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Autophagy is an evolutionarily conserved cellular recycling process that
maintains cellular homeostasis. Despite extensive research in endocrine
contexts, the role of autophagy in ovarian and testicular steroidogenesis
remains elusive. The significant role of autophagy in testosterone
production suggests potential treatments for conditions like oligospermia
and azoospermia. Further, influence of autophagy in folliculogenesis,
ovulation, and luteal development emphasizes its importance for improved
fertility and reproductive health. Thus, investigating autophagy in gonadal
cells is clinically significant. Understanding these processes could transform
treatments for endocrine disorders, enhancing reproductive health and
longevity. Herein, we provide the functional role of autophagy in testicular
and ovarian steroidogenesis to date, highlighting its modulation in testicular
steroidogenesis and its impact on hormone synthesis, follicle development,
and fertility therapies.
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Introduction

Autophagy is referred to as an intracellular catabolic pathway that is genetically
determined and evolutionarily conserved from yeast to higher primates (Vargas et al.,
2023). In typical physiological contexts, autophagy mediates the internalization of cellular
cargoes such as; old protein and damaged organelles with lysosomes thereby sequestering
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TABLE 1 Summary of recent studies investigating autophagy in testis and ovaries.

Sr Author Year Methods Major findings Implications for
reproductive health

Ref

1 Esmaeilian
et al.

2023 Pharmacological inhibition, genetic
interruption via siRNA and shRNA, and
Ex vivo explants of testicular and ovarian
tissue

Lipophagy is crucial in sex hormone
production
GTH upregulates ATGs and
accelerates autophagy via promoting
its link with autophagy

Potential treatments for reproductive
disorders and related neoplasms

Esmaeilian
et al. (2023)

2 Aldawood
et al.

2020 In vivo, treatment with acrylamide,
histological, hormonal, TUNEL analyses,
and real-time-PCR

acrylamide reduces ovarian
demographics and estradiol
concentrations. Pyknotic
characteristics and nuclear
fragmentation. Apoptosis of granulosa
cells. High doses induced
overexpression of various autophagy
genes

potential reproductive toxicity of
acrylamide that warrants further
exploration

Aldawood
et al. (2020)

3 Harrath et al 2022 Inhalation exposure of female rats to
ethylbenzene at various doses for 30 min
daily for 1 month

Ethylbenzene disrupts ovarian
function, leading to decreased growing
follicles, increased abnormal follicles,
accelerated reproductive aging, and
imbalances in reproductive hormones

Ethylbenzene exposure adversely
affects ovarian structure and function
and triggers autophagy and apoptosis

Harrath et al.
(2022)

4 Yong et al. 2021 Estrus cycle analysis,
Immunohistochemistry,
Immunofluorescence staining, and
Western blotting

Malathion disrupts the estrus cycle,
reduces ovarian hormone secretion,
increases ROS, and induces ovarian
autophagy and apoptosis; resveratrol
mitigates these effects

Resveratrol is a potential preventive
measure against malathion-induced
ovarian damage and estrus cycle
disorders

Yong et al.
(2021)

5 Gao et al. 2018 Steroidogenic disruptions of autophagy in
specific cells

Autophagy upregulates cholesterol
intake in Leydig cells

Impaired autophagy contributes to
declined testosterone in patients with
hypogonadism

Gao et al.
(2018a)

6 Long et al. 2022 Neonatal cryptorchid infertile rats, in vivo
RA supplementation, in vitro testicle
culture with RARα antagonist

RA upregulates c-Kit, Stra8, and
Sycp3, and regulates PI3K-Akt-mTOR
signaling, autophagy, and blood-testis
barrier permeability in cryptorchid
rats

RA treatment offers potential
therapeutic strategies for
cryptorchidism-related infertility

Long et al.
(2022)

7 Rejani et al. 2022 Experimental dietary intervention on
prepubertal rats

A prepubertal HFD-HF induces
hypogonadotropism and autophagy-
facilitated defective ovarian follicle
differentiation, impacting the fertility
of adult rats

Early exposure to an HFD-HF diet
negatively affects gonadotropin levels
and disrupts autophagy-mediated
ovarian follicle differentiation,
potentially influencing reproductive
health in adulthood

Rejani et al.
(2022)

8 Xie et al. 2021 Analysis of melatonin expression levels in
PCOS patients and
dehydroepiandrosterone -induced PCOS
rat model

Reduced melatonin expression in
PCOS patients, correlation with
testosterone and cytokine levels,
protective effect on ovarian function
via PI3K-Akt pathway regulation

Melatonin is a potential target in the
treatment of PCOS and improving
ovarian function through autophagy
modulation

Xie et al.
(2021)

9 Zhang et al. 2023 Overexpression of CIRBP in YGCs
cultured at 32°C for 6 and 12 h

CIRBP overexpression induces
autophagy in YGCs, enhancing E2 and
P4 in response to hypothermia

Autophagy is essential in the synthesis
and secretion of ovarian hormones
under mild hypothermic conditions

Zhang et al.
(2023)

10 Chen et al. 2019 In vivo and in vitro exposure to AFB1 rat
varying concentrations

AFB1 exposure reduced testosterone,
LH, and FSH levels, quantitatively
decreased Leydig cells and induced
apoptosis via AMPK/mTOR-mediated
autophagy

AFB1 adversely affects Leydig cell
function, suggesting potential
reproductive health risks related to
endocrine disruption and cell
apoptosis

Chen et al.
(2019)

11 Meng et al. 2020 Perinatal exposure study with pregnant
SD rats

Perinatal bisphenol A exposure
advances puberty, increases E2, LH,
and FSH concentrations, and affects
endometrium thickness in female
offspring

Adverse effects linked to impaired
autophagy via TLR4/NF-κB and
mTOR pathways

Meng et al.
(2020)

12 Liu et al. 2020 Ex vivo experiments using rat ovarian
granulosa cells treated with NP at various
concentrations

NP exposure led to a significant
reduction in granulosa cell viability,
increased apoptosis with G2/M arrest,
induction of autophagy, and elevated
ROS production. Autophagy

