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Sporadic inclusion body myositis (sIBM) is a distinct subcategory of Idiopathic
Inflammatory Myopathies (IIM), characterized by unique pathological features
such as muscle inflammation, rimmed vacuoles, and protein aggregation within
themyofibers. Although hyperactivation of the immune system is widely believed
as the primary cause of IIM, it is debatedwhether non-immune tissue dysfunction
might contribute to the disease’s onset as patients with sIBM are refractory to
conventional immunosuppressant treatment. Moreover, the findings that
mitochondrial dysfunction can elicit non-apoptotic programmed cell death
and the subsequent immune response further support this hypothesis.
Notably, abnormal mitochondrial structure and activities are more prominent
in the muscle of sIBM than in other types of IIM, suggesting the presence of
defectivemitochondria might represent an overlooked contributor to the disease
onset. The large-scalemitochondrial DNA deletion, aberrant protein aggregation,
and slowed organelle turnover have provided mechanistic insights into the
genesis of impaired mitochondria in sIBM. This article reviews the disease
hallmarks of sIBM, the plausible contributors of mitochondrial damage in the
sIBM muscle, and the immunological responses associated with mitochondrial
perturbations. Additionally, the potential application of mitochondrial-targeted
chemicals as a new treatment strategy to sIBM is explored and discussed.
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Introduction

Idiopathic inflammatory myopathies (IIM), commonly known as myositis, is a
heterogeneous group of muscle diseases with a global prevalence of 2–25 individuals
per 100, 000 persons (Khoo et al., 2023). Based on the clinical, serological, and histological
examination results, IIM can be classified into 5 major subtypes: dermatomyositis (DM),
polymyositis (PM), immune-mediated necrotizing myopathy (IMNM), overlap myositis
(OM), and sporadic inclusion body myositis (sIBM). Despite each IIM subtype has
distinctive clinical and unique histopathological features, a great majority of IIM
patients suffer from muscle weakness with muscle edema, fatty infiltration in muscle
fibers, and elevated serum creatine kinase (CK) level (Tsamis et al., 2022). Additionally,
most IIM patients demonstrate overactivation of cellular and humoral immunity as revealed
by the presence of infiltrating granzyme and perforin-secreting CD8+ cytotoxic T cells and
B cells in muscle and autoantibodies in their serum (Goebels et al., 1996; Greenberg et al.,
2005; Gunawardena et al., 2009). The involvement of innate immunity in IIM is also
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evidenced by the muscle enrichment of dendritic cells and
M2 macrophages for tissue repair (Rinnenthal et al., 2014).

Because the muscles of IIM patients exhibit mild-to-severe
inflammation phenotypes, most treatments for IIM target the
uncontrolled immune response. Glucocorticoids (GC) are the
front-line treatment that is widely adopted in PM and DM
(Greenberg, 2019). They are often administrated with other
immunosuppressants like azathioprine and methotrexate to
reduce steroid-related side effects like osteoporosis and
cardiovascular diseases (Oddis, 2016). Second-line treatments
such as cyclosporine, tacrolimus, and intravenous immunoglobin
are used to alleviate the disease symptoms in refractory or severe PM
and DM cases (Zeng et al., 2022; Skolka and Naddaf, 2023).
Nonetheless, these immunosuppressive agents are not enduringly
effective in treating some IIM patients, particularly those with sIBM
(Skolka and Naddaf, 2023). A recent study using human sIBM
xenografts demonstrated that T cell depletion does not alleviate the
muscle degenerative features (Britson et al., 2022), further
challenging the pathogenic role of inflammation in the disease.
Therefore, it is suspected that the immune response might not be the
fundamental cause of muscle damage in sIBM. Because abnormal
mitochondrial changes are commonly found in the muscle of sIBM
patients, which are more prevalent than other IIM subtypes (Oldfors
et al., 2006), impaired mitochondrial function might be an
underestimated factor in the pathogenesis of sIBM. Several
excellent reviews have discussed how mitochondrial dysfunction
may generate muscle weakness in sIBM (De Paepe, 2019; Chapa
et al., 2023; Danieli et al., 2023), but the underlying mechanism of
mitochondrial defects remains inconclusive. In this article, we
review the recent findings of mitochondrial dysfunction in sIBM
and discuss their possible linkage with various disease symptoms.
We will also discuss some potential mitochondrial-based therapeutic
strategies for the treatment of sIBM.

