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The extracellular matrix (ECM) is a highly complex structure through which
biochemical and mechanical signals are transmitted. In processes of cell
migration, the ECM also acts as a scaffold, providing structural support to cells as
well as points of potential attachment. Although the ECM is a well-studied structure,
its role in many biological processes remains difficult to investigate comprehensively
due to its complexity and structural variation within an organism. In tandem with
experiments, mathematical models are helpful in refining and testing hypotheses,
generating predictions, and exploring conditions outside the scope of experiments.
Suchmodels can be combined and calibratedwith in vivo and in vitro data to identify
critical cell-ECM interactions that drive developmental and homeostatic processes,
or the progression of diseases. In this review, we focus on mathematical and
computational models of the ECM in processes such as cell migration including
cancer metastasis, and in tissue structure and morphogenesis. By highlighting the
predictive power of these models, we aim to help bridge the gap between
experimental and computational approaches to studying the ECM and to provide
guidance on selecting an appropriate model framework to complement
corresponding experimental studies.
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1 Introduction

The extracellular matrix (ECM) encompasses all biological components outside of cells.
It provides biochemical cues and acts as a physical scaffold for cells and tissues, facilitating
cell-cell and cell-microenvironment communication (Bowers et al., 2010). The ECM is
present within all tissues and organs and its composition is highly diverse, varying with the
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type and location of tissue in an organism (Karamanos et al., 2021).
This structural variation is further amplified by cell-mediated ECM
remodeling. For example, cells can realign or crosslink ECM
components, thereby changing matrix stiffness (Karsdal et al.,
2013), or directly degrade the ECM to expedite invasion (Artym
et al., 2009). Additionally, the ECM provides essential biochemical
and biomechanical cues for cell differentiation, tissue
morphogenesis, and homeostasis (Yamada et al., 2019; He et al.,
2022a). The mechanical effects of the ECM are particularly
important in facilitating cell movement during embryonic
development, wound healing, and in the progression of diseases
such as fibrosis and cancer (Cruz Walma and Yamada, 2020; Diller
and Tabor, 2022; Dzobo and Dandara, 2023). For example, an
increase in ECM stiffness is associated with the progression of
tumor malignancy (Guo et al., 2022a).

The highly complex nature of the ECM means that it remains
difficult to fully quantify and understand the role of all components
through experiments alone. Mathematical and computational
models, therefore, are well-poised to provide further insights via
rapid simulation of complex biological processes involving the ECM
at a lower cost than corresponding experiments.

The aim of this review is to highlight the various approaches used to
model biological systems in which the ECM plays a major role. We
begin by briefly reviewing ECM structure and function, as well as
experimental and modeling approaches. We provide both a glossary
(Table 1) and a list of abbreviations (Table 2) of important biological
and mathematical terms found throughout the review.We then give an
in-depth overview of theoretical work that includes model
representations of the ECM, focusing on models of 1) cell migration
(including wound healing and cancer invasion) and 2) tissue structure
and morphology (including morphogenesis). We selectively highlight
models that explicitly represent the ECM and cover a breadth of
techniques. Each section begins with a short overview of the
underlying biological processes and reviews the different types of
models that have been developed in each context, highlighting key
results. Finally, we provide guidance on choosing the most appropriate
modeling framework for a given scientific inquiry and comment on the
current open challenges surroundingmodeling of the ECM.We also list
potential limitations of these models and highlight the importance of
collaborations to overcome these difficulties in further uncovering the
role of the ECM in biological systems.

1.1 ECM composition and properties

The average mammalian tissue consists of over 150 ECM and
ECM-associated proteins, and several hundred proteins are catalogued
in thematrisome database (Shao et al., 2020), testifying to the enormous
quantity of molecular components and the diversity of ECM
composition of different tissues within an organism. This diversity is
amplified by continuous ECM remodeling through both enzymatic and
non-enzymatic interactions. Remodeling not only alters ECM
composition, but also the three-dimensional (3D) structural
organization of its molecular components, which determines the
ECM’s physical properties (Chaudhuri et al., 2020). The
composition and structure of the ECM changes most greatly during
times of stress, for example, during aging, tissue wounding, and tumor
development.

There are twomajor forms of ECM in vivo: interstitial ECM, and
basement membrane (BM) ECM (Cruz Walma and Yamada, 2020).
Interstitial ECM fills spaces between organs. It is rich in fibrous
proteins and proteoglycans that form 3D structures, whilst BMs
form two-dimensional (2D) sheet-like ECM, that line organ
boundaries. A major structural component of both interstitial
ECM and BMs is fibroblast-secreted collagen. There are currently
28 known types of collagens with collagen I being the most common
in interstitial ECM, and collagen IV being the most abundant within
BMs (Ricard-Blum, 2011). In interstitial ECM, collagen I fibers
undergo crosslinking to form networks, either with themselves or
with other fibrous proteins, such as fibronectin and elastin, in
processes facilitated by the enzyme lysyl oxidase (LOX) (Sun,
2021). Of the other fibrous proteins, fibronectin facilitates the
adherence of cells to the ECM, aiding their migration by
providing new sites of potential adhesion (Parisi et al., 2020).
Elastin, on the other hand, confers resilience to plastic
deformation and is found most frequently in blood vessels, skin,
and lung tissue (Kristensen and Karsdal, 2016).

In the BM, the main structural scaffold consists of two
interconnected polymeric networks of laminin and collagen IV.
Including splice variants, there are 16 known laminin complexes in
humans (McKee et al., 2021). The laminin and collagen IV networks
do not interact directly but are crosslinked by other macromolecules
such as nidogen and perlecan (Töpfer, 2023).

The ECM also contains a number of macromolecules, such as
proteoglycans (PGs) and glycosaminoglycans (GAGs) (Frantz et al.,
2010). Additionally, the ECM stores proteases, such as matrix-
degrading enzymes (MDEs) that target specific components of
the ECM (Parsons et al., 1997; Brinckerhoff and Matrisian,
2002). These proteases play a key role in many biological
processes, for example, during wound healing, where matrix
metalloproteinases (MMPs) degrade damaged collagen fibers,
creating space for cells to migrate towards the site of wounding
for tissue repair (Kandhwal et al., 2022). Similarly, MMPs also play a
significant role during tumor progression by degrading and
remodeling the tumor microenvironment to facilitate cancer cell
migration through the ECM (Visse and Nagase, 2003). A schematic
highlighting some of the main components of ECM is shown in
Figure 1A, whilst Table 3 lists the major ECM components and
their functions.

With such a rich and diverse collection of components, and
different ways of arranging those components into 3D architectures,
it is natural that the biochemical and biomechanical properties of the
ECM can vary greatly between tissues. Cells can interact with ECM
via various receptors, such as integrins, discoidin domain receptors,
and syndecans (Muncie and Weaver, 2018; Karamanos et al., 2021).
Cell-ECM interactions, in turn, modulate a number of intracellular
signaling pathways, which results in changes to migratory behavior,
proliferation, and adhesion in cell populations (Muncie andWeaver,
2018). PGs facilitate signaling between cells and their environment.
For example, PGs can bind growth factors, cytokines, and
morphogens, thus modulating their availability (Muncie and
Weaver, 2018; Barkovskaya et al., 2020). Additionally, PGs and
in particular GAGs such as hyaluronic acid, can bind large amounts
of water, and thereby modulate tissue hydration (Karamanos et al.,
2021). Hydration impacts biochemical properties such as osmotic
balance and the speed of molecular diffusion, and biomechanical

Frontiers in Cell and Developmental Biology frontiersin.org02

Crossley et al. 10.3389/fcell.2024.1354132

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1354132


properties such as porosity or the stiffness of other ECM
components. For example, collagen becomes softer with
increasing hydration (Andriotis et al., 2018).

