting necrotic cells into the TME can activate BATF3+
cDC1 cells and CD8+ leukocytes via necroptosis, leading to a
powerful immune response independent of DAMPs released by
MLKL. In this process, NF-κB activation in dying cells is essential for
initiating immune responses and facilitating interactions between
necroptosis and the TME (.F10-OVA melanoma flank tumors and
Lewis Lung (LL/2)-OVA adenocarcinoma flank tumors) (Snyder
et al., 2019). Furthermore, RIPK3 activation in cancer cells can also
induce TRIM3 to modulate and enhance the anti-tumor
microenvironment (Park et al., 2021).

4 TME as a therapeutic target for
cancer treatment

4.1 Immuno-stimulated cell death

4.1.1 Combined therapy targeting immuno-
stimulated cell death

The TME is a potential target for cancer treatment by inducing
ICD in tumor cells. Immune Checkpoint Blockade (ICB) therapy
activates the immune system to target cancer cells by inhibiting
immune checkpoint molecules on tumor cell surfaces (Xie et al.,
2022). However, the Immune-Suppressive Tumor Microenvironment
(ITM) can limit the effectiveness of ICB therapy. Combining ICB
therapy with chemotherapy or Photothermal Therapy (PTT) and

Photodynamic Therapy (PDT) enhances intratumoral cytotoxic T
lymphocyte (CTL) infiltration and overcomes ITM constraints. ICG-
mediated PTT facilitates the uniform distribution of nanoparticles
(NPs) in tumor tissues, enhancing drug efficacy (Li et al., 2017). PDT
directly damages tumor DNA and induces tumor cell autophagy,
showing synergistic effects with targeted drugs (Robertson et al., 2009;
Zhang et al., 2016; Wen et al., 2017; Wang et al., 2018). Additionally,
PDT-assisted treatments reduce tumor cell oxygen consumption and
block electron transfer chains (Zhao et al., 2020) (Figure 1).
Chemotherapy or PDT induce tumor cell apoptosis, release
antigens, and activate the immune system, promoting CTL activity.
This combined therapy improves treatment efficacy and reduces side
effects. Furthermore, nanodrug delivery systems targeting ITM, like
NPs, enhance the effectiveness of ICB therapy. Loading immune
checkpoint inhibitors into nanocarriers improves their bioavailability
in tumor tissues, overcoming limitations of the multiple types of
tumor microenvironment. These strategies offer promising avenues
for cancer treatment.

4.1.2 The sword of radiation therapy–reactive
oxygen species (ROS) system

Radiation therapy (RT) uses high-energy radiation to damage
cancer cells and inhibit their growth. It can generate ROS to break
down cellular components and cause tumor cell death (Ozben, 2007)
(Figure 1). ROS produced by RT can trigger tumor cell death
through different pathways.

1) Inducing tumor cell apoptosis: ROS can activate the
P53 pathway, increase pro-apoptotic proteins, and induce
cell apoptosis. It can also affect mitochondrial integrity,
leading to apoptotic cell death. ROS can also activate death
receptor ligand pathways to trigger cell apoptosis (human
leukemia HL-60 cells) (Ho et al., 2011).

2) Inducing tumor cell autophagy: ROS can activate the AMPK and
MAPK pathways, promoting the expression of autophagy-related
proteins and autophagosome formation, leading to autophagic
cell death (human gastric cancer) (Liu and Fan, 2019).

3) Inducing tumor cell ferroptosis: ROS can enhance lipid
peroxidation, particularly of polyunsaturated fatty acids,
leading to tumor cell death via ferroptosis. ACSL4 is an
important regulator in this process (Multiple types of
cancer.) (Yang et al., 2022).

4) Augmenting ICD: ROS induced by RT can stimulate the
release of DAMPs, activating immune cells and enhancing
tumor recognition and clearance by the immune system. ROS
can also modulate the function and activation of immune cells
within the tumor microenvironment (triple-negative breast
cancer in vitro and in vivo) (Krombach et al., 2019).

ROS can also affect immune checkpoint molecule expression,
such as PD-L1, in immune cells (Glorieux et al., 2021;
He et al., 2024). Additionally, ROS can regulate T cell function
and apoptosis, impacting immune checkpoint expression and
immune cell activity (colorectal cancer) (Kesarwani et al., 2013).