Symptoms, diagnosis, and current
treatment of sIBM

sIBM is a male-predominant disease that has a prevalence of
5–71 per million in the whole population (Tsamis et al., 2022).
Typically occurring after the age of 50 (Snedden et al., 2022),
sIBM is characterized by progressive and asymmetric weakness in
the quadriceps and long finger flexors rather than an acute or
subacute symmetrical proximal muscle weakness seen in other
subtypes of IIM (Zubair et al., 2023). Individuals with sIBM
experience a loss of muscle strength at a rate of 3.5%–28% per
year (Zubair et al., 2023) and can become wheelchair-bound at a
median time of 10.5 years after the disease onset (Skolka and
Naddaf, 2023). Respiratory compromise and dysphagia are
common risk factors for premature death in sIBM patients,
which may account for their slight but significantly shortened
lifespan when compared to healthy subjects (Shelly et al., 2021).
Recently, an association between sIBM and malignancy has been
proposed, although sIBM is not generally regarded as a risk factor
for cancer (Damian et al., 2022). Due to the slowly progressive
nature of symptom development, there is often a delay of
5–10 years between disease onset and confirmation (Huntley
et al., 2019).

The diagnosis of sIBM is typically made in patients having
experienced disease symptoms for more than 12 months with onset
after 45-year-old, (Greenberg, 2019; Skolka and Naddaf, 2023), and
most importantly exhibit histopathological hallmarks in their
muscle, including endomysial lymphocyte infiltration, rimmed
vacuoles, protein deposition, ragged red fibres, and the presence
of cytochrome c oxidase (COX)-negative myofibers (Tanboon et al.,
2020). The accumulation of proteins like amyloid beta (Aβ),
ubiquitin, phosphor-tau, sequestosome 1 (p62), and TAR DNA
binding protein 43 kDa (TDP-43) is also detected in the muscle
of some sIBM patients (Skolka and Naddaf, 2023). Autoantibodies
against cytosolic 50-nucleotidase (cN-1A), an enzyme highly
expressed in the skeletal muscle that catalyses the hydrolysis of
adenosine monophosphate (AMP) into adenosine and inorganic
phosphate (Salam et al., 2022; Diederichsen et al., 2023) can be
found in many sIBM patients but not in any other IIM subtypes
(Yamashita et al., 2023), making it an important evidence to the
disease diagnosis. Nevertheless, a substantial number of sIBM
patients displayed no elevated anti-cN-1A antibody in their
circulation, suggesting that the presence of antibody should not
be considered a necessary criterion in the disease diagnosis
(Mavroudis et al., 2021; Diederichsen et al., 2023). While
histological analysis of muscle biopsy remains an essential
procedure for sIBM diagnosis (Papadimas et al., 2019; Winkler
et al., 2021), other methods such as multi-osmics profiling are being
developed to screen for novel biomarkers with 100% sensitivity and
specificity (Cantó Santos et al., 2023).

The presence of anti-cN-1A antibodies and the elevated level of
inflammatory cytokines like interferon γ (IFN-γ), tumor necrosis
factor α (TNF-α), interleukin 7 (IL-7), and interleukin 32 (IL-32)
in the serum of sIBM patients indicate that both humoral and
cellular immunities are provoked (Tsamis et al., 2022). The
hyperactivation of cellular immunity in sIBM is demonstrated
by the transformation of CD4+ helper T-cells into CD28− cytotoxic
T-cells and the infiltration of CD8+ T cells in the patient’s muscle
(Miller et al., 2018). These cytotoxic T-cells might upregulate the
muscular expression of major histocompatibility complex I
(MHC-I) genes and induce muscle cell death, possibly via
perforin-granzymes or Fas ligand-mediated mechanisms (Fyhr
and Oldfors, 1998; Snedden et al., 2022). Indeed,
immunohistochemical analysis revealed stronger Fas
immunoreactivity in the atrophic fibres of sIBM patients than
that in other IIM subtypes (De Bleecker et al., 2001). Despite the
clear engagement of the immune system in the pathogenesis of
sIBM, disease alleviation via immune response inhibition is not
satisfactory, as a significant number of patients are irresponsive to
the classical immunosuppressive treatment (Askanas and Engel,
2008; Rygiel et al., 2015). For instance, some sIBM patients
receiving long-term GC treatment for more than 5 years had a
similar number of T-cells-invaded myofibers as those patients
without treatment (Pruitt et al., 1996). Muscle atrophy of sIBM
patients has also not ceased even though their CK levels have
returned to normal after GC treatment (Miller et al., 2018).
Moreover, the extent of immune cell infiltration in sIBM
patients was found to correlate poorly with the severity of
muscle weakness (Lightfoot et al., 2015). Hence, it is argued
that prolonged immune system activation in sIBM is secondary
to the intrinsic defects in the skeletal muscle.
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Presence of abnormal mitochondria
in sIBM