NP exposure may adversely impact
female reproductive health by
promoting apoptosis and autophagy
in ovarian granulosa cells through the

Liu et al.
(2020a)

(Continued on following page)
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and reutilizing to maintain cellular homeostasis (Debnath et al.,
2023). Lysosomal degradation further characterizes a common
endpoint of various autophagic mechanisms, such as chaperone-
mediated autophagy (CMA), microautophagy, and
macroautophagy, hither ahead denoted as autophagy; each with
distinct purpose and indiscriminate sequestration and degradation
(Levine and Klionsky, 2004; Ma et al., 2023). Additionally, cells
engage other specialized mechanisms for selective targeting, such as
lipophagy, zymophagy, mitophagy, and crinophagy; to target
specific substrates (Vargas et al., 2023). The former ones are
usually referred to as “bulk” or “non-selective” autophagy and
the latter ones are denoted as “selective” autophagy. While the
existence of autophagy has been recognized for some time, its
comprehensive exploration has only recently gained momentum.
Besides its homeostatic functions, autophagy significantly influences
the disease course of almost all cancers, various infections, immune
responses, and multi-organ disorders, as well as neurodegenerative
conditions (Nanayakkara et al., 2023; Yamamoto et al., 2023).
Autophagy works as a quality-control process, removing invading
pathogens, protein masses, and dysfunctional or senescent proteins
and organelles from cells (Yao et al., 2021). Additionally, it plays
important roles in diverse processes such as cellular differentiation,
embryonic development, and aging, potentially offering protective
effects (Wang et al., 2019; Aman et al., 2021). The recognition of
autophagy’s substantial implications in various diseases has
heightened research interest in exploring its physiological and
pathological aspects.

Earlier, we have discussed autophagy in relation to lipolysis
(Khawar et al., 2019; Khawar et al., 2021a) in the liver (Nazeer
et al., 2023) and reproduction (Gao et al., 2019; Gao et al., 2020;
Khawar et al., 2022). Interestingly, extensive research on
autophagy in normative and pathological endocrine settings
has yielded promising knowledge, whereby a unified
understanding of steroidogenesis in reproductive organs
remains enigmatic.

Despite the promising implications of autophagy (as
summarized in Table 1) in preclinical investigations, and as
of our current knowledge, there exists a notable literature gap
and further elucidation of these mechanistic insights is
imperative to advance our comprehension and potentially
pave the way for novel therapeutic interventions in
reproductive health. Therefore, we, herein, explore the
involvement of autophagy in ovarian and testicular
steroidogenesis, along with the scrutiny of its regulatory
mechanisms.

Autophagy regulation

Autophagy, a finely tuned and multi-step mechanism, is
primarily regulated by autophagy-related (ATG) proteins that
have remained evolutionarily conserved from yeast to mammals
(Tsukada and Ohsumi, 1993; Yang and Klionsky, 2010). Figure 1
illustrates additional significant findings in autophagy research.
Following initiation, various regulators come into play at the
phagophore assembly site, guiding the progression through
subsequent stages, including 1) nucleation, 2) expansion and
closure of the phagophore, 3) maturation, and 4) degradation.
Several genes regulate this mechanism (Figure 2) including the
mechanistic target of rapamycin (mTOR), an inhibitory regulator
(Ariosa et al., 2021) consisting of complexes; the mTOR complex I
(mTORC-I) and mTORC-II of which the former responds to
nutrient stress and later is influenced by growth factors or via
PI3K/Akt signaling (Lim et al., 2021). Non-selective autophagy,
also known as mTORC1-dependent autophagy, is triggered by
nutrient stress and a low ATP/AMP ratio (Whitmarsh-Everiss
and Laraia, 2021). ULK1 complex activation phosphorylates the
ATG13 and FIP200 (Nie et al., 2021) which then leads to the
phosphorylation of the PI3K class III complex I, starting
phosphatidylinositol 3-phosphate (PI3P) production on the
surface of omegasome–the assembly site of phagophore on the
endoplasmic reticulum (ER) (Nishimura et al., 2017). PI3P
recruits WIPIs and DFCP1 to the site. The expansion of the
phagophore involves two complexes: The
ATG12–ATG5–ATG16L1 complex and ATG8-family proteins
like LC3-II, a product of the LC3 conjugation cascade, which
facilitates phagophore expansion and closure, forming an
autophagosome that sequestrates the cargo. Previously, we
showed that SIRT1 is responsible for the deacetylation of
LC3 within the nucleus from where it relocates to the cytoplasm
and engages in the process of autophagosome formation via
interacting with other autophagic components (Khawar
et al., 2021b).

Selective or mTORC1-independent autophagy is mediated by a
total of 26 mammalian receptors as summarized by Vargas et al.
(2023). Following the phagophore closure, the subsequent steps
involve the fusion of lysosome with autophagosome, giving rise to
an amphisome—a non-degradative, single-membrane structure
that further matures into an autolysosome (Zhao et al., 2021).
Autophagosome acidification, facilitated by multi-subunit
complexes comprising V1 and V0 sectors known as V-ATPase,
is important for hydrolysis. Then LC3-II complexes are dissociated

TABLE 1 (Continued) Summary of recent studies investigating autophagy in testis and ovaries.