The mechanical properties of the ECM are determined by its
composition and structural organization at different length scales,
ranging from the stiffness of molecular bonds at the nanoscale to
protein fiber entanglement at the microscale (Chaudhuri et al.,
2020). ECM biomechanical properties are often complex and
time-dependent; important ECM material characteristics include
stiffness, elasticity, plasticity, and viscosity. All of these properties
can affect cell behavior, including alterations in cell spreading,
proliferation, matrix deposition, and cell migration.

Perhaps the best-studied ECM mechanical property is stiffness.
Stiffness describes a material’s ability to resist deformation to an
applied force. A simple example is a linear spring, whose spring
constant determines its stiffness. More complex materials can have
non-linear stiffness, time-dependent stiffness, or stiffness dependent
on the rate and direction of force application. All of these responses
can occur in different ECMs (Chaudhuri et al., 2020). ECM stiffness
depends primarily on the organization of collagen fibrils, with stiff
matrices having a high density of collagen and fiber crosslinking
(Cox and Erler, 2011). Conversely, softer ECM has a less dense
collagen network with a lower occurrence of fiber crosslinking
(Figure 1B). Matrix stiffness has consequences for many cellular
processes. Membrane-boundmechanosensitive ion channels such as
Piezo1 (Chen et al., 2018) are over-expressed in stiff ECM and can
cause uncontrolled cell proliferation in cancerous tissue.
Additionally, stiff ECM tends to have reduced pore sizes
(Figure 1C), limiting cell migration in the absence of any
proteolytic processes (He et al., 2022b). Each tissue has an
optimal matrix stiffness, for example, load-bearing tissue such as
bone and cartilage are very stiff in comparison to internal organs
such as the liver and kidney (Handorf et al., 2015; Chaudhuri et al.,
2020). However, during aging and disease, mechanical homeostasis
of the ECM is disrupted and matrix stiffness is altered, either
increasing in stiffness through the increased deposition of
collagen and increases in fiber crosslinking (Rahman et al., 2020),
or decreasing in stiffness due to an increase in MMP secretion that
results in high levels of ECM degradation (Wang et al., 2023).

Elasticity refers to a material’s ability to return to its original
shape after an applied force has been removed. Crimped collagen
fibers, elastic proteins such as elastin, and reversible swelling due to
water-binding pores confer elasticity to the ECM (Kristensen and
Karsdal, 2016; Chaudhuri et al., 2020; Karamanos et al., 2021).
Conversely, plasticity is the ability to retain a deformed shape after
an applied force is removed. Intermolecular crosslinking can tune
the balance between elasticity and plasticity in the ECM. Weaker

TABLE 1 Glossary of important terms.

Term Definition

ABM A mathematical and computational model comprised solely of multiple interacting individual elements

Apical surface Surface of an epithelial cell that faces the lumen, or inside of a tubular structure, such as vessels or intestine

Basal surface Surface of an epithelial cell that adjacent to the basement membrane and underlying tissue

Cell tractoring A process in which the cell cortex creates a track around the cell to move the cell relative to its neighbors

Chemotaxis The movement of cells in response to some chemical stimulus, for example, chemoattractants

Durotaxis The movement of cells in response to a gradient of extracellular stiffness

Haptotaxis The movement of cells in response to a gradient of adhesive substrates, for example, integrins

Intercalation A process in which neighboring cells exchange places

Invagination The process in which a surface folds back on itself, forming a cavity or pouch

ODE A differential equation in one variable, for example, time

Parameterization A mathematical process used to express a system through a function of parameters

PDE A differential equation in more than one variable, for example, time and space

Septa A dividing wall or membrane between tissues

TABLE 2 Table of abbreviations and their definitions.

Abbreviation Definition

ABM Agent-based model

BM Basement membrane

CPM Cellular Potts model

ECM Extracellular matrix

EMT Epithelial-to-mesenchymal transition

FEM Finite element method

LOX Lysyl oxidase

MDE Matrix-degrading enzyme

MMP Matrix metalloproteinases

NCC Neural crest cell

ODE Ordinary differential equation

PDE Partial differential equation

VEGF Vascular endothelial growth factor
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non-covalent crosslinks enable flexible macromolecules to
permanently rearrange, a feature of plasticity, whereas stronger
or denser fiber crosslinking prevent deformation and confer
elastic properties (Chaudhuri et al., 2020). Viscosity refers to
time-dependent features of the mechanical response. Everyday
examples are water (a low-viscosity fluid) and honey (a high-

viscosity fluid). A high density of water-binding molecules such
as PGs and GAGs can increase ECM viscosity (Chaudhuri et al.,
2020; Karamanos et al., 2021). Additionally, weak non-bonded
interactions between macromolecules and crosslinks that
dynamically unbind upon force loading can also lead to ECM
viscosity (Chaudhuri et al., 2020).

FIGURE 1
(A) Schematic representation of themajor ECM compartments and their components. Macromolecular components of the ECM (size in the order of
hundreds of nanometers) are smaller than cells (size in the order of tens of micrometers). However, many components such as laminin and collagen
polymerize to form extended sheets or fibers (size order ranging from tens of micrometers to a few millimeters). For visual clarity, we do not represent
small molecules such as cytokines, enzymes, or soluble factors. (B) Schematic representation of ECM fiber crosslinking and alignment. (C)
Schematic representation of the change in ECM pore size with respect to ECM fiber density; pores highlighted in light blue.

TABLE 3 Table describing some of the major ECM components alongside their functions and locations.

ECM component Function ECM location

Proteins

Fibril collagens, e.g., type I, II, III Provides structural integrity and strength to the tissue Interstitial ECM

Network-forming collagen, e.g.,
type IV

Sheet-like ECM forms from fibers Basement membrane

Elastin Provides tissue with elasticity and load-bearing capabilities Interstitial ECM

Glycoproteins

Fibronectin Cross-links with ECM proteins, influences cell adhesion and migration Interstitial ECM (also found concentrated near
basement membrane)

Laminin Forms a mesh-like network to aid in cell adhesion and migration Basement membrane

Nidogen Promotes BM structural integrity by facilitating laminin and collagen type IV cross-
linking

Basement membrane

Proteoglycans Regulate ECM structure, e.g., perlecan, performing a similar role to nidogen, and
supports cellular functions by storing growth factors and other signaling molecules

Interstitial ECM and Basement membrane

Enzymes

Lysyl oxidase (LOX) Mediates ECM structure, facilitating ECM protein cross-linking Interstitial ECM

Matrix metalloproteinases
(MMPs)

Degrades ECM proteins such as collagens, fibronectin, and laminins Interstitial ECM and Basement membrane
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For a more in-depth review of the biochemical and
biomechanical properties of the ECM, we refer the reader to
excellent reviews elsewhere (Frantz et al., 2010; Muncie and
Weaver, 2018; Chaudhuri et al., 2020; Karamanos et al., 2021).

1.2 Experimental approaches and data
collection

Experiments can be designed to characterize several features of
the ECM and its components, namely, its chemical composition,
structural arrangement, and mechanical response to environmental
stresses and strains. In such studies, an emphasis is often placed on
characterizing the topography, viscoelastic properties such as
poroelasticity (Ehret et al., 2017), and ligand presentation of the
ECM (Young et al., 2016).