Mitochondrial DNA (mtDNA) mutation
and deletion

A distinguishing characteristic of sIBM that differentiates it
from other IIM subtypes is the presence of ragged red fibers in
the patient’s muscle (Boncompagni et al., 2012; Tanboon et al.,
2020), which appear as red rim in the speckled sarcoplasm after
Gomori Trichrome staining. Because ragged red signal is caused by
the accumulation of defective mitochondria below the plasma
membrane, these unusual histological signals are not exclusive to
sIBM but are also seen in the muscle of patients suffering from
primary mitochondrial disorders, such as myoclonic epilepsy with
ragged red fibers (MERRF) and mitochondrial thymidine kinase
(T2K) deficiency (DiMauro et al., 1985; Jou et al., 2022). Indeed,
some mitochondria in the muscles of sIBM patients are aberrant in
structure and function. In contrast to DM, where single point
mutations in mtDNA are frequently detected (Zhao et al., 2022),
sIBM muscle features large-scale, single segment deletions
(i.e., major rearrangement mutation) in the major arc of mtDNA
molecules. It has been reported that 122 deletion breakpoints and
33 different single nucleotide deletions were detected in the mtDNA
molecules of sIBM patients (Moslemi et al., 1997), which could lead
to the elimination of up to 1/3 of the whole mtDNA. Another study
confirmed an average of 67% lower mtDNA copy number in the
quadriceps and tibialis anterior muscle of sIBM patients than in
healthy subjects (Bhatt et al., 2019). Interestingly, heterogenous
mtDNA molecules with differential deletion regions could be
detected in a single myofiber (Rygiel et al., 2016), resulting in a
high heteroplasmy in the muscle. Moreover, the mtDNA deletion
might be present in continuous segments of the same muscle fiber,
creating a spatially unique pattern of the mitochondrial protein
COX staining within a single myofiber (Oldfors et al., 1995; Horvath
et al., 1998).

Biochemical outcomes ofmtDNA deletion in
sIBM—oxidative phosphorylation
(OXPHOS) defects

Because the human mtDNA encodes genes for electron transfer
complexes (ETC) subunits, mtDNA deletion might result in the loss
of mitochondrial content (Joshi et al., 2014; Catalán-García et al.,
2016a; Oikawa et al., 2020; Hedberg-Oldfors et al., 2021). In fact, the
severity of mtDNA deletion is highly associated with the number of
COX-deficient fibers, which are myofibers that contain abnormally
low levels of the mitochondrial complex IV, in the sIBM patients’
muscles (Landfeldt et al., 2015). Using single-cell analysis, Rygiel
reported that ~85% of COX-deficient cells have major mtDNA
deletion and rearrangement (Rygiel et al., 2016). Mitochondrion
morphology is also disrupted in the myofiber of sIBM patients, with
shortened and enlarged cristae and junction breaks, resulting in a
reduced mitochondrial length/width ratio (Oikawa et al., 2020). As
COX is an essential component of the ETC for ATP synthesis via
OXPHOS, COX deficiency in the myoblasts of sIBM patients leads
to a shift in ATP production from OXPHOS to glycolysis (Oikawa

et al., 2020), which is a key indicator of mitochondrial dysfunction
(Di Leo et al., 2023). The 31P-magnetic resonance spectroscopy
assessments revealed that the muscle of sIBM patients has a low
ability to synthesize ATP during resting, further supporting the
notion of impaired mitochondrial respiration in sIBM (Lodi et al.,
1998). A recent study also reported diminished mitochondrial
enzymatic activities in cultured sIBM myofibers under low
glucose availability, indicating compromised metabolic flexibility
(Catalán-García et al., 2020). Consequently, this low mitochondrial
activity might significantly impact the overall function of skeletal
muscle, causing weakness in contraction strength and endurance
(Gonzalez-Chapa et al., 2023).

Potential causes of mtDNA deletion in
sIBM—error in mtDNA replication

The occurrence of mtDNA deletion in the muscle of sIBM
patients is not limited to a consensus locus within a mtDNA
molecule but is present in multiple regions. This suggests that
the cause of mtDNA deletion and rearrangement might be more
complex than previously assumed. The underlying mechanism that
leads to the high frequency of mtDNA deletion in sIBM is still
unknown. However, it has been hypothesized that most truncated
mtDNA molecules in sIBM muscle are generated from the clonal
expansion of a single defective molecular species (Moslemi et al.,
1997). It has also been suggested that the mtDNA replication process
in sIBM muscle is prone to errors, further contributing to the
generation of multiple copies of defective mtDNA (Horvath
et al., 1998). The high replication error in sIBM is not caused by
any genetic defects in nuclear genes engaged in mitochondrial
genome maintenance, as a recent study found no pathogenic
variants in nuclear genes that contribute to the high levels of
mtDNA deletions in sIBM (Hedberg-Oldfors et al., 2021).
Instead, single nucleotide polymorphism of several key genes
involved in mtDNA replication and maintenance, including the
DNA helicase Twinkle, the DNA polymerase γ (POLG), and
ribonucleotide-diphosphate reductase subunit M2B (RRM2B), has
been identified in sIBM patients (Lindgren et al., 2015).
Nevertheless, the functional consequence of these single
mutations has not been elucidated.