Sr Author Year Methods Major findings Implications for
reproductive health

Ref

inhibition enhanced NP-induced
apoptosis, and ROS inhibition with
N-Acetyl-l-cysteine attenuated
autophagy and cell death

activation of the ROS-dependent Akt/
AMPK/mTOR pathway

13 Chen et al. 2022 Experimental exposure to nano-copper at
varying doses for 28 days

Nano-copper impairs sperm quality,
fructose, and hormone secretion,
increases ROS, and alters testes

Nano-copper harms male
reproduction via AKT/mTOR and
oxidative stress

Chen et al.
(2022a)

aAFB1, aflatoxin B1; CIRBP, cold-induced RNA-binding protein; FSH, follicle stimulating hormone; HFD-HF, high-fat-high fructose diet; NP, nonylphenol, PCOS, polycystic ovary syndrome,

RA: retinoic acid, ROS: reactive oxygen species.
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from the outer surface. A recruitment of machinery ensues,
orchestrating the lysosomal fusion into autophagosomes which
encompasses soluble N-ethylmaleimide sensitive fusion protein
attachment protein receptors, various small GTPases, and their
respective effector proteins (Lőrincz and Juhász, 2020). The
Homotypic Fusion and Protein Sorting complex has been
implicated in mediating the fusion between lysosomes and
autophagosomes (Kondapuram et al., 2019). Following the
maturation, sequestrated cargo undergoes cathepsins-mediated
degradation. The resulting degraded material is transported
back into the cytosol through lysosomal efflux transporters, e.g.,
the sugar transporter Spinster which is used for cellular building or
energy production (Zhao et al., 2021). In case of prolonged
starvation-induced autophagy, lysosomes undergo recycling
through a process called autophagic lysosome reformation,
regulated by an mTOR-dependent pathway. More
comprehensive mechanistic insights into autophagy are
available (Levine and Klionsky, 2004; Klionsky, 2005;
Mizushima et al., 2008; Vargas et al., 2023). While our
knowledge of the molecular entities in mammalian autophagy
continues to expand and solidify, much remains to be
elucidated. A comprehensive understanding of the regulatory
mechanisms, encompassing both internal and external signals as
well as downstream effectors, is essential. Such insights will
significantly influence future therapeutic strategies for a variety
of clinical disorders.

Autophagy in testicular steroidogenesis

Testosterone, mainly produced in Leydig cells, portrays an
essential function in the development of male characters and the
sustenance of sexual function. Free cholesterol (FC) is a precursor
for the biosynthesis of testosterone and can be obtained through
various ways: 1) de novo production via acetic acid; 2) breakdown of
accumulated esters of cholesterol, found in lipid droplets (LDs) or
cell membranes, 3) extraction of serum lipoproteins, particularly
high-density lipoprotein (HDL) (Thomas et al., 2012; Choi et al.,
2021). Membrane carriers, e.g., the steroidogenic acute regulatory
(StAR) protein, are important in relocating FCs to mitochondria
(Galano et al., 2022). Inside the mitochondria, the enzyme
cholesterol side chain cleavage (CYP11A1) converts FC into
pregnenolone, which later, moves to the smooth ER, where it
undergoes processing by three steroidogenic enzymes, ultimately
leading to the synthesis of testosterone (Luetjens et al., 2012).

In rats, Leydig cells responsible for testosterone secretion show
elevated autophagy levels compared to Sertoli cells (Xu et al., 2023)
and primary Leydig cells (Zhang et al., 2022). Specifically,
autophagosomes selectively target organelles important for
steroid production, for example, mitochondria and smooth ER,
within Leydig cells. This implies a potential role for autophagy in
the steroid synthesis process. Moreover, inhibited cells experience an
increase in autophagy levels, while luteinizing releasing factor-
stimulated cells see a decrease; the autophagic activity level

FIGURE 1
Major research discoveries in autophagy. In 1955, Christian de Duve coined the term “autophagy,” (Sabatini and Adesnik, 2013) paving the way for
later discoveries of 1963 (Klionsky, 2008), G. Mortimore in 1976 (Mortimore et al., 1996), Seglen in 1982 (Gordon and Seglen, 1982), J. F. Dice in 1985 (Dice,
2007), Y. Ohsumi in 1993 (Tsukada and Ohsumi, 1993). Important breakthroughs in 1998 (Mizushima, 2020), including the identification of ATG genes
(Sou et al., 2008), the ATG conjugation system (Choi et al., 2018), and insights into autophagosome formation (Shibutani and Yoshimori, 2014),
marked significant progress in understanding this important cellular process.
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correlates with steroid release rates (Yi and Tang, 1995). This
modulation pattern in autophagy resembles the observed
crinophagy in pituitary cells which are responsible for peptide
secretion. Since steroids are not stored in secretory bodies, Leydig
cells managing excess secretory material degrade organelles involved
in steroid production (Yi and Tang, 1995). Therefore, classical
autophagy in rat Leydig cells seems to regulate steroid secretion,
much like how crinophagy regulates peptide secretion in endocrine
cells. It is likely that steroidogenic cells in the ovary and adrenal
gland also engage in this process.

Notably, targeting the differentiation of Leydig cells and
subsequent testosterone production via genetic manipulation in
the form of N6-methyladenosine (m6A) modification is of great
significance owing to various regulatory roles in spermatogenesis (Li
et al., 2024), tumor development (Diao et al., 2023) and
embryogenesis (Muhammad Babar et al., 2023). Therefore, its
manipulation in the current scenario was recently accompanied
by Chen et al. (2020) when they investigated m6A methylation in
regulation of Leydig cell differentiation and their subsequent

physiology. They underscored a pivotal function of m6A RNA
methylation in regulating testosterone production in Leydig cells
through autophagy modulation as shown in Figure 3A. This
discovery opens up avenues for innovative therapeutic strategies
targeting m6A RNA methylation to address reduced serum
testosterone levels in patients with oligospermia and azoospermia
(Chen et al., 2021).

Our recent research reveals that autophagy is pivotal in
testosterone synthesis by supplying essential substrates. The
scavenger receptor class B type I (SR-BI) aids the selective intake
of cholesteryl esters having its source in lipoproteins. These findings
indicate that the autophagy-lysosome pathway breaks down the
Na+/H+ exchanger regulatory factor 2 (NHERF2), which functions
as a suppressor of SR-BI. Consequently, the accumulation of
NHERF2 leads to the suppression of SR-BI when ATG5, ATG7,
and Sirt1 are deleted in murine Leydig cells, resulting in
compromised cholesterol absorption and decreased testosterone
production as depicted in Figure 3B (Gao et al., 2018a; Khawar
et al., 2021b; Khawar et al., 2022).