To explore the chemical composition of the ECM, commonly
utilized methods include mass spectrometry, alongside
immunostaining and fluorescence microscopy to characterize the
ECM proteome (Naba et al., 2017; Malakpour-Permlid et al., 2021).
Spectroscopic methods such as Fourier transform infrared
spectroscopy (Chrabaszcz et al., 2020), and Raman spectroscopy
(Ettema et al., 2022), allow for the collection of spatially resolved
spectra containing the vibrational fingerprint of the ECM. These, in
turn, permit the location and quantification of any molecular species
present in a sample, as well as any variations in ECM structure
(Tiwari et al., 2020). As signal detection in these methods relies on
changes in vibrational states of molecules, neither require stains or
dyes (in contrast with fluorescence microscopy). This is particularly
useful when analyzing evolving structures non-invasively, as in the
case the zona pellucida of oocytes during maturation (Jimenez
et al., 2019).

The structural characterization of tissues is typically
performed via a combination of microscopy methods.
Common approaches include widefield and point scanning
fluorescence methods such as confocal microscopy, a method
that has recently been used to measure long-range cell-cell
mechanical interactions via the ECM (Nahum et al., 2023).
Other fluorescence-based super-resolution techniques exploit
sophisticated illumination systems, for example, stimulated
emission depletion microscopy (STED), or the stochastic
activation of fluorophores to improve on resolution limits
(Poole and Mostaço-Guidolin, 2021). Further methods worth
noting are based on higher harmonic generation. In this
approach to ECM characterization, contrast in images arises
from the intrinsic optical properties of the sample which
avoids the need for staining and other methods of sample
preparation that are otherwise necessary (van Huizen et al.,
2020). Due to their performance in imaging collagen fibers,
second harmonic generation microscopes are especially well-
suited to the quantification of fibrous structures (Woessner
and Quinn, 2022). If observations on smaller length scales are
required, scanning or transmission electron microscopy offer
viable solutions (Leonard et al., 2018).

The mechanical properties of tissues have been investigated
across several different scales using a variety of experimental
techniques. At the nanoscale and microscale, the most common
characterization method is indentation, conducted using an atomic

force microscope (Plodinec et al., 2012), or an instrumented
nanoindenter (Martinez-Vidal et al., 2023). The selection of
indenters of different dimensions affords great flexibility in
quantifying both elastic and viscous properties, as well as
providing the capacity to collect correlative measurements by
pairing the system with brightfield or fluorescence microscopy.
As a measurement typically consists of programmatically
deflecting a cantilever over a set region, starting from an out-of-
contact condition, it is also possible to extrapolate the sample
topography. Other notable approaches include optical and
magnetic tweezers (Lehmann et al., 2020), as well as fluorescence
resonance energy transfer (FRET) biosensors (Arnoldini
et al., 2017).

Common methods to investigate the mechanical properties of
cells within the ECM are tensile testing (Yang et al., 2015), and
rheometry (Vos et al., 2020). The former is more common when
investigating tissues like skin and bone, and the latter is more
convenient when studying reconstituted systems or samples that
are particularly soft. A less common approach is that of optical
coherence elastography, a method that pairs an optical coherence
tomography system with mechanical loading of the tissue
(Kennedy et al., 2014). Typically, this is realized by means of
compression (Hepburn et al., 2020), suction (Berardi et al., 2023),
or acoustic radiation force (Li et al., 2020). By virtue of light-
tissue interactions, optical coherence elastography allows the
rapid collection of 3D maps of scattering and mechanical
contrast, spanning hundreds of microns in each direction. A
relatively recent innovation is Brillouin microscopy (Prevedel
et al., 2019), a non-contact mechanical imaging method based on
acoustically induced inelastic light scattering. Example
applications include measuring mechanical properties of
diseased cornea (Shao et al., 2019) and developing zebrafish
tissue (Bevilacqua et al., 2019).

1.3 Modeling approaches

Mathematical models can be used to describe a wide range of
biological processes and explore hypotheses, providing a
complementary means of investigation to laboratory experiments.
In general, experimental design should consider the equipment
required to answer the research question at hand, and the same
is true for choosing an appropriate mathematical modeling
framework. However, it is important to stress that there is no
‘best’ modeling approach for a given problem, and what is most
suitable for a given study depends on the scientific question at hand
and any prior knowledge of a system. In this section, we introduce
some common approaches for mathematical modeling of the ECM,
before detailing specific biological applications of these models in
Sections 2, 3.

1.3.1 Continuum models
Continuum models describe the density of cells and ECM

constituents as smoothly-varying continuous functions (Figure 2),
with models of cell movement and interactions with the ECM taking
the form of either ordinary differential equations (ODEs) or partial
differential equations (PDEs). ODEmodels are used to represent the
evolution of a single quantity in space or time (cell density, for
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example), but are often limited in their utility as they cannot describe
evolution in both space and time, as is often desirable for biological
processes. However, in many contexts, a series of ODEs can be
coupled to describe complex biological systems such as cell signaling
pathways in cancer (Itani et al., 2010). Simple PDE models, on the
other hand, represent cell density, n, as a scalar field, n(x, t), where x
denotes position in one-dimensional space and t represents time.
The evolution of cell density has been well-studied via a class of PDE
models called reaction-diffusion equations. Perhaps the most
famous model for this is the Fisher-Kolmogorov-Pietrovskii-
Piskunov (Fisher-KPP) model (Fisher, 1937; Kolmogorov et al.,
1937), whose numerical and analytical solutions have been studied
extensively in the context of cell biology (Maini et al., 2004; Gerlee
and Nelander, 2016). However, these models only explicitly consider
changes in cell density with respect to time. More sophisticated
models for cell movement can be constructed by coupling cell and
ECM densities to capture their chemo-mechanical interactions.

Some continuum models are exactly solvable (Petrovskii and Li,
2005), however, in more complex cases where exact solutions cannot
be obtained, there exists a suite of numerical techniques to
approximate solutions at a relatively low computational cost. In
general, ODE and PDE models are amenable to mathematical
analysis, for example, using boundary layer techniques (Farrell
et al., 2000), or asymptotic methods (Keller and Lewis, 1995),
wherein the behavior of a system under certain limits (for
example, long-time behavior) may be studied.

When conducting studies at the tissue scale, both the cells and
individual ECM components are of a small size relative to the
characteristic length scale of tissue, and are often densely packed.
Thus, in many cases, a continuum framework for modeling spatially
averaged behavior at the cell scale and its effects at the macroscopic
scale of the tissue is often appropriate. An important consideration,
however, is that continuum-based models often overlook smaller
scale interactions. If small-scale behavior is also to be studied, it can

FIGURE 2
There are many different mathematical modeling approaches to studying ECM and cell-ECM interactions, ranging from continuum to discrete
frameworks. Continuummodels describe the densities of cells and ECM components with either ordinary differential equations (ODEs), typically used to
describe total population size via a spatially-averaged density, or partial differential equations (PDEs) that often describe both the spatial distribution and
temporal evolution of a population density. On the other hand, discrete frameworks, such as agent-based models (ABMs) represent biological
components as separate, interacting agents. ABMs can be further categorized as either lattice-based, where positions are restricted to a finite set of
points, or lattice-free, where positions lie in a continuous range. In some cases, multiple modeling approaches are combined in a hybrid fashion to
balance the computational complexity of frameworks withmany interacting agents with the accuracy of their outputs. Mechanical models are a subset of
models focused on representingmaterial properties such as stiffness and elasticity. Both continuum and discretemechanical models are utilized to study
the mechanical interactions between cells and the ECM.
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be advantageous to consider model frameworks that capture
behavior at higher spatial resolutions, such as discrete models.