Potential causes of mtDNA deletion in
sIBM—reactive oxygen species (ROS)
accumulation

A possible cause of high mtDNA damage in sIBM muscle is its
unique localization and structure. Mitochondria are the organelle
that produces ~90% of the total ROS in the cells as the byproducts of,
ETC complex I and III (Favaro et al., 2019). These short-lived yet
highly reactive molecules are unstable and cause structural damage
to mtDNA molecules (Urbina-Varela et al., 2020). The histone-free
nature of mtDNA molecules further increases their risk of ROS-
induced damage (Taylor and Turnbull, 2005). Histones protect
DNA against hydroxyl radical-induced strand breaks, which is a
critical defense mechanism against DNA damage (Ljungman and
Hanawalt, 1992). Indeed, the high ROS level and mitochondrial
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deletion are closely associated with each other inmany diseases, such
as hepatocellular carcinoma (Moriya et al., 2001) and chronic
periodontitis (Canakçi et al., 2006). It is important to note that
this “ROS-induced mutation” model can only be valid if the ROS
content in the muscle of sIBM patients is higher than that of the
healthy subjects. Several studies have demonstrated that ROS level is
augmented in the muscles of sIBM. First, myoblasts of sIBM patients
displayed a higher ROS concentration when treated with a
glutathione synthesis inhibitor (Oikawa et al., 2020). Second, a
high level of deglycase DJ-1, an important mitochondrial
protective protein against oxidative stress (Taira et al., 2004), has
been found in the mitochondria of sIBM muscle (Terracciano
et al., 2008), indicating the mitochondria are under high oxidative
stress and require stronger protection. In support of this notion,
fibroblasts cultured from sIBM patients displayed higher oxidative
stress, concomitant with increased antioxidant defense (Cantó-
Santos et al., 2023). Furthermore, the protein amount and gene
expression of ROS scavengers, Cu, Zn- superoxide dismutase (Cu,
Zn-SOD) and manganese superoxide dismutase (Mn-SOD), are
augmented in vacuolated myofibers in sIBM (Askanas and Engel,
1998; Tsuruta et al., 2002). However, comparable muscular lipid
peroxidation between sIBM patients and healthy subjects was also
reported (Catalán-García et al., 2016b), making the ROS
hypothesis inconclusive. Instead of having more mutation
inducers in the muscle, it is possible that the DNA repair
system is blemished in the patient’s tissue, hence facilitating the
propagation of mutated mtDNA. Because no examination of the
activity of DNA repairing machinery, such as apurinic/
apyrimidinic endonuclease (APE) or DNA damage-binding
protein (DDB) (Jang et al., 2019), in the sIBM sample, has been
performed, it remains unknown if the system is involved in the
accumulation of truncated mtDNA.

Potential causes of mtDNA deletion in
sIBM—β amyloid (Aβ) overproduction

In addition to the occurrence of mtDNA deletion, which
resulted in a loss of mitochondria in the muscle (Hedberg-
Oldfors et al., 2021), the accumulation of Aβ in the tissue
might further impair the function of the existing mitochondria
in sIBM. Studies have shown that overproduction of β amyloid
precursor protein (APP) in human muscle fibers resulted in
decreased COX activity, enlarged mitochondria, and the
formation of disrupted cristae that resemble the pathological
features of sIBM (Askanas et al., 1996). Abnormal
mitochondrial-related functions, including increased rate of
ROS production, reduced TCA cycle activities, and a shift of
fatty acid-to-glucose utilization, were also seen in the muscle of
APP transgenic mice (Boncompagni et al., 2012). It is believed that
the mislocation of Aβ to the mitochondrial membrane impedes the
function of the mitochondrial transporter, hence hindering the
imports of materials that are indispensable for mitochondrial
functions (Askanas et al., 1996; Devi et al., 2006). Although this
Aβ-mitochondrial interaction, as observed in neuronal tissues, is a
logical linkage of Aβ overproduction to the dysregulated
mitochondrial function, no colocalization of Aβ and
mitochondria in the muscle of sIBM patients has been reported.