FIGURE 2
Mechanistic depiction of autophagy. (A)Beginningwith nucleation of a phagophore, PI3K complex phosphorylation, and conversion of pro-LC3 into
LC3-I and then into LC3-II through ATG4 processing, autophagy proceeds to conjugation with PE, facilitated by ATG3 and the ATG12–ATG5–ATG16L
complex, results in the formation of LC3-II. This event promotes the expansion of the cup-shaped phagophore, leading to the formation of
autophagosomes and the sequestration of cargo. Following fusion with a lysosome, the autophagosome exposes its cargo to lysosomal hydrolases,
helping with degradation. (B) Microautophagy depicts the complete sequestration of components by lysosomes. (C) CMA selectively targets specific
proteins for degradation by translocating them into lysosomes. These additional layers of autophagy further contribute to the complexity and specificity
of cellular degradation processes, ensuring cellular homeostasis and adaptation to various physiological conditions.
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Lipophagy plays a pivotal role in lipid metabolism in adipocytes,
macrophages, and hepatocytes (Xie et al., 2020a; Xie et al., 2020b). In
our recent review, we underscored the role of autophagosomes in the
sequestration of LDs, a process that involves transporting these
droplets to lysosomes for subsequent breakdown into free fatty
acids. This mechanism not only helps with the recycling of cellular
components but also contributes to the liberation of essential
building blocks such as free fatty acids (Khawar et al., 2019;
Khawar et al., 2021a). When Leydig cells are hormonally
stimulated, their LDs produce FC, a critical substrate for
testosterone synthesis (Shen et al., 2016). When autophagy is
hindered in primary rat Leydig cells through chloroquine (CQ)
or siATG7, testosterone and FC levels decline significantly.
Concurrently, there is an increase in total cholesterol (TC) and

LD levels in serum-free media. Additionally, brief exposure to
hypoxia leads to a reduction in LD size and quantity but fosters
an increase in testosterone release (Figure 3C). These effects can be
counteracted by inhibiting autophagy (Ma et al., 2018). Hence,
autophagy promotes testosterone production via metabolizing
intracellular LDs and TC. Notably, lipophagy activity has been
observed in the Chinese soft-shelled turtle as well (Tarique et al.,
2019). Recently, within the Leydig cells of dairy goats,
macroautophagy has been recognized as the predominant
mechanism driving testosterone production. This is accomplished
by breaking down mitochondria and ER (Chen et al., 2022b).

Notably, there may be additional connections between
testosterone and autophagy. Deficiencies in autophagy have been
observed to correlate with reduced testosterone levels and StAR

FIGURE 3
Mechanistic insights into autophagy-mediated steroidogenesis in testes. (A)HsCG causes a decrease in METTL14 while an increase in ALKBH5 leads
to reduced N6-methyladenosine (m6A) levels via translation of PPM1A and CAMKK2 and reduced AMPK activity thus inhibiting autophagy. (B) The
autophagy-lysosome pathwaymediates the breakdown of NHERF2, suppressing scavenger receptor class B type I (SR-BI) and compromising cholesterol
absorption and testosterone productionwhen ATG5, ATG7, and Sirt1 are deleted in Leydig cells. (C) Autophagy inhibition in aged rat Leydig cells lead
to decreased testosterone and free cholesterol levels and increased total cholesterol and lipid droplets. Stress reduces lipid droplets but increases
testosterone release, effects counteracted by inhibiting autophagy. (D)Diminishedmitophagy, in aging Leydig cells results in dysfunctional mitochondria
accumulation, leading to ROS buildup, and reduced testosterone levels. (E) Fatty acid treatment in MA-10 cells leads to lipid accumulation and decreased
steroidogenesis, recoverable by P5 but not 22R-OHC, indicating a deficiency in CYP11A1. Autophagy inhibition, including FA-upregulated Rubicon,
suppresses steroidogenesis. (F) PINK1/parkin mitophagy: Parkin phosphorylation, outer mitochondrial membrane protein ubiquitination, phagophore
recruitment. Non-parkin mitophagy: outer mitochondrial membrane proteins bind LC3 or STX17-mediated, with STX17 accumulating on outer
mitochondrial membrane, interacting with LC3 on the phagophore membrane.
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protein in aged rat Leydig cells (Figures 3C, D). Moreover, these
conditions are further characterized by higher levels of reactive
oxygen species (ROS) and impaired mitochondria function. Leydig
cells, regardless of age, showed reduced testosterone levels and LH-
stimulated StAR when exposed to the autophagy inhibitor
wortmannin. Conversely, the rapamycin–an autophagy promoter,
produced contrasting outcomes in older Leydig cells. Considering
that ROS impede StAR and testosterone production in Leydig cells,
it is conceivable that the deposition of ROS in elderly rats might
compromise Leydig cell steroidogenesis due to decreased autophagic
activity (Han et al., 2018).

A notable decrease in testosterone synthesis in Leydig cells has
been linked to a substantial drop in autophagic activity in non-
breeding male natal naked mole rats. Treating primary Leydig cells
from both breeding and non-breeding naked mole rats with
rapamycin increased testosterone levels, whereas 3-MA had the
opposite outcome (Yang et al., 2017). These observations reinforce
the view that autophagy regulates testosterone biosynthesis.
Consequently, we posit that individuals with reproductive
concerns, particularly those diagnosed with varicocele or
hypogonadism, should exercise caution when considering
autophagy-inhibiting medications such as rapamycin. Notably,
CQ, a drug commonly prescribed for early malaria treatment and
prevention, is also used for conditions like rheumatoid arthritis and
lupus erythematosus (Rainsford et al., 2015). As an autophagy
inhibitor, CQ might adversely impact male fertility by
suppressing autophagy, thereby potentially disrupting male
steroid homeostasis and compromising testicular structural
integrity (Clewell et al., 2009).