1.3.2 Discrete agent-based models
Agent-based models (ABMs), also referred to as individual-based

models, establish independent agents that each interact and evolve
according to a specific set of rules and predetermined behaviors
(Metzcar et al., 2019). At the cell scale, ABMs typically represent
cells as agents, and in this context are sometimes referred to as cell-
based models. However, agents can also represent components of the
ECM, and can be assigned characteristics such as size, shape, and
polarity. ABMs can be broadly split into two categories: lattice-free and
lattice-based models (Figure 2). Lattice-free models are often center-
based, approximating the cell surface as a sphere (or a circular disc in 2D
models). This approach does not confine the cells to a specific set of
points in the domain, such as a lattice, and allows free movement of the
cells in any direction. Other popular lattice-free approaches include
vertex models, where cells are modeled as polygons, and subcellular
elementmodels, where each cell is described as a collection of spheres or
circles (Metzcar et al., 2019). Conversely, lattice-based models restrict
cell position and movement to a lattice, where space is represented as a
discrete set of points. In restricting position, lattice-based models are
often more computationally efficient than their off-lattice counterparts.
However, this simplicity can come at the expense of accuracy,
particularly in processes where the position of agents is a major
determinant of system behavior. Commonly used approaches
include cellular automata, where each cell is represented as the
occupation of a lattice site, and Cellular Potts models (CPMs),
where each cell is a collection of multiple lattice sites.

ABMs excel both at modeling stochastic environments and
giving a fine-grained investigation of cell-cell mechanical
interactions and dynamics of cell phenotypes (e.g., motile versus
immotile cells). Due to their focus on individual cell behaviors,
ABMs are generally better equipped to capture cell-level processes
when compared with continuum models. Moreover, ABMs can
incorporate subcellular processes which inform and drive cell
behavior (Letort et al., 2019; Ponce-de Leon et al., 2023;
Verstraete et al., 2023). By representing cell-cell communication
in models, agents can also interact with one another to reproduce the
emergence of population dynamics. Disadvantages of using ABMs
include that they are often computationally expensive and
analytically intractable, particularly for large systems with
many agents.

1.3.3 Mechanical models
Mechanical models are a subset of models that place a focus on

describing the material properties of biological structures. They can
be applied both at the tissue or cell level, using either continuum or
discrete approaches (Figure 2). We highlight this category due to its
relevance for modeling ECM mechanobiology.

At the heart of a mechanical model lie the constitutive equations,
mathematical relations that describe how a material responds to
deformation (strain) caused by an applied force (stress) (Chaudhuri
et al., 2020). The types of constitutive equations range in complexity
from simple isotropic linear models (e.g., a linear spring) to complex
non-linear models that consider how anisotropy in the
microstructure, for example, ECM fiber alignment, influences the
material response to forces applied from different directions.

Continuum mechanical models typically represent biological
structures as geometrical objects onto which continuous fields of
stresses and strains are mapped (Guo et al., 2022c), with the Finite
Element Method (FEM) a popular choice for solving such stress-
strain problems.

Generally, continuum mechanical models average tissue
microstructure, making it challenging to represent highly
diverse environments such as ECMs with spatially varying
architecture, or tissue regions with different cell types.
Inhomogeneous and anisotropic constitutive equations can to
some extent address this limitation by incorporating spatially-
varying and direction-dependent terms. Further, continuum
models generally assume that displacement within the
modeled domain is negligibly small, an assumption that is
violated when cellular forces substantially rearrange the ECM.
In these cases, a more suitable approach is to break up the
domain into smaller discrete regions. Discrete mechanical
models typically represent cells or ECM as discrete objects,
such as points distributed in space that can be mechanically
linked to each other. As in continuum mechanical models, a
constitutive equation is chosen to describe how each discrete
object physically behaves upon force loading. ABM frameworks
that include mechanical interactions between agents are thus
also a type of discrete mechanical model. Discrete mechanical
ECM models are particularly suited to investigate emergent
biophysical properties of matrix polymers (Broedersz and
MacKintosh, 2014), and long-range mechanical cues through
the microenvironment (Alisafaei et al., 2021). However, they
come at the price of lower analytical tractability and increased
computational cost.

1.3.4 Hybrid models
Many of the models above are tailored to a biological problem

with a specific characteristic length or time scale. However, there
is often a disparity in such scales, for example, the size of cells is
typically within micrometer range, whereas the thickness of
collagen fibrils are usually of a nanometer-scale size (Siadat
et al., 2022). Biological questions with such differences in
scales motivates the use of hybrid models (Figure 2). Hybrid
models employ a combination of different modeling techniques,
coupling continuum and discrete approaches to better capture
the dynamics and evolution of a system (Stéphanou and Volpert,
2016). A key advantage of hybrid models is that the rules
governing the evolution of an individual cell can be easily
decoupled from the underlying dynamics of continuous ECM
constituent densities, resulting in a more comprehensive model
of cell-cell and cell-ECM dynamics than purely discrete or
continuum equivalents. However, this extra layer of
complexity can also introduce a number of disadvantages, the
most notable being computational expense.

2 Cell migration

The ECM influences the migratory properties of cells in many
ways, including cell morphology, polarization, matrix deposition,
and matrix degradation (Saraswathibhatla et al., 2023).
Experimentally, cell morphology changes depending on the local
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geometry of the ECM and on the distribution of adhesion sites in the
region through which a cell migrates (Wu et al., 2021). Cells interact
with the ECM through several types of actin-rich protrusions, such
as filopodia and lamellipodia that form focal adhesions with the
ECM to facilitate directed cell migration along environmental
gradients (Figure 3) (Caswell and Zech, 2018). Here, we review
mathematical and computational models considering the role of the
ECM in cell migration during development, cancer cell migration,
and wound healing.

2.1 Mechanisms of cell migration

The ECM impacts cell migration in a multitude of ways
through both biochemical signaling and biophysical
interactions (Pally and Naba, 2024). Mathematical and
computational models can unravel this complexity by
selectively including only a subset of ECM components and
their properties, and thereby explore the role of specific
mechanisms in cell migration (Figure 3).

In vivo tissues present a notable degree of spatial heterogeneity,
primarily in the arrangement of ECM collagen fibers (Yuan, 2016;
Filipe et al., 2018). The role of fiber orientation has been the focus of
several models. An early continuum model developed in the late
1990s describing cell migration through collagen-rich networks
studies the relationship between fibroblast polarization and fiber
orientation (Dallon and Sherratt, 1998). This work formed the basis
of many subsequent models of cancer cell migration and wound
healing that are discussed later in Sections 2.3, 2.4. Using a different
approach to account for fiber orientation, Painter (2009) represents
the ECM as a probability density function that includes a description
of fiber alignment. Here, cell motion is modeled with run-and-

tumble motility, in which the change in migration velocity and
direction is given by a discrete random process, known as a ‘velocity-
jump process’ (Othmer et al., 1988). In this model, the distribution
of ECM fibers influences the rate and direction of each ‘jump’. In
amoeboid cell populations, their model shows that the structure of
the ECM influences cell organization in the absence of any
additional cues such as adhesion or chemotactic gradients.
Furthermore, this model demonstrates that the realignment of
the ECM fibers causes the formation of cell chains, a
phenomenon also observed in mesenchymal-type cells such as
neural crest cells (Alhashem et al., 2022). Although this model
permits ECM fiber reorientation, it does not model mechanical
forces. To focus on the mechanics of fiber reorientation by cells,
Schlüter et al. (2012) develop an ABM. Their model predicts that
stiffer ECM prevents the reorientation of fibers and that faster,
persistent migration strategies emerge in environments with highly
aligned ECM fibers. Furthermore, the model also suggests that fiber
realignment by migrating cells promotes other nearby cells to trail
behind, inducing leader-follower migration (Qin et al., 2021).