In summary, ROS induced by RT can promote tumor cell death
through multiple mechanisms and modulate immune cell function.
They can also alter the tumor microenvironment and induce
immunogenic tumor cell death.
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4.1.3 Peptides immunoactivation of the tumor
microenvironment

Therapeutic peptides are potent agents for eliminating bacteria
and tumor cells, impacting immune system activity. They play a
significant role in immune modulation by circumventing limitations
of conventional treatments. LTX-315 is a novel therapeutic peptide
known for inducing ICD. Zhou et al. (2016) used several types of
fibrosarcomas on mice and they found It induces structural and
functional changes in mitochondria, leading to cell death and the
release of DAMPs. ACPP, another pro-apoptotic peptide, enhances
macrophage phagocytic activity and promotes anti-tumor immune
responses by disrupting the CD47-SIRPα interaction according to a
study in mouse colon cancer cells (Koh et al., 2017; Wang et al.,
2021). Peptides targeting various cells and signaling pathways within
the TME are being investigated to boost immune activity against
tumors (Table 1). Continued research on these peptides offers
promising avenues for cancer treatment (Hayes et al., 2020; Aria
and Rezaei, 2023).

4.2 Role of inflammation-associated cell
pyroptosis and necroptosis in enhancing
tumor immunogenicity

Pyroptosis and necroptosis are programmed cell death
mechanisms that hold potential in cancer therapy by enhancing
tumor immunogenicity and immune cell infiltration in the TME.
Pyroptosis, triggered by gastrin-releasing peptide, can transform

“cold tumors” into “hot tumors” by augmenting the immune
response (Zhang R. N. et al., 2023). Colorectal cancer (CRC)
treated with gambogic acid (GA) amplifies the ratio of immune
cells such as CD3 T cells, cytotoxic T lymphocytes, dendritic cells,
and effector memory T cells, promoting Pyroptosis and enabling
chemotherapy drugs to modulate the TME and improve antitumor
efficacy (Xu et al., 2022).

Various drugs, including metformin, anthocyanins, and
dehydroacetic acid, are capable of inducing Pyroptosis and
potentiating anticancer immunity (on human hepatocellular
carcinoma,naïve breast cancer and et al.) (Paixão et al., 2017;
Kheirandish et al., 2018; Zhou et al., 2018). However, cancer cells
can evade Pyroptosis through immune suppression pathways and
drug resistance mechanisms. To address this issue, Feng et al.
developed an acid-responsive Fe/Mn bimetallic organic
framework nanosystem loaded with metal ions and an immune
adjuvant R848 (FeMn@R@H). This nanosystem initiates ROS-
mediated Pyroptosis via Fenton-like reaction, reverses the
suppressive tumor immune microenvironment, and amplifies
antitumor immune therapy (Feng et al., 2023). Organic
photosensitizers (PS) materials have also shown potential in
provoking Pyroptosis and reshaping the TME (Zhou et al., 2018).
Oroxylin A (Ori) is another compound that induces Pyroptosis and
modulates the TME, demonstrating broad-spectrum anticancer
effects (Sun X. et al., 2023).

Insufficient immune cell infiltration in the various TMEs limit
the effectiveness of tumor immunotherapy. Radiotherapy,
chemotherapy, and targeted therapy can enhance tumor cell

TABLE 1 Other ICD-inducing peptides.

Peptide Mechanism of action Effects in cancer immunotherapy References

RL2 Inhibits TOM70 on mitochondrial
membrane, reducing ATP production and
inducing necrosis

- Effective against various tumors Troitskaya et al. (2020)

- Triggers immunogenic cell death (ICD) in
cancer cells

- Increases phagocytosis and anti-cancer
immunity

F-pY-T Targets mitochondria, generates oxidative
stress, triggers ICD, increases ATP secretion

- Enhances anti-cancer immunity when
combined with immune checkpoint inhibitors
(ICIs)

(Zheng et al., 2022) (The experiment used CT26 tumors
implanted in mice.)

- Boosts CD8+ T cell penetration into the tumor
microenvironment (TME)

CBP501 Inhibits calmodulin, sensitizes cancer cells to
cisplatin-induced ICD

- Enhances efficacy of platinum-based therapy (Mine et al., 2011) (non-small cell lung cancer and
malignant pleural mesothelioma)

- Increases CD8+ T cell penetration into TME

- Modulates tumor-associated macrophage
(TAM) populations, improving anti-tumor
responses

RT53 Binds to API5 on tumor cell membranes,
inhibits pro-survival activities, induces
necrosis

- Induces ICD hallmarks such as HMGB1 and
ATP release

(Pasquereau-Kotula et al., 2018; Habault et al., 2020)
(B16F10 melanoma cellsandacute promyelocytic leukemia
(APL) in mouse)