Potential causes of mtDNA deletion in
sIBM—defective autophagy

It is also possible that the mitochondrial defect in sIBMmuscle is
attributed to the delayed organelle turnover, which might result in
the buildup of dysfunctional mitochondria. The “dysregulated
myoproteostasis” model, which covers protein synthesis defect,
improper folding, extensive post-translational modification, and
impaired degradation of proteins, has been proposed by Askanas
et al. to collectively explain the aggregation of abnormal proteins and
organelles in sIBM muscle (Askanas et al., 2015). Several studies
report that organelle degradation by macroautophagy is
compromised in sIBM. First, there is a lack of p62 binding
accuracy to LC3 in the patient’s muscle, although sIBM muscles
contain a higher frequency of LC3-positive autophagosomes,
indicating a stop of the autophagy process in its initial stages
(Lünemann et al., 2007; Nogalska et al., 2010; Suzuki et al.,
2019). Moreover, the activity of lysosomal enzymatic activity
cathepsin D and B was lower than the healthy control in the
sIBM muscle, which delays the clearance of LC3-associated
autophagosomes and the ubiquitinated proteins (Nogalska et al.,
2010). Indeed, the muscle biopsies of sIBM patients showed a high
density of lipofuscin aggregates, a marker of lysosomal dysfunction
(Lu et al., 2020). Nicot et al. (2014) further specified the mechanism
by demonstrating that the autophagy cargo receptor NBR1-
mediated removal of protein aggregates was inhibited in sIBM.
This delayed autophagy provides a logical explanation for the
accumulation of p62 and Aβ aggregates in the autophagic
vacuoles in sIBM (Güttsches et al., 2017). Furthermore, several
genes associated with autophagosome-lysosome processing have
been identified as the risk alleles in sIBM (Weihl et al., 2015;
Gang et al., 2016; Papadopoulos et al., 2017). Based on these
findings, pharmacological inhibition of autophagy by chronic
colchicine administration in mice is used as an animal model for
sIBM research (Ching et al., 2013). Interestingly, chaperone-
mediated autophagy is increased in the muscle of sIBM, as
evidenced by elevated levels of lysosomal membrane protein
LAMP2A and the chaperone Hsp70 co-aggregates (Cacciottolo
et al., 2013). Because chaperone-mediated autophagy mainly
targets specific proteins but not large organelles, this escalated
chaperone-mediated autophagy might be a compensatory
response to abnormal protein aggregation, like p62, in sIBM.
Given that the removal of damaged mitochondria is autophagy-
dependent, the dysregulated autophagy in sIBMmight jeopardize its
clearance. Although no comprehensive assessment of mitophagy,
the specific pathway of autophagy to induce mitochondria
degradation (Lu et al., 2023), has been performed in sIBM
muscle, decreased expression of dynamin-related protein 1
(DRP1) has been detected in cultured myoblasts of sIBM patients
(Oikawa et al., 2020). DRP1 is a critical factor that promotes the
splitting of mitochondria for subsequent degradation (Picca et al.,
2023); this low level of DRP1 indirectly supports the hypothesis that
the clearance of mitochondria in sIBM muscle might be impaired.
Moreover, abnormal accumulation of the mitochondrial fusion
marker mitofusin 1 (MFN1) and the mitophagy receptor Bcl-2
adenovirus E1B19 19-kDa interacting protein (BNIP3) was
observed in the ragged red fibers of the sIBM patients (Askanas
et al., 2015). Because mitofusin accumulation triggers mitochondrial
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enlargement, which hinders the sequestration of damaged
mitochondria (Joaquim and Escobar-Henriques, 2020),
augmented mitofusin content in the sIBM muscle may result in
defective clearance of Bnip3-tagged cargos.

Mitochondrial defects and immune
response in muscle

Although the invasion of immune cells is commonly observed in
all IIM, inflation of highly differentiated CD8+CD28− cytotoxic
T cells is uniquely present in sIBM (Greenberg and Bourc’his,
2019). It is proposed that autoimmunity is the root cause of
sIBM pathogenesis, as genetic mutation of TDP-43 and p62 in
myotilinopathies and desminopathies do not result in the formation
of protein aggregates (Olivé et al., 2008; Olivé et al., 2009). Moreover,
stimulation of cultured muscle cells by inflammatory cytokines, such
as IL-1β and IFNγ, or upregulation of much MHC class I alone is
sufficient to trigger the formation of protein aggregates and rimmed
vacuoles (Fréret et al., 2013; McCord and Day, 2023a; McCord and
Day, 2023b). Furthermore, rhabdomyosarcoma cells challenged
with the IgG from sIBM patients effectively induced the
aggregation of p62 (Tawara et al., 2017). Finally, altering the
immune system by virus infection like HIV can produce
pathological features of sIBM like p62 aggregates and the
formation of rimmed vacuoles in the muscle (Hiniker et al.,
2016). While these findings support the causal relationship
between autoimmunity and muscle degeneration, mitochondrial
defects in the muscle of sIBM might have feed-forward activity
to exaggerate tissue inflammation. Supporting this notion, Shelton
et al. (2019) found that mutation of the mitochondrial transporter,
aspartate glutamate carrier 1 (AGC1), produced a proinflammatory
phenotype in the muscle biopsies of dogs. Indeed, recent studies in
mitochondrial biology have confirmed that excessive mitochondrial
dysfunction can trigger tissue damage and subsequent immune
responses via regulated cell death mechanisms.