The ability of cells to change their shape to adapt to their
surroundings is essential for migration and invasive capacity
(Van Helvert et al., 2018). Among ABMs, the CPM explicitly
incorporates cell morphology, which Scianna et al. (2013)
leverage to study the interplay between cell and nucleus
deformability and ECM properties such as density, pore size, and
fiber elasticity. They find that intermediate pore size permits cell
passage while allowing optimal adhesion to ECM. ECM stiffness
modulates this relationship: highly deformable soft ECM facilitates
migration through small pores, while stiff ECM facilitates migration
through large pores. Similarly, overly dense ECM prevents motility,
while loose ECM reduces contact guidance. Follow-up work shows
that a highly deformable nucleus promotes cell migration through

FIGURE 3
(A) Schematic illustrating typical cell-ECM interactions inmigration. Cell morphology andmigratory behavior are affected bymany properties of the
ECM, such as its composition, the forces it exerts on cells, the size of pores in the ECM, and gradients in themicroenvironment of the cell (for example, the
stiffness of the ECM or the concentration of potential points of focal adhesion). (B) Schematic showing common migratory cell phenotypes. Amoeboid
cells form weak focal adhesions to the ECM, and move primarily by cortical actin flow and cell deformation. Conversely, mesenchymal cells form
strong focal adhesions and pull on the ECM to move. In collective migration, cells mechanically adhere to one another and their microenvironment to
facilitate cohesive movement as a group.
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constrictions in 2D and 3D (Scianna and Preziosi, 2021). To
investigate the role of focal adhesions in cell migration, Rens and
Merks (2020) develop a hybrid CPM–FEM framework. Here, cells
can distinguish between soft and stiff ECM via the dynamic and
force-dependent nature of focal adhesion growth, which is modeled
by catch-slip bonds—a type of interaction where the bond
strengthens as it is pulled, and which is known to occur for
integrin-ECM binding (Guo et al., 2022c). As a result of self-
reinforcing focal adhesion stabilization on stiffer substrates, cells
spontaneously migrate toward stiffer matrix. Thus, this model
proposes a mechanism for the emergence of durotaxis.

Several works focused on detailed mechanical modeling of cell and
ECM interactions in migration, for example, using frameworks such as
the subcellular element model (Newman, 2007). A highly detailed 3D
ABM represents the cell surface as a collection of membrane elements
that mechanically interface with the nucleus via elastic cytoskeletal
strings (He and Jiang, 2017). This model predicts more persistent cell
migration on concave surfaces than convex surfaces due to the different
contact angle of adhesions. Anothermodel by Kim et al. (2018) imposes
durotaxis as an assumption, and studies the mechanism of stiffness
sensing. In their 3D discrete mechanical model, a dynamically-shaped
cell extends thin filopodia inside an ECM fiber network. Migration
direction is biased towards the stiffest ECM sensed at the filopodial tips.
This model reproduces experimental observations that cells are more
likely to remain stationary when the distance between soft and stiff
ECM increases, but steer towards stiffer ECM if they are within the
reach of filopodia. This model was later extended to integrate
intracellular mechanosensing (Kim et al., 2022).

In mechanosensing, intracellular cascades are triggered when
cells adhere to the ECM through focal adhesions (Hanna and El-
Sibai, 2013). The ECM is considered a key regulator of many
intracellular signaling pathways, with it being noted that varying
ECM density can alter the activation potential of proteins in the
Rho-family of small GTPases (Bhadriraju et al., 2007). Mathematical
models have been developed to explore these complex signaling
networks and uncover intracellular dynamics; we refer the reader to
(Hastings et al., 2019) for a concise review of models of ECM-
mediated signaling pathways.

One of the strengths of models is their ability to predict the
emergence of complex behaviors from simple underlying
mechanisms. Different models can lead to the same conclusion,
such as the more abstract continuum model by Painter (2009) and
the discrete model by Schlüter et al. (2012) that accounts for mechanics.
Both these models predict that mutual feedback between cell migration
direction and ECM fiber orientation leads to the spontaneous
emergence of cell chains and leader-follower behavior. This
highlights how fiber reorientation is a critical mechanism, regardless
of how it is achieved. In other cases, more detailed models are necessary
to recover certain features. Accounting explicitly for cell deformation
allows models such as the CPM to study the influence of matrix
microstructure such as pores. As a general trend recovered by such
models, many ECM properties influence cell migration in a non-trivial
manner, with an intermediate optimum (Scianna et al., 2013; Scianna
and Preziosi, 2021). However, to predict durotaxis, a more accurate
biomechanical model of focal adhesions is required (Rens and Merks,
2020). Highly detailed mechanical models aim to comprehensively
describe the physics of the cytoskeleton, membrane deformation, and
adhesion to the ECM (He and Jiang, 2017; Kim et al., 2018; 2022). These

efforts, however, come at a price of a large amount of unknown
parameters which limits model interpretability, and considerable
computational cost of simulation. Finally, from a molecular
standpoint, models including mechanosensing can be developed
through the integration of intracellular signaling pathways, such as
those involving Rho GTPases (Hastings et al., 2019).

2.2 Neural crest cell (NCC) migration

The collective migration of neural crest cells (NCCs) underpins a
range of developmental processes during embryogenesis (Mayor
and Theveneau, 2013). Defects in neural crest biology can result in a
range of congenital diseases and birth defects termed
neurocristopathies (Vega-Lopez et al., 2018). Mathematical
models are of particular interest in the context of NCC
migration, often directing experiments towards important
parameter ranges and identifying particular points of interest in
the development of therapies that aim to prevent or counteract the
effects of disrupted or misdirected migration. For a comprehensive
review of mathematical models of NCC migration, we refer the
reader to the review by Giniunaité et al. (2020). In this section, we
briefly outline two recent hybrid models that explicitly consider the
ECM in this context.

One approach to modeling the migration of NCCs considers the
influence of fibronectin network remodeling in NCC migration
(Martinson et al., 2023). Using PhysiCell, an open source
physics-based cell simulator (Ghaffarizadeh et al., 2018), cells are
modeled as freely moving 2D agents, whose velocities are functions
of friction, cell-ECM interactions, and cell-cell repulsion.
Simulations of this model predict that fibronectin deposition and
remodeling by cells at the leading edge of collectives is an important
mechanism in facilitating long-distance migration by preventing the
collective arrest of cell motion, known as cell jamming (Lawson-
Keister and Manning, 2021).

A later developed hybrid model for collective migration in the
chick cranial neural crest represents the ECM via a tunneling
mechanism, in which follower cells move along tunnels of
aligned ECM formed by leader cells (McLennan et al., 2023).
This model was used highlight the importance of spatial
confinement in chick cranial NCC migration, suggesting that
factors such as Colec12 and Trail, which are expressed primarily
in NCC-free zones adjacent to NCC collectives, play a key role in
confining NCCs to stereotypical migratory pathways during
migration and maintaining coherence within collectives.