Recent studies have associated autophagic insufficiency with a
decline in testosterone synthesis within aged rat Leydig cells. There
is ample evidence documenting age-related reductions in autophagy
(Mizushima et al., 2008; Cuervo et al., 2017). Diminished autophagy,
especially mitophagy—the mTORC1-independent breakdown of
damaged mitochondria—leads to a reduced removal of
dysfunctional mitochondria in aging Leydig cells resulting in the
accumulation of ROS which ultimately reduce the testosterone levels
(as illustrated in Figure 3F), thereby contributing to conditions like
late-onset hypogonadism (Li et al., 2011). This fact owes to ROS that
detrimentally affects Leydig cell steroidogenesis (Zirkin and Chen,
2000; Diemer et al., 2003). Conversely, emerging research indicates
that while autophagy enhances steroidogenesis and augments the
steroidogenic efficacy of Leydig cells, it may not represent the
primary biological mechanism governing steroidogenesis,
especially in mature Leydig cells (Park et al., 2023).

Particularly, in mitophagy (Figure 3F), VDAC1 serves as a key
link between cytosolic proteins and mitochondrial contact sites
(Papadopoulos and Zirkin, 2021). It forms a complex with the
adenine nucleotide translocase protein, facilitating molecule
movement across mitochondrial membranes (Garza and
Papadopoulos, 2023). These proteins play a vital role in
maintaining mitochondrial membrane integrity, crucial for
regulating mitophagy (Lin et al., 2024). Disruption in their
function or interaction can impair mitophagy, leading to cellular
stress and dysfunction, potentially affecting overall
autophagic processes.

Mitochondrial contact sites with the ER are vital for regulating
ROS in gonadal cells. These specialized contact sites, termed

mitochondria-associated membranes (MAMs), facilitate the
exchange of lipids and calcium ions between the ER and
mitochondria (Katti et al., 2023), crucial for maintaining cellular
redox balance. Perturbations in MAM function can result in the
accumulation of ROS (Fang et al., 2023), which impact both
signaling pathways and cellular health. Notably, the ER-resident
chaperone Sig-1R, concentrated at MAMs, governs calcium
dynamics and responses to oxidative stress (Gottschalk et al.,
2022), suggesting its potential as a therapeutic target for
conditions linked to ROS-induced damage in Leydig cells.
Moreover, under conditions of ER stress, MAMs exhibit
heightened stability and prolonged duration, bolstering ATP
production by mitochondria and ensuring an adequate energy
supply to the ER (Gottschalk et al., 2022). This adaptive response
aids in mitigating ER stress and reinforces ATP provision to support
proper protein folding, highlighting the intricate interplay between
MAMs, ROS regulation, and cellular homeostasis in gonadal cells.

Moreover, the interaction between mitochondria and LDs plays
a crucial role in regulating steroidogenesis in gonadal cells. These
contact sites facilitate the transfer of cholesterol into mitochondria
(Guyard et al., 2022). Proteins like translocator protein (TSPO) and
StAR are involved in mediating this transfer (Yue et al., 2023).
Mutations in StAR can lead to lipoid congenital adrenal hyperplasia
(lipoid CAH), affecting steroid production (Martín et al., 2021).
Additionally, these contact sites influence the density and size of
LDs, impacting cell function (Galano et al., 2021; Knight et al., 2022).
Future research could explore how alterations in mitochondrial-
lipid droplet interactions affect steroidogenesis and potential
therapeutic interventions for reproductive disorders.

Androgen binding protein (ABP), a glycoprotein produced from
Sertoli cells, expediates the transport of testosterone into the
epididymis (Wistuba et al., 2023). In rats, follicle stimulating
hormone (FSH) and testosterone synergistically boost the entry
of ABP into the testicular tubules. Nevertheless, following FSH
delivery, only a fraction of ABP in the testis showed an increase,
implying that testosterone likely serves as the primary regulator of
ABP synthesis in vivo (Danzo et al., 1990). Detailed investigations in
rat Sertoli cells suggest that testosterone specifically modulates the
autophagy-mediated lysis of ABP in vitro and in vivo. The very fact is
supported through evidence showing that treatments with CQ or
rapamycin had no impact on ABP expression after testosterone
exposure. Additionally, the hypothesis that testosterone acts as a
pivotal regulator in the autophagic degradation of ABP gains
credence from observations that ABP clearance remains
unaffected by stress-induced (hypoxia) autophagy (Ma et al., 2015).

Autophagy facilitates the production of testosterone through the
provision of resources (Gao et al., 2018b; Khawar et al., 2021b).
However, it is noteworthy that testosterone exerts an inhibitory
effect on autophagy (Ma et al., 2015). To maintain cellular
homeostasis, The hypothesis proposes that testosterone operates
in an inhibitory feedback manner on autophagy. This autophagic
process could indirectly influence spermatogenesis by participating
in the metabolic pathways associated with ABP and testosterone.
Additionally, indications point to the existence of autophagy in the
Sertoli cells of rat testes. In particular, rats subjected to ethanol
display increased mitochondria-mediated germ cell death (Eid et al.,
2002). The existence of autophagy in the Sertoli cells of these
ethanol-exposed rats was corroborated through electron
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microscopy and immunohistochemical analyses of various ATGs,
including LC3. Notably, a significant observation was the elevated
occurrence of mitophagy. This suggests a potential anti-apoptotic
function of mitophagy as compared to the ethanol-induced toxicity
in Sertoli cells via eliminating impaired mitochondria and inhibiting
the secretion of pro-apoptotic proteins (Eid et al., 2012).