In principle, damaged mitochondria release their organelle
contents, such as mtDNA, cardiolipins, and Ca2+, into the cytosol
and the extracellular space (Picca et al., 2023). These mitochondrial-
derived damage-associated molecular patterns (DAMPs) are
regarded as foreign molecules by the pattern recognition
receptors of the immune cells due to the bacterial ancestry of
mitochondria. Induction of the innate immune response triggers
the activation of pro-inflammatory pathways like toll-like receptor
(TLR) signalling (Picca et al., 2023). Indeed, it has been reported that
binding of oxidized cardiolipins to TLR4 in the cytosol initiates the
NF-κB signalling, leading to increased myostatin (MSTN)
expression in the sIBM muscle (Sachdev et al., 2018).

The presence of mtDNA in the cytosol is an intrinsic warning of
pathogen infection or cellular dysfunction. These cytosolic mtDNAs
are sensed by the cyclic guanosine monophosphate (GMP)-AMP
synthase (cGAS) and promote its dimerization, leading to the
production of second messenger cyclic GMP-AMP (cGAMP).
The binding of cGAMP to the endoplasmic reticulum protein
STING (stimulator of interferon genes) induces its translocation
to the Golgi apparatus, where it activates the TANK-binding kinase
1 (TBK1) to phosphorylate the transcription factors interferon
regulatory factor 1 (IRF1) and the IκB kinase complex.

Consequently, transcription of NFκB-targeted genes such as type
I interferons will be enhanced, attracting the immune cells to the
injured muscle (Zhang et al., 2022). Although no studies have been
performed to evaluate the cGAS-STING pathway in the animal
models of sIBM or patient samples, the mtDNA-induced cGAS-
STING pathway activation is detected in cells when TDP-43 invades
mitochondria (Yu et al., 2020). Moreover, a recent report by Irazoki
et al. (2023) demonstrated that the release of mtDNA after
mitochondrial dysfunction is sufficient to induce sterile
inflammation in the skeletal muscle, further supporting the role
of cGAS pathway in myositis development.

The release of mtDNA may activate the pyroptotic cell-death
pathways via activating another intracellular DNA sensor NLRP
(nucleotide-binding oligomerization domain, leucine rich repeat
and pyrin domain containing) proteins to form inflammasomes
(Marchi et al., 2023) and the subsequent pyroptosis signalling.
Inflammasomes are multiprotein complex containing leucine-rich
repeated containing proteins (e.g., NLRP2, AIM2, Pyrin), the
adapter protein ASC (apoptosis-associated speck-like protein
containing a caspase recruitment domain CARD), and pro-
caspase 1. Although the molecular details of mtDNA-induced
NLRP activation are still unknown, the outcomes of
inflammasome formation have been well-defined. Once the
caspase 1 in the inflammasome is activated, it cleaves the
membrane pore protein Gasdermin D and interleukins (IL-1 and
IL-8). Consequently, the membrane permeability is increased,
leading to cell swelling, leakage of cellular proteins, and the
formation of functional IL-1β and IL-18, all of which are strong
inflammation inducers (Sharma and Kanneganti, 2021). A recent
study demonstrated that the formation of NLRP3 inflammasome
and pyroptosis was upregulated in the muscle fibers of DM and PM
(Liu et al., 2021), its activity in sIBM remains to be investigated.
Nevertheless, it has been demonstrated that ketogenic diet could
alleviate the clinical symptoms of sIBM patients, possibly through
suppressing NLRP3 inflammation activation, suggesting that
pyroptosis is involved in the pathogenesis of sIBM (Phillips
et al., 2020).

Recently, Kamiya et al. (2022) reported that inhibiting the
necroptosis signalling effectively ameliorated the invasion of
CD8+ cytotoxic T lymphocytes and thus suppressed muscle
injury in PM. Necroptosis is a caspase-independent form of
programmed cell death that results in membrane rupture, cell
swelling, and leakage of DAMPs to promote inflammation
(Pasparakis and Vandenabeele, 2015). The canonical necroptosis
pathway is typically initiated by the cytokine TNFα in caspase 8-
inactive cells. Once TNFα binds to its cognate receptor TNFR1, the
receptor forms a complex that contains TNFR1-associated death
domain protein (TRADD) and receptor-interacting serine/
threonine protein kinase 1 (RIPK1). In certain conditions such as
growth factor deprivation, the ligand activated TNFR-TRADD-
RIPK1 complex further recruits and activates caspase 8 to cleave
the downstream apoptosis executors like BH3-interacting domain
death agonist (BID) to induce mitochondrial member
depolarization and release of cytochrome c for caspase
3 activation (Luo et al., 1998). In cells with the absence of
caspase 8, activation of TNFR1 promotes the heterodimerization
of RIPK1 and RIPK3, forming the complex necrosome. Because
RIPK3 is a proteolytic substrate of caspase 8, the formation of
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necrosome will only be formed in the absence of caspase 8 (Kang
et al., 2013). The necrosome further recruits the mixed-lineage
kinase domain-like protein (MLKL), which is phosphorylated by
RIPK3 to form active oligomers for plasmamembrane translocation.
Due to its porous nature, the insertion of MLKL oligomers causes
leakage of cellular content to the extracellular environment or cell
rupture to induce the tethering of immune cells. Interestingly,
activation of RIPK1 and RIPK3 triggers mitochondrial
dysfunction (Chen et al., 2018) and activates the pyruvate
dehydrogenase complex to produce excessive ROS (Yang et al.,
2018), respectively. The high ROS feedbacks to the necrosome
complex formation, forming a positive feedback loop of the
necroptosis pathway to further enhance the necroptosis signalling
(Qiu et al., 2018). Peng et al. (2022) reported that the necroptosis
machinery is highly expressed in several subtypes of IIM, including
DM and IMNM. Moreover, overactivation of the necroptotic
pathway is sufficient to cause cell death of healthy muscle cells
(Peng et al., 2022). Although high expression of necroptosis inducer
TNF-α is detected in the muscle of sIBM patients (Schmidt et al.,
2008), the activity of caspase 8 in the muscle has never been studied,
making it a mystery if necroptosis is also elevated in sIBM like other
IIM subtypes.