In the context of NCC migration, these recent hybrid modeling
developments reveal the importance of fibronectin and alignment of
fibers in the ECM in guiding long-range migration.

2.3 Cancer cell migration and tumor
development

During cancer cell migration, changes in the composition,
stiffness, and topography of the ECM can significantly influence
cell behavior and migratory capacity (Park et al., 2018; Eble and
Niland, 2019; Najafi et al., 2019). Cancer cells remodel the ECM to
facilitate migration (Mohan et al., 2020), for example, by secreting
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enzymes such as MMPs (Castro-Castro et al., 2016). Additionally,
changes in ECM structure can induce a more invasive phenotype
(Leight et al., 2017), further promoting migration. In this section, we
review models of cancer cell migration that explicitly consider the
ECM during tumor progression.

In mathematical studies of cancer cell migration, traveling waves
are often used to describe the speed and shape of spatial processes in
cancer progression (Gerlee and Nelander, 2016). A simple
continuum model that has been utilized extensively in the
context of cell migration is the Fisher-KPP model (Fisher, 1937;
Kolmogorov et al., 1937; Maini et al., 2004). This seminal continuum
model only explicitly considers changes in cell density with respect
to space and time, and does not explicitly consider cellular
interactions with the ECM. To more closely align theoretical
predictions with in vivo and in vitro experiments, more
sophisticated traveling wave models explicitly represent both cells
and the ECM as distinct, smoothly-varying quantities that interact
with one another. Newer models of this nature suggest that the speed
of tumor invasion depends on the ECM density ahead of the
invading front, and on the rate of ECM degradation by motile
cancer cells (Colson et al., 2021; El-Hachem et al., 2021). Similar
results have also been found using a PDE model derived from the
underlying individual cell-cell and cell-ECM interactions (Crossley
et al., 2023), which, unlike the majority of continuum models,
considers the volume-filling effects of both the cells and ECM
during invasion. The resulting model describes non-linear cross-
diffusion (Simpson et al., 2009b), and proliferation terms akin to
those considered in a different model for melanoma invasion into
human skin (Browning et al., 2019). By considering asymptotic
parameter regimes, this work justifies the use of simpler models such
as the Fisher-KPP model to understand qualitative behaviors of
model solutions, and employs boundary layer analysis to profile the
traveling wave solutions for small ECM degradation rates.

In addition to the ECM, there are several other extrinsic factors
that also influence cell behavior during migration. A recent model
describing acid-mediated tumor invasion (Strobl et al., 2020),
considers the role of both the ECM and stroma in impeding
tumor cell movement and inhibiting growth. Tumors often
consist of a heterogeneous population of cells (Sinha et al., 2020),
so this model considers two tumor cell types that are able to
antagonize either the ECM or stroma, and subsequently
constructs a model of five coupled differential equations as an
extension of Gatenby-Gawlinksi models of acid-mediated
invasion (Gatenby et al., 2006; Martin et al., 2010). The model
predicts that heterogeneous tumors are more invasive than spatially
separated tumor populations. Additionally, it concludes that the
biological barrier of the stroma provides a stronger prevention of
tumor growth than the physical ECM barrier.

The ECM not only influences cell migration, but also tumor
morphology and its expansion. In this context, multi-scale moving
boundary approaches are employed to understand behaviors across
scales, ranging from the cell scale to the tissue scale. An initial
framework introduced by Trucu et al. (2013) is later extended to
examine tumor morphology by considering the direct interaction of
cancer cells with a two-phase ECM comprised of both a fibrous and
non-fibrous component (Shuttleworth and Trucu, 2019). The
inclusion of bi-directional cell-ECM interactions, including cell
adhesion and dynamic fiber reorientation, enables an exploration

of pattern formation, highlighting the characteristic fingering
pattern observed in tumor modeling (Drasdo and Hoehme,
2012). By considering different compositions of ECM, such as
varied initial fiber distributions and orientations, the authors
show that tumors display more aggressive growth patterns when
seeded in a heterogeneous ECM.

While continuum models are excellent at capturing population
trends such as collective migration, ABMs are more suitable for
lower cell densities, such as in single cell migration or for modeling
the transition between collective and individual cell migration.
Harjanto and Zaman (2013) develop a 3D cellular automaton
model with explicitly modeled ECM fibers to investigate four
types of cell-matrix interactions: collagen-density dependent cell-
mediated deposition, degradation, realignment, and displacement of
collagen fibers. After parameter fitting to two prostate cancer cell
lines, the model reveals an elevated probability of collagen
degradation and motility even in denser ECM, which correlates
to a more invasive tumor and matches experimental observations.

In an effort to make ABMs more accessible, computational
packages for hybrid CPM such as CompuCell3D (Izaguirre et al.,
2004; Swat et al., 2012) and ABM software such as PhysiCell
(Ghaffarizadeh et al., 2018) facilitate model development with
minimal programming experience. Recent work in PhysiCell
represents the ECM as a drag force to study how cancer cell
migration and tumor cluster formation are affected by a 3D
ECM architecture (Gonçalves and Garcia-Aznar, 2021). This
work also introduces a representation of the distribution of cell
locomotive forces and intercellular adhesion and repulsion to
capture the spread in cell velocities found in vitro. This model
predicts a dichotomy between cell migration and tumor size: if the
former is hindered by increased ECM density, multicellular clusters
increase in area, and vice versa, such that even tumors with low levels
of proliferation can be highly invasive. A PhysiCell extension,
PhysiBoSS, allows for the tracking of intracellular dynamics such
as gene regulatory networks (Letort et al., 2019; Ponce-de Leon et al.,
2023). Ruscone et al. (2023) use PhysiBoSS to model cancer invasion
through the ECM, which is represented as a scalar field in the base
structure of the microenvironment. The ECM acts as a barrier for
cells and cell-ECM interactions, such as repulsion and adhesion,
along with intracellular regulation, are modeled using Boolean logic.
This model successfully reproduces experimental results and
demonstrates non-reversible epithelial-mesenchymal transitions
(EMTs), a phenotypic switch from epithelial cells to
mesenchymal cells, wherein cells lose cell-cell adhesion
capabilities and gain both migratory and invasive properties
(Kalluri and Weinberg, 2009).

Cancer cell migration has long been framed by the concept of
EMT. Recent studies taking inspiration from the physics of active
matter reframed tumor cell migration as state transitions, where a
non-migratory tumor is likened to a solid or glass-like material, and
a tumor exhibiting more migratory cells to a liquid or gas. In analogy
to granular materials, this transition from immotile to motile is
called the jamming-unjamming transition (Oswald et al., 2017).
Interestingly, at least in some experimental systems, distinct
biological mechanisms underlie EMT and jamming-unjamming
transitions (Mitchel et al., 2020). A key regulator of EMT is the
cell-cell adhesion protein E-cadherin, whose loss of expression is
associated with increased tumor invasiveness. To study how breast
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cancer cells switch from collective to single-cell migration, Ilina et al.
(2020) complement their experimental study with a discrete lattice-
based cellular automata model based on a previously-developed
ABM framework (Deutsch et al., 2021). Key parameters in this
model are cell-cell adhesion mediated by E-cadherin, and ECM
density which confines cell movement. Increasing intercellular
adhesion favors collective motion but also reduces cell migration
speed, while increasing confinement by dense ECM reduces cell
migration speed and forces cells into a solid-like jammed state.
When both ECM density and intercellular adhesion are low, cells
tend to move as individuals in a gas-like state. When ECM density is
high and intercellular adhesion low, cells move collectively in loose
flocks in a fluid-like state.