- Increases T cell infiltration and anti-tumor
responses

PKHB1 Binds to CD47, induces calcium-dependent
and caspase-independent cancer cell death

- Induces ICD markers (Uscanga-Palomeque et al., 2019; Calvillo-Rodríguez et al.,
2022) (CEM and MOLT-4 human cell lines (T cell acute
lymphoblastic leukemia; T-ALL) and on one T-murine
tumor lymphoblast cell-line (L5178Y-R) (T-ALL))

- Enhances leukocyte infiltration at tumor sites

- Stimulates immunological memory, suppressing
tumor growth
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immunogenicity, leading to immune cell infiltration and tumor cell
demise (Galon and Bruni, 2019; Kroeze et al., 2023; Park et al., 2023).
Chemotherapy and radiotherapy-induced acute necroptosis enable
DCs to present antigens and activate T cells, resulting in cytotoxic
T cell infiltration in the activated TME and tumor eradication.
Fucoidan and 5-FU can bolster anticancer immunity by provoking
necroptosis and has been widely used and effective in various solid
tumors (Zhao et al., 2017; Wang H. et al., 2019). Combination
therapy utilizing chemotherapy and immune checkpoint inhibitors
(ICI) has shown promising results in cancer treatment and the
effects were significantly better than the control group in a
randomized, open-label three-phase experiment (Reck et al.,
2019). In addition, Polo-like kinase 1 (PLK1) has been identified
as a potential inhibitor of tumor immunity and necroptosis.
Inhibiting PLK1 may serve as a promising therapeutic strategy
(Zhang P. et al., 2023).

In summary, both Pyroptosis and necroptosis play important
roles in enhancing tumor immunogenicity and promoting immune
cell infiltration in the TME. Strategies involving the induction of
Pyroptosis and necroptosis, combinational therapies, and targeting
PLK1 hold promise in cancer therapy. It can also trigger deeper
thinking for us. Lipid peroxidation induced by oxygen free radicals
plays a negative role in the theory of cellular aging. However, in
various tumor microenvironments, the induced lipid peroxidation
can induce tumor cell programmed death through iron death
pathways. This suggests that we can only better utilize the
mechanisms of cellular metabolism and survival to benefit the
health of all mankind by correctly understanding and further
researching them.

4.3 Potential strategies for utilizing
ferroptosis as a therapeutic target

Ferroptosis promotes immune cell recruitment and enhances
anti-tumor immune response (Chu et al., 2019; Wen et al., 2019).
CD8+ T cell activation by immune therapy downregulates
SLC7A11 expression, inducing cancer cell ferroptosis in patients
with melanoma (Wang W. et al., 2019). NRF2 nanomodulators
induce ferroptosis in lung cancer cells and stimulate the TME to
initiate immune response (Hsieh et al., 2021). Inhibiting MKL-1
expression enhances sensitivity to ferroptosis-inducing agents in
TME of gastric cancer (Dai et al., 2023). Chemotherapy drugs and
radiotherapy also induce ferroptosis, improving the efficacy of
immune checkpoint inhibitor (ICI) immunotherapy by
promoting immune cell infiltration and increasing tumor cell
immunogenicity (Tong et al., 2022).

Ferroptosis, mediated by lipid peroxidation, aids in tumor
antigen recognition and processing by DCs, promoting CD8+

T cell presentation and cytotoxic lymphocyte activation,
enhancing tumor immunotherapy (Zhao L. et al., 2022).
Combining immune checkpoint inhibitors (ICIs) with ferroptosis
inducers may increase various tumor cells sensitivity to immune
therapy. Several FDA-approved drugs, including glutamine,
sorafenib, cisplatin, gemcitabine, and linsitinib, induce ferroptosis
and are potential candidates for cancer treatment (Dixon et al., 2014;
Stockwell et al., 2017; Guo et al., 2018; Lee et al., 2020; Lv et al., 2020).
However, drug resistance is a challenge. Multifunctional ferroptosis

nanomedicines have shown promise in effectively reversing
treatment resistance (Cai et al., 2024). For example, miR-654-5p
enhances sorafenib-induced ferroptosis by targeting HSPB1,
improving therapeutic outcomes in Sora-resistant hepatocellular
carcinoma (HCC) patients when combined with m654-sEV (Sun
J. et al., 2023). Carrier-free nanocomponents containing sorafenib
(Sor) and gambogic acid (GA) deplete GSH, inducing ferroptosis
in vitro and in vivo, exhibiting potent antitumor activity (Lei et al.,
2023). A photoactivated oxygen self-supplying chemical
photothermal nanoplatform enhances ferroptosis and alleviates
hypoxia-induced chemoresistance in colorectal cancer (CRC)
(Jiang et al., 2023). Phenanthroindolizidine alkaloids, natural
products that inhibit various cancers, show promise in
overcoming tumor resistance (Peng et al., 2023). Combining
carbon ion radiotherapy (CIRT) with immunotherapy enhances
immune cell infiltration, suggesting a potential role for ferroptosis in
synergistic anticancer effects during CIRT combined therapy
(Huang Q. et al., 2023).