Targeting mitochondrial health as a
new treatment strategy of sIBM

Due to the immunosuppressant-resistant feature of sIBM,
exercise remains the main-stay therapy for sIBM (Koo et al.,
2019). In general, endurance exercise is known to benefit skeletal
muscle by increasing the disposal of ROS-damaged proteins and the
synthesis of newmitochondria to accelerate mitochondrial turnover,
thereby maintaining a healthy mitochondria network with boosted
OXPHOS capacity (Sorriento et al., 2021). Resistance exercise also
enhances the cellular antioxidation capacity by activating FOXO3, a
transcription factor that induces the expression of antioxidant
enzymes like SOD, to improve muscle function in sIBM (Koo
et al., 2019). Interestingly, Coudert et al. (2022) recently reported
that testosterone supplementation and exercise training may exert
additive effects in improving muscle performance andmitigating the
overactivated immunity in sIBM patients. However, performing
regular exercise relies heavily on self-motivation and is difficult
for cane- or wheelchair-bound patients at the advanced stage of
IBM. Therefore, there is an urge to develop agents that recapitulate
the benefits of exercise, such as upregulating antioxidant activity,
increasing mitochondrial biogenesis, or promoting mitochondrial
removal in the muscle. Considering that AMPK activation is a
critical event in initiating mitochondrial biogenesis and mitophagy
during exercise, AMPK-activating agents are attractive candidates
for this purpose. Indeed, the AMP analogue 5-Aminoimidazole-4-
carboxamide-1-beta-D-ribofuranosyl 5′-monophosphate (AICAR)
downregulated the expression of atrophic marker Atrogin/MAFbx
in the gastrocnemius muscle and relieved cancer-induced muscle
atrophy in mice (Hall et al., 2018). Another Food and Drug
Administration (FDA)-approved AMPK activator, metformin, is
found to promote mitophagy in type 2 diabetic patients (Picca et al.,
2023). In a cardiovascular disease mouse model, metformin
treatment suppressed ROS production in the abnormal heart

tissue in an AMPK-dependent manner, which prevented the
NLRP3/IL-1β-mediated inflammation and cardiovascular lesions
(Marek-Iannucci et al., 2021).

Antioxidant application may be helpful in rescuing cell death in
the sIBM muscle by neutralizing ROS into less harmful products
(Johnson et al., 2023). For example, the well-known antioxidant
polyphenol resveratrol has been shown to suppress myostatin-
mediated cell death by activating the NF-κB signalling in
cultured sIBM myoblasts (Askanas et al., 2012). The use of
mitochondrial-targeted antioxidants like MitoQ and MitoVitE,
which are hundred folds more effective in rescuing mitochondrial
oxidative stress-induced cell death in human fibroblasts than other
non-specific, cellular antioxidants like idebenone and vitamin E
(Jauslin et al., 2003), might also alleviate the symptoms of sIBM
(Rostamzadeh et al., 2024). Indeed, studies in numerous
experimental models have confirmed the protective effect of these
mitochondrial-targeted antioxidants in treating ROS-associated
diseases like Parkinson’s Disease and atherosclerosis (Jiang et al.,
2020; Sulaimon et al., 2022), which provide a solid scientific basis to
extend their translational potential in ameliorating sIBM.
Nevertheless, caution must be exercised when antioxidants are
used in the sIBM treatment because exogenous supplementation
of NADH and GSH may disrupt the redox balance and impose
reductive stress on the cell (Xiao and Loscalzo, 2019). In fact,
multiple studies have correlated excessive reductive stress with
the development of inflammatory-associated diseases like
cardiomyopathy, muscular dystrophy, and Alzheimer’s disease
(Pérez-Torres et al., 2017).