As in non-malignant cell populations, cancer cells utilize the
ECM to facilitate migration. Models agree with experimental data
that cancer cells adhere to dense ECM structures at a stronger rate
than to soft ECM, where they secrete high levels of MMPs that
degrade the surrounding matrix, which in turn frees up space for cell
migration (Harjanto and Zaman, 2013). On the other hand, in a soft
ECM, cancer cells are less likely to adhere to thematrix and therefore
have a slower migration speed. Mathematical modeling has also
been used to shown that heterogeneity in either the ECM or tumor
cell population can increase tumor invasiveness (Shuttleworth and
Trucu, 2019; Strobl et al., 2020). The vast array of mathematical
models discussed here highlight the power of models to predict
cellular responses to a range of mechanical ECM properties, and by
understanding how tumors spread in surrounding tissue, we can
develop therapies aiming to reduce the speed at which tumors grow
and invade healthy tissues.

2.3.1 The role of ECM remodeling enzymes
Many mathematical models of cell-ECM interactions, including

those discussed previously, assume that cancer cells themselves are
responsible for degrading and remodeling the ECM. MDEs are
generally localized: either on the cell membrane, at the tips of
invadopodia (Weaver, 2006; Lu et al., 2011), or with very small
diffusivity (Werb, 1997). Thus, the highly localized degradation of
ECM by cells is a suitable approximation to employ, in particular
because the degradation of MMPs occur on a much shorter time
scale than degradation of ECM (Perumpanani and Byrne, 1999;
Webb et al., 1999). However, some MMPs are freely diffusible,
allowing degradation of the ECM without direct cell contact
(Cabral-Pacheco et al., 2020). This behavior can be modeled by
introducing a diffusible population of MDEs which are secreted by
cells and degrade the ECM (Anderson et al., 2000), and analyzed
using partial integro-differential equations to describe the spatial-
temporal dynamics of cancer invasion (Chaplain et al., 2011).

Many CPMs are hybridized with PDEs to model diffusible
MDEs. An early example by Szabó et al. (2012) combines both
diffusible and immobile ECM components to investigate how cell-
ECM adhesion, cell motility, and ECM degradation impact invasive
dynamics into an aligned fiber array. Whilst cell-ECM adhesion can
lead to invasion as cells progressively spread to maximize their
adhesive contact with the ECM, the addition of cell motility
accelerates the invasive front. The effect of ECM degradation
then depends on the relative strength of cell-ECM adhesion;
weakly adherent cells preferentially migrate along tracts where
matrix has been degraded, while strongly adherent cells prefer to

migrate along ECM-rich paths. Similarly, in their model of cell
migration, Scianna et al. (2013) find that matrix degradation can
enhance migration when the ECM is too dense or pore size too
small. In contrast, ECM degradation is deleterious when the ECM is
too sparse, as some ECM contact is necessary for cells to move.
Using a similar model, Pal et al. (2021) study how different ECM
patterns affect migration. Varying adhesion parameters and the
elasticity of fibers in the network is found to change the invasive
potential of a cluster of cells. Moreover, randomly curved fibers
decrease invasion while wave-like and parallel fibers increase cancer
invasion speed and distance. Further work by Kumar et al. (2016)
shows that increased MMP secretion and fiber alignment enhances
cell migration, while increased ECM density inhibits the migration
of cells. This implementation has since been extended to study how
differences in cell size and deformability promote invasion during
cancer cell migration (Asadullah et al., 2021). In a similar hybrid
model, Pally et al. (2019) adapt the rules specifying the agent
morphology such that the BM forms clusters, while collagen
forms elongated structures. Pramanik et al. (2021) later extended
this work to systematically investigate the impact of cell
proliferation, and MMP diffusivity and inhibitor cooperativity,
revealing five migratory phenotypes: non-invasive, dispersed
individual invasion, multimodal invasion with both non-invasive
and dispersed individual invasive cells, invasion as a non-adherent
flock, and invasion as an adherent cluster.

In addition to MMPs, LOX is another important diffusible
ECM-remodeling enzyme. A continuum framework by Nguyen
Edalgo and Ford Versypt (2018) couples a PDE for cancer cell
movement to two PDEs governing the evolution of randomly
oriented and crosslinked ECM fibers, both represented as distinct
scalar fields. They include reaction-diffusion PDEs to capture ECM
degradation, remodeling, and fiber crosslinking by MMPs and LOX.
By distinguishing crosslinked and randomly oriented ECM fibers,
the model reproduces the enhanced migration of cancer cells in the
presence of LOX-induced crosslinking. This work highlights the
importance of LOX in facilitating cancer cell migration and
metastasis (Cox et al., 2013), with implications for the
developments of novel therapeutics combating the progression
of cancer.

The importance of LOX in remodeling the ECM to facilitate
cancer cell metastasis has also been studied using CPMs and
other seminal hybrid ABM-continuum frameworks (Anderson
et al., 2000) that describe tumor growth within the
microenvironment (Nguyen Edalgo et al., 2019). All ECM
components, including collagen fibers and enzymes such as
MMPs and LOX, are modeled using PDEs, with cancer cells
modeled as discrete agents. Simulations show that the rate of
invasion by cancer cells is higher in a uniformly distributed fiber
concentration, rather than a random distribution, and that as
fiber concentration increases, pore size increases and migration is
more efficient, agreeing with experimental studies such as Paul
et al. (2017). As in prior work by Nguyen Edalgo and Ford
Versypt (2018), the study by Nguyen Edalgo et al. (2019)
highlights the importance of LOX in migration and highlights
LOX inhibition as a potential therapy to reduce cancer
metastasis.

Remodeling ECM enzymes, such as those that can degrade the
matrix (MMPs) or those that help remodel the matrix (LOX), are
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crucial to tissue homeostasis. However, they are also exploited by
cancer cells to help them invade the surrounding tissue. Through the
upregulated secretion ofMMPs, cancer cells are able to degrade large
amounts of the ECM which frees up space for proliferation and
migration. Another important ECM enzyme is LOX, which plays a
key role in cross-linking collagen with elastin fibers. Through
mathematical modeling, it has been shown that migration of
cancer cells is enhanced in the presence of LOX-mediated fiber
cross-links, highlighting the importance of LOX during
tumor invasion.

2.3.2 Tumor spheroids
Continuum mechanics-based models are often used to study 3D

tumor spheroids embedded in fibrous collagen gel. Chemo-
mechanical free energy of the ECM, cells and adhesion
determines cell evolution in an ODE model by Ahmadzadeh
et al. (2017), where the ECM is modeled with radially aligned
fibers using stress–strain relations for transversely isotropic
materials. The work shows that below a predicted critical elastic
modulus for the ECM, cells favor adhesion and remain within the
tumor, whereas above the critical value, it is energetically favorable
for cells to detach from the spheroid. Similar energy-based
approaches to modeling mechanical deformations, motor binding
energy and mechano-chemical feedback are used to predict age-
related differences in ECM structure that impact melanoma
progression (Kaur et al., 2019).