5 Discussion

5.1 The complexity of cell death

Cell death, particularly ICD and its related forms like
inflammation-associated cell pyroptosis, necroptosis, and
ferroptosis, plays a key role in cancer development and
treatment. These types of cell death stimulate the immune system
and trigger crucial anti-tumor responses.

ICD can convert non-immunogenic tumor cells into
immunogenic ones, prompting the body’s anti-tumor immune
reaction. Released molecules like DAMPs, tumor-associated
antigens (TAA), and pro-inflammatory cytokines are captured by
DCs and macrophages, initiating antigen-specific immune responses
that bolster anti-tumor immunity. Research has found that the
inhibition of autophagy can also trigger the accumulation of
DAMPs, thereby inducing ICD (Michaud et al., 2011). Clinical use
of autophagy inhibition mechanism has shown effective treatment
against tumors (Di Lernia et al., 2020). However, further research is
needed on the specific pathways and regulatory factors through which
autophagy modulation mediates immunogenic cell death. Exploring
novel autophagy inhibitors and combination strategies holds promise
for improving therapeutic outcomes and represents one of the
challenges in the next Frontier of cancer treatment. Similarly,
inflammation-associated cell pyroptosis, necroptosis, and ferroptosis
exhibit immunogenic properties and can activate the immune system
by releasing immune-stimulating substances. And ultimately fostering
anti-tumor immune responses (Tang R. et al., 2020).

Yet, the intricate interplay between cell death and the TME
cannot be overlooked. The TME is a complex ecosystem comprising
tumor cells, immune cells, stromal cells, blood vessels, and others.
Cell death not only alters the TME composition but also regulates it.
Immune responses induced by ICD can modify the immune
landscape of the TME, restraining tumor growth and metastasis.
However, considering the TME’s complexity, understanding the
molecular mechanisms governing the interaction between cell death
and the TME is crucial to optimizing treatment strategies
(Kesarwani et al., 2013; Zhou et al., 2016).
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5.2 Future direction

Future research should delve deeper into the molecular
mechanisms of various forms of cell death, especially key
molecules like CRT (Pawaria and Binder, 2011), HMGB1 (van
Beijnum et al., 2008), and ATP (Troitskaya et al., 2022) involved
in the ICD process. Quantitative and spatial analysis of cell death are
also pivotal in refining treatment strategies such as tailoring and
monitoring personalized immunotherapy regimens (Banna et al.,
2019). Additionally, leveraging advanced technologies and tools like
gene editing and nanotechnology to modulate cell death processes
presents promising avenues for enhancing cancer treatment efficacy
(Li et al., 2017; Dilnawaz and Acharya, 2023).

In essence, the role of cell death in cancer treatment is
multifaceted, encompassing the tumor microenvironment,
immune responses, and treatment strategies. Future research
should focus on delving into these facets and embracing novel
technologies and methodologies to tackle the challenges in cancer
treatment, ultimately elevating treatment outcomes and patients’
quality of life.

5.3 The detection methods for treating
benefit-based patients (such as single-
cell analysis)

Through the discussion of various therapeutic approaches
inducing programmed cell death and immune cell death, we have
discovered that many treatments have strong limitations, benefiting
only certain tumor types with specific characteristics, such as
patients with myeloproliferative neoplasms carrying CALR
mutations showing better outcomes (Fucikova et al., 2021; Huang
X. et al., 2023; Chi et al., 2023; Zhao et al., 2023). Therefore, it is
crucial to effectively utilize current hot topics like single-cell analysis
and other diagnostic tools to classify patients who can or cannot
benefit from treatment earlier, faster, and more accurately through
cell markers. Many detection models based on single-cell and other
technologies have been developed to quickly detect and
automatically diagnose various cell types, including but not
limited to acute leukemia, breast cancer cell biomarkers, and
mature T cells (Zhou et al., 2015; Tsai et al., 2020; Wang et al., 2022).
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