Target mitophagy, a specific form of autophagy that degrades
mitochondria exclusively (Lu et al., 2023), may also be a viable
approach to alleviate myopathies associated with excessive oxidative
stress (Ito et al., 2022). Traditional mitophagy inducers like
oligomycin and carbonyl cyanide m-chlorophenyl hydrazone
(CCCP) have been widely adopted in the in vitro system but
their high toxicity limits their clinical applicability (Lee et al.,
2023). Therefore, considerable efforts have been devoted to
screen for alternative inducers with low toxicity for clinical
applications. In 2021, Luan et al. (2021) reported that Urolithin
A (UroA) reversed the declined mitophagy in cultured myoblasts of
Duchenne Muscular Dystrophy (DMD) patients and mdx mice,
which led to a reduction in muscle damage. UroA is a metabolite of
microflora produced from the polyphenols ellagic acid and
ellagitannins in food (Faitg et al., 2024), which is considered safe
for oral consumption in humans as a dietary supplement by the FDA
(García-Villalba et al., 2022). In a randomized, double-blinded,
placebo-controlled clinical trial, subjects consuming UroA for
4 months exhibited augmented expression of mitophagy markers
in their muscle biopsy, which was associated with higher complex I
and II-mediated respiration (Faitg et al., 2024). Another clinical trial
demonstrated that UroA effectively improved mitochondrial
function in the skeletal muscle of the elderly by upregulating
mitochondrial gene expression (Andreux et al., 2019). The
positive effect of UroA on mitochondrial respiration was also
reflected by the 65% higher running capacity in the UroA-
administrated Wistar rats (Nat Med, 2016). Mechanically, UroA
triggers mitophagy via lowering the mitochondrial membrane
potential, as short-term UroA treatment induced membrane
depolarization followed by augmented mitophagy marker
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expression (Ryu et al., 2016). Based on the promising effect of UroA
in improving muscle function of age-related atrophic fibers, which
share some biochemical characteristics of sIBM myofibers (Romani
et al., 2021), it is reasonable to assume that UroA could also be
effective in ameliorating mitochondrial defects and reducing muscle
damage in sIBM. In supporting the idea that maintaining
mitochondria activity is important to sustain the survival of the
sIBM muscle cells, Oikawa et al. (2020) reported that mitochonic
acid 5 (MA-5), a plant derivative that facilitates mitochondrial
activities, such as increasing ATP synthesis, reducing ROS
production, and promoting OXPHOS, was effective in protecting
the myoblasts of sIBM patients from the buthionine sulfoximine-
induced cell death. Presumably, mitochondrial health-improving

agents like UroA andMA-5might represent safe and effective agents
for sIBM patients to improve their muscle function.

Conclusion

Although pathological hallmarks of sIBM have been recognized
for several decades, the precise molecular mechanism for these
cellular abnormalities is still mysterious. Most studies on sIBM
pathogenesis are associative in nature, and the lack of
mechanistic studies hinders the development of effective
treatment, making it still an incurable disease nowadays. The
slow progress in the development of new sIBM therapy can be

FIGURE 1
Prominent mitochondrial abnormalities in sIBM muscle include COX-negativity, OXPHOS suppression, delayed organelle clearance, and
mislocalization of proteins. Augmented ROS produced by the dysfunctional mitochondrial might damage the organelle, resulting in the release of
mitochondrial content into the sarcoplasm. These mtDAMPs are strong inducers of the TLR and cGAS-STING pathway, which promote inflammatory
cytokines production and muscle breakdown via the NF-κB signaling. Accumulation of mtDAMPs and ROS might also induce the formation of
NLRP-mediated inflammasome and TNF-α-triggered necrosome, leading to compromised sarcolemma integrity. Leakage of cellular content generates
DAMPs that might serve as activation signals for T-cell recruitment in sIBM.
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attributed, in part, to the uncertainty of the sequential relationship
between muscle damage and overactivated immune response.
Moreover, most studies of sIBM have primarily focused on the
detrimental consequence of hyperactive immune cells and protein
aggregation on skeletal muscle; the outcomes of other damaged
organelles like mitochondria have received little attention. The
conventional view of mitochondria solely as ATP-producing
powerhouses biased our perception that defective mitochondria
in IIM might only result in metabolic deficiency, thus
underestimating its functional outcomes. Recent discoveries that
highlight mitochondrial defects as inducers of immune response via
pyroptosis and necroptosis in many different issues have provided
new insights into the pathogenesis of IIM (Figure 1). Hence, it is
imperative to recognize the etiological role of mitochondria and
developing novel drugs that improve the mitochondrial health as a
novel treatment strategy for sIBM.
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