Lipophagy enables the interaction between LDs and lysosomes
via transporting lipids from LDs to lysosomes for degradation,
resulting in the liberation of FC. Gonadotropin hormones not
only upregulate autophagy-related genes but also expedite the
autophagic flux. Additionally, they enhance the link between
LDs, autophagosomes, and lysosomes, potentially leading to an
augmented synthesis of gonadal steroids (Gawriluk et al., 2011).
Moreover, luteinized granulosa cells (GCs) have been seen showing
anomalies in women who exhibit impaired lutealization of ovaries.
Specifically, these deviations occur at various stages of lipophagy-
mediated progesterone (P4) synthesis. Such patients show reduced
P4 synthesis, significant defects in the fusion of LDs with lysosomes,
and a hindered progression of autophagy (Esmaeilian et al., 2023).
Fatty acids reduced steroidogenesis in MA-10 cells via CYP11A1.
P5, not 22R-OHC, partially restored it. Inhibiting late-stage
autophagy, including FA-induced Rubicon, hindered
steroidogenesis as shown in Figure 3E. Rubicon played a unique
role, independent of late-stage autophagy inhibitors (Huang
et al., 2021).

In addition, there is a recent surge in investigations that
endocrine disrupting chemicals (EDCs) have been shown to
influence steroidogenesis, and emerging evidence suggests
potential effects on autophagy within steroid-producing cells
(Zhu et al., 2019; Lahimer et al., 2023). For instance, when male
Sprague-Dawley rats were exposed to high levels of bisphenol AF,
there was a decrease in number of Leydig cells and a downregulation
of CYP17A1, along with other genetic markers in Leydig and Sertoli
cells. Specifically, bisphenol AF triggered autophagy by increasing
levels of autophagy proteins like LC3B, Beclin1, and Bcl-2-associated
X protein. This might have occurred through decreased
phosphorylation of AKT1 and mTOR, ultimately leading to a
reduction in steroid production in Leydig cells (Yu et al., 2022).
Another EDC, methyl tert-butyl ether, similar to bisphenol AF,
hinders the proliferation of Leydig cells, leading to apoptosis and
mitophagy in the testes which was achieved by suppressing the
phosphorylation of mTOR while promoting the phosphorylation of
AMPK (Zhu et al., 2022). Most importantly, ketoconazole has also
shown to inhibit steroidogenic enzymes which affects the
steroidogenesis in gonadal cells (Gal and Orly, 2014).
Additionally, Ketoconazole suppresses steroidogenesis via
inhibiting CYP17A1, potentially through upregulation of
miRNAs such as mir-22-5p, miR-671, miR-28-3p, and miR-92b-
3p, which target CYP17A1 expression (Baitang et al., 2023).
However, it is unclear how other EDCs such as, diethylstilbestrol
would interact with ketoconazole in terms of pregnenolone and
progesterone synthesis. Further research is needed to determine the
potential interactions between ketoconazole and other EDCs in the
context of steroidogenesis in testis.

These findings, in conjunction with prior research, hold
substantial clinical implications. They pave the way for novel
approaches to diagnose and treat a spectrum of conditions. This
includes benign ailments like endometriosis and sex steroid-

producing neoplasms, as well as malignancies reliant on sex
steroids such as those affecting the prostate, breast, and
endometrium. Additionally, understanding the interplay between
EDC exposure, autophagy modulation, and steroidogenesis is
crucial for elucidating the comprehensive mechanisms underlying
gonadal function. While existing research underscores diverse roles
for autophagy in the reproductive systems of humans and animals, a
notable dearth of human data implies that much remains to be
elucidated.

Autophagy in ovarian steroidogenesis

Across various animal species, from Drosophila to mammals,
autophagy is highly conserved being a critical player in the
physiology of ovaries. In female physiology, autophagy emerges
as a critical factor governing ovarian function. Specifically, critical
for the survival of germ cells in development is autophagy, occurring
before the development of the primordial follicle pool (Gawriluk
et al., 2011). Initially, follicle atresia was attributed solely to
apoptosis, however, recent discoveries suggest a more nuanced
mechanism. For example, evidence indicates that human
granulosa cell death is orchestrated through lectin-type ox-low
density lipid (LDL) receptor (LOX1)-dependent oxidized LDL
(oxLDL)-induced autophagy, suggesting the involvement of
autophagic pathways in programmed cell death as shown in
Figure 4A (Duerrschmidt et al., 2006; Serke et al., 2009). This
finding potentially elucidates the heightened infertility rates
observed in obese women, who exhibit elevated oxLDL levels
(Mutlu-Türkoğlu et al., 2003) and an increased prevalence of
autophagic granulosa cell death (Duerrschmidt et al., 2006).

Furthermore, elevated levels of ROS, resulting from
LOX1 activation by oxLDL, can induce oxidative stress-induced
apoptosis. Conversely, younger women with a normal weight seem
to activate reparative autophagy as a response to reduced
concentrations of ROS, thereby alleviating apoptosis, thus,
supporting cell survival (Vilser et al., 2010). However, research
by Tatone et al. (2006) and Vilser et al. (2010) suggests an age-
associated decline in reparative autophagy, culminating in granulosa
cell apoptosis. This decline aligns with observed increases in ROS
levels and reductions in LC3-II in follicular cells from older women
Figure 4A. Together, these discoveries align with the extensively
recorded decrease in female fertility linked to the aging process
(Carbone et al., 2003; Tatone et al., 2006; Tatone et al., 2008).

In animal models, these follicular cells have shown to undergo
autophagy-mediated apoptosis in response to several stimuli,
including nutritional scarcity and, more recently, exposure to
cigarette smoke. These results suggest a plausible clarification for
the established link between female infertility and smoking (Gannon
et al., 2013). Following ovulation, the ovary produces the corpus
luteum (CL). If conception does not take place, the CL regresses by
the conclusion of menstruation. Electron microscopy studies have
shown the accumulation of autophagy-related bodies, e.g.,
autophagosomes, in various cells during CL degeneration (Del
Canto et al., 2007). At a molecular level, the human ovary
possesses a specific voltage-gated Na channel that, when
activated, starts downstream signaling leading to autophagy
during CL regression (Bulling et al., 2000). Conversely, higher
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levels of Beclin-1 expression have been observed in pregnant CL cells
and under pathological conditions where the CL persists longer than
usual, suggesting a role for autophagy in granulosa cell longevity
(Gaytán et al., 2008). Thus, we can conclude that autophagy has a
dual role in regulating CL dynamics, as shown by a comprehensive
review of both human and animal studies (Gao et al., 2020),
highlighting its significance in ovarian function.

Recent studies indicate that the Akt/mTOR signaling pathway
regulates the activation of ATGs in the CL. Furthermore, autophagy
appears to influence progesterone synthesis by modulating the lipid
droplet pool in luteal cells during pregnancy in rats. Notably, as
luteal deterioration commences, there is an upregulation of
mitophagy-related proteins, potentially essential for maintaining
mitochondrial homeostasis (Figure 4C). These insights contribute
to a more comprehensive grasp of the function of autophagy in the
luteal changes of mammalian ovary in vivo in Sprague-Dawley rats
(Tang et al., 2019). Moreover, in cultured bGCs, previous trials have
shown that LDL upregulates StAR mRNA and protein (Figure 4B).
Additionally, it promotes the production of progesterone and

cholesterol side chain cleavage cytochrome P-450 (CYP11A1)
mRNA. Furthermore, LDL considerably increases the lysosome
count in GCs. However, the inhibitors of lysosomes, such as CQ
effectively mitigate these effects induced by LDLs. These findings
signify that in bGCs, LDL stimulates StAR expression, progesterone
production, and lysosome development while lysosomes facilitate
this process via secreting FC molecules from the breakdown of LDL
(Zhang et al., 2015).

Recently, density gradient ultracentrifugation successfully
isolated HD-sEVs from bovine follicular fluid (BFF) (Wang et al.,
2023). These HD-sEVs induce autophagy in bovine bGCs by
upregulating Beclin1 mRNA and protein expression, as well as
increasing the LC3II/LC3I ratio (Figures 4B, D). Conversely, they
suppress p62 mRNA and protein expression. HD-sEVs elevate the
protein and mRNA levels of VDAC1, CTSD, and HSP60,
subsequently promoting mitophagy in bGCs (as shown in
Figure 4D). Flow cytometry results indicate that HD-sEVs
diminish bGC apoptosis rates by upregulating steroidogenic
proteins and mRNAs, including CYP19A and HSD3B in bGCs,

FIGURE 4
Mechanistic insights into autophagy-mediated steroidogenesis in ovaries. (A) Lectin-type oxLDL receptor (LOX1)-dependent oxidized LDL (oxLDL)
in granulosa cell death through autophagy emphasizes its connection to obesity-related infertility. Additionally, it explores the age-associated decline in
reparative autophagy, aligning with increased ROS levels and reduced LC3-II in older women. (B)Mitophagy-related proteins during luteal deterioration
and highlights the impact of LDL on luteal development in vitro. (C) Beclin-1 expression and autophagy in granulosa cell longevity, especially in
conditions of prolonged corpus luteum existence. (D) HD-sEVs from bovine follicular fluid on autophagy and mitophagy in bovine granulosa cells
emphasize their role in reducing apoptosis and enhancing estradiol secretion through PI3K/Akt/mTOR signaling pathways.
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HD-sEVs stimulate estradiol secretion. Additionally, HD-sEVs
decrease the p-mTOR/mTOR ratio and boost autophagosome
production and mitochondrial structural alterations in bGCs
(Wang et al., 2023). The introduction of wortmannin reverses
these observed effects. Mutually, BFF HD-sEVs enhance
macroautophagy and mitophagy in bGCs, inhibit apoptosis in
bGCs, and elevate 17β-estradiol release via the PI3K/Akt/mTOR
signaling pathways as shown in Figure 4D (Wang et al., 2023).

Pups of Mus musculus with ATG5-knockout ovaries showed
normal follicular development but lacked CL, displaying elevated
atretic follicles, showing the unsuccessful release of an egg.
Additionally, these pups showed a compromised ability of the
uterus to produce the endometrial gland (Yoshii et al., 2016).
These observations imply that autophagy is a vital player in the
proper sexual development. To generate mice with ovarian-
specific conditional knockout (cKO), Beclin1-knockout mice
were employed, where Beclin1 was selectively deleted in
granulosa and luteal cells (Gawriluk et al., 2014). This mouse
model showed a nearly 75% reduction in Becn1 levels, with
p62 accumulation observed in GCs. Although ovulation,
fertilization, and implantation appeared similar to controls
concerning reproductive phenotypes, the targeted elimination
of Beclin1 led to a rise in miscarriages or premature births
attributable to the failure of mitochondria to produce
progesterone. Pathologically, ovaries with Becn1-knockout
lacked neutral LDs responsible for progesterone production in
luteal cells. Notably, these luteal cells exhibited many large
autophagosomes, suggesting compromised autophagy
processes, despite Beclin1’s role in nucleation—the initial
phase of autophagy. The exact mechanism through which
Becn1 downregulation increases autophagosome quantities in
luteal cells remains unclear. In contrast, the overexpression of
BECN1 in cultured GCs stimulated progesterone synthesis by
boosting the production of synthesizing enzymes, including
CYP11A1, 3β-hydroxysteroid dehydrogenase, and StAR
protein (Ding et al., 2021). Recent research also suggests that
FSH, regardless of the traditional steroidogenic pathway,
enhances autophagy by upregulating Beclin1 through the
PI3K/JNK/c-Jun pathway, promoting LDs breakdown in pig
GCs (Liu et al., 2021). Furthermore, emerging evidence
highlights the significance of autophagy in melatonin-
mediated regulation of progesterone release in the sheep CL
(Duan et al., 2024).

FSH from pituitary facilitates the progression of primary to
dominant preovulatory follicles (Yoshino et al., 2011). Additionally,
FSH causes the breakdown of LDs in porcine GCs (Liu et al., 2021),
leading to the synthesis of progesterone via the Beclin1 protein.
When porcine GCs were exposed to ATG5siRNA, promoting
autophagosome formation, or CQ, an autophagy inhibitor, there
was a notable decrease in FSH-induced progesterone production.
This indicates the critical role of autophagy in progesterone
synthesis within ovaries. Recent findings (Shao et al., 2022)
underscore the importance of the gene regulator WT1 in follicle
formation. Overexpression of WT1 affects normal granulosa cell
development, while heterozygous mutations in WT1 result in
subfertility in female mice, accompanied by reduced expressions
of the FSH receptor and cytochrome P450 family 19 subfamily A
member 1, commonly referred to as aromatase (Gao et al., 2014).

Inhibiting autophagy leashes to a buildup of WT1 protein in GCs,
diminishing the levels of receptor and protein, thereby disrupting
GC differentiation (Galano et al., 2022). To modulate WT1 levels,
Epg5 facilitates WT1 breakdown via p62 in GCs. Mice with
Epg5 deletions display a phenotype akin to individuals with
premature ovarian failure (Liu et al., 2023). Aging is linked with
increased apoptosis and senescent cells. In the absence of Epg5, GCs
in the ovary retain WT1, which would typically be degraded during
folliculogenesis from secondary to antral follicles, resulting in
subfertility in mice. Conversely, during folliculogenesis—where
differentiation is not reliant on FSH—bone morphogenetic
protein-2 (BMP2) improves GC proliferation through
sphingosine kinase-1 (Ito et al., 2021). Considering that
WT1 modulates the expression of BMG2 (Gao et al., 2014), it
would be plausible that autophagy influences the entire spectrum
of folliculogenesis in the ovaries, from early to late stages.

As it is a fact that steroidogenesis is a complex process which
involves several enzymes and regulatory factors with pivotal roles
from cholesterol transport to the synthesis of specific hormones
within different cell types (Shoorei et al., 2023), thereby making it
crucial for the production of key sex steroids. The interplay between
hormones, receptors, and enzymes like CYP450arom highlights the
intricate regulatory mechanisms governing steroidogenesis (De
Pascali et al., 2018; Widhiantara et al., 2021). Several studies have
reported variations in sex hormone synthesis upon bisphenol A
exposure. For instance, when rat offsprings prenatally exposed to
bisphenol A it disrupted steroid production (Nguyen et al., 2020).
Higher bisphenol A doses of 40 mg kg−1 made the pregnant rats
vulnerable to abortion and significant reduction of pups survival
(Wei et al., 2020). A study on freshwater fish, Gobiocypris rarus,
showed DNA and histone methylation in the ovaries and long term
and short term exposure lead reduced steroid hormones (Liu Y.
et al., 2020).

In short, autophagy is vital for ovarian physiology, influencing
folliculogenesis, ovulation, and luteal development, impacting germ
cell survival and fertility. Age-related decline correlates with
increased oxidative stress and reduced fertility in older women,
while autophagy plays a dual role in CL dynamics and modulates
progesterone synthesis. Additionally, understanding the impact of
endocrine disruptors on autophagy-mediated steroidogenesis in
ovarian cells is essential for comprehending their broader effects
on hormonal balance. Genomic studies underscore its significance in
sexual and follicular development, offering insights into
reproductive health.

Conclusion and perspectives

The complex interplay between autophagy and steroidogenesis,
particularly in the endocrine system, reveals a fascinating landscape
of cellular mechanisms and pathways. Autophagy, a fundamental
cellular process, has been recognized as a critical player in
maintaining cellular homeostasis, eliminating damaged
components, and facilitating various physiological functions. Its
role in the context of steroid hormone production, especially
testosterone and progesterone, underscores its significance in
reproductive health and endocrine regulation. The research
elucidates the nuanced role of autophagy in Leydig and GCs,
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pivotal players in testicular and ovarian steroidogenesis,
respectively.

From the degradation of organelles essential for hormone
production to modulating the expression of crucial proteins
involved in steroid synthesis, autophagy emerges as an
important regulator. The autophagy modulation, as observed
in various studies, directly correlates with changes in steroid
production rates, indicating a tightly regulated
relationship. Furthermore, insights into the regulatory
mechanisms of autophagy, such as the involvement of specific
genes, signaling pathways, and external factors, provide a
comprehensive view of its orchestration within the endocrine
system. The intricate balance between autophagy and
steroidogenesis has profound implications for understanding
fertility, aging-related endocrine disorders, and potential
therapeutic interventions. Given the significant impact of
autophagy modulation on steroid production, future research
may focus on developing targeted therapeutic interventions.
Drugs that selectively enhance or inhibit autophagy in specific
cells could offer novel treatments for conditions like
hypogonadism, infertility, or age-related endocrine disorders.
In addition, delving deeper into the molecular mechanisms
underlying the interplay between autophagy and
steroidogenesis will be important. Identifying additional genes,
pathways, or molecules that regulate this relationship could
provide more precise targets for therapeutic interventions.

While some studies have explored the effects of EDCs like
bisphenol AF and methyl tert-butyl ether on Leydig cell function
and hormone production, there’s still much to learn about how they
affect different types of cells and hormonal pathways.
Understanding how EDCs affect hormone production could help
us identify ways to protect reproductive health. It is also crucial to
understand the underlying molecular mechanisms behind changes
in hormone levels seen with exposure to EDCs like bisphenol A. This
knowledge could lead to new ways to prevent or treat hormone-
related health issues.

Extending research from animal models to human studies will
be pivotal. Investigating the role of autophagy in human Leydig and
GCs, especially in pathological conditions like endometriosis,
polycystic ovary syndrome, or testicular disorders, will provide
invaluable clinical insights. Furthermore, given the age-related
decline in autophagy and its implications for endocrine health,
further research into rejuvenating autophagic processes in aging
cells or tissues could have profound implications for extending
reproductive health and overall longevity. To sum up, the
intricate relationship between autophagy and steroidogenesis
within the endocrine system represents a burgeoning field of
research with vast clinical implications. By unraveling the
complexities of this relationship, scientists and clinicians alike
stand poised to revolutionize treatments for a myriad of
endocrine disorders, ultimately enhancing reproductive health
and quality of life.
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