Experimental results have shown that various breast cancer cell
lines demonstrate different modes of cell invasion. Confirming
earlier findings from Ilina et al. (2020) and using new
experimental results in spheroids, Kang et al. (2021) present a
hybrid model combining vertex and particle-based approaches
for spheroid growth within an ECM. They propose a jamming
phase diagram to describe how two key parameters, ECM
confinement and cell motility, control the transition from a solid-
like jammed state, to a liquid-like collective migration in loose
strands, up to a more gas-like migration as single detached cells.

Amodel by Caiazzo and Ramis-Conde (2015) is used to simulate
ECM fibers, and extended to model blood vessels and cells using a
3D ABM coupled to an FEM solver for oxygen evolution in time and
space (Macnamara et al., 2020). The interactions between agents in
this model are mainly mechanical, showing that tumor shape is
driven by local structures. Cells grow in alignment with the fibers
and around existing vasculature, and migration is led by interactions
with the microenvironment, including ECM fibers, and as cells seek
out regions of higher oxygen concentration. An alternative approach
applied to glioblastoma spheroid growth uses a mechanochemical
model, where the ECM is modeled using a PDE that describes its
diffusion towards the tumor spheroid core and its uptake by cells
(Carrasco-Mantis et al., 2023b). An ODE describes nutrient-
dependent cell proliferation and death, and further PDEs model
the mechanical properties of cells within the spheroid. Through
parameter analysis and validation against experimental data, the
authors conclude that this mechanical model effectively
approximates glioblastoma spheroid growth and shrinkage.

These results, similarly to other cell migration contexts,
demonstrate that ECM elasticity and fiber alignment strongly
influence tumor spheroid growth - both in speed and shape.
Additionally, age-related structural and density changes in the

ECM will impact modes of tumor progression across various
cancers, where this observation can be successfully reproduced
using experimental data.

2.4 Wound healing

Wound healing is essential for restoring tissue integrity and
function after an injury and requires a cascade of coordinated events
at both the cell and molecular levels. Human skin, for example, is
composed of two distinct layers - an outer layer, the epidermis, and
an inner layer, the dermis (McGrath et al., 2004). The epidermis is
mainly composed of keratinocytes, while the dermis is
predominantly composed of ECM, but also contains blood and
lymphatic vessels, immune cells, and fibroblasts that locally deposit
ECM constituents (Pfisterer et al., 2021). Skin wound healing
proceeds in four major phases: haemostasis, inflammation,
proliferation, and tissue remodeling (Wilkinson and Hardman,
2020). Anomalies during any stage can cause improper tissue
repair and complications, including significant tissue scarring
(Guo and DiPietro, 2010). Haemostasis, the first stage of wound
healing, involves blood coagulation at the wound site promoted by
platelets and fibrin fibers (Arnout et al., 2006). After coagulation,
inflammatory cells clean the wound and generate chemokine
gradients that attract keratinocytes, fibroblasts, and other cells
towards the wound center (Koh and DiPietro, 2011). In the
proliferation phase, growth factors stimulate keratinocytes to
proliferate and restore the epidermis (Landén et al., 2016), while
blood vessels are re-established by angiogenesis. The final phase
consists of ECM remodeling (Guerra et al., 2018). The ECM plays
critical roles in coagulation, during migration of cells towards the
wound center, and in the final remodeling stage. In this section, we
review modeling approaches that explicitly describe the interactions
between cells and the ECM during wound healing. For in-depth
reviews of broader mathematical models of wound healing and
closure and wound healing angiogenesis, that do not necessarily
consider ECM, we refer the reader to excellent reviews elsewhere
(Flegg et al., 2015; Jorgensen and Sanders, 2016).

Simple continuum mathematical frameworks represent cell
density in wound healing as a scalar field. A seminal model
considers the effect of insoluble, fibrillar ECM during wound-
healing angiogenesis (Olsen et al., 1997), where the ECM
mediates the movement of endothelial cells towards the center of
a wound (Lamalice et al., 2007). Cells and the ECM interact with one
another through haptotaxis (Ricoult et al., 2015), haptokinesis
(Friedl and Bröcker, 2000), ECM-mediated cell proliferation
(Rabie et al., 2021), and ECM production and degradation
(Winkler et al., 2020). Steady-state analysis and traveling wave
solutions predicts that the ECM and cell densities evolve with
approximately constant speed prior to reaching the center of the
wound, with cell density increasing beyond baseline levels at the
wound edge before settling to a pre-wounding equilibrium (Dale
et al., 1994).

ECM orientation and alignment are also of importance during
the healing process and can influence the invasive capacity of cells
duringmigration towards the centre of a wound (Lin et al., 2020; Ray
and Provenzano, 2021). Furthermore, ECMmodulates the direction
of cell migration through a process known as contact guidance
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(Dunn and Heath, 1976). Thus, an important extension to
traditional continuum models is a representation of ECM fiber
orientations, pioneered by Dallon and Sherratt (1998). Models of
this sort have been used to study fiber alignment as a dynamic and
reversible process - first in two fixed orthogonal directions (Olsen
et al., 1998b), and then for a continuous range of directions (Olsen
et al., 1999), in the context of angiogenesis.

To model the final remodeling stage of skin wound healing,
Dallon et al. (1999) develop a hybrid framework with cells as
discrete agents and collagen fibers as a continuous bi-directional
vector field describing fiber density and directionality. In the
model, ECM orientation biases the direction of cell migration
and migrating cells also reorient ECM. This reciprocal
interaction is sufficient to generate fiber alignment in model
simulations, with the precise nature of patterns depending on
cell speed, the degree of cell polarization, and the initial fiber
structure. Cumming et al. (2010) extend this work by including
both collagen fibers and fibrins, both modeled as continuous
tensorial fields in 2D, and model fibroblasts as discrete circular
discs, whose behaviors are determined by chemotaxis, volume
exclusion, and contact guidance. This work successfully
reproduces ECM remodeling dynamics observed both with
and without scarring. Recent experimental work highlights
the importance of viscoelastic behaviors in cell and tissue
function (Alegre-Cebollada et al., 2023; Eroles et al., 2023),
which is subsequently incorporated into corresponding hybrid
models (Pensalfini and Tepole, 2023). To investigate dermal
wound healing, Guo et al. (2022b) couple a microscale stochastic
cell adhesion model with a macroscale continuum mechanics
ECM modeled as a fiber-reinforced material with hyper-
viscoelastic constitutive behavior to represent fibroblast
contraction. This model qualitatively captures the cutaneous
wound healing process, with initial active contractions,
increased fibroblast population at the wounded site, and
consequential stress distribution changes.

To model epidermal-dermal interactions during wound healing,
Wang et al. (2019) model the epidermis and dermis as separate
compartments. Keratinocytes in the epidermis compartment are
modeled as individuals, whereas fibroblast and immune cells in the
dermis compartment are modeled as continuous fields using Keller-
Segel reaction-diffusion-advection PDEs (Arumugam and Tyagi,
2021). Diffusible signals across the BM, such as signaling molecules
for ECM deposition and degradation are also modeled explicitly as
continuous quantities. The model predicts that dermal wounds heal
by forming scar tissue with different ECM and fibroblast
compositions than healthy tissue, in agreement with experimental
studies (Pastar et al., 2014). Furthermore, the model predicts wound
depth to be a critical determinant in scarring. In particular, shallow
but wide wounds are predicted to repair with smaller scars than
narrow but deep wounds (Hinshaw andMiller, 1965; Marshall et al.,
2018). The benefit of this compartmentalized framework is that it is
easily extensible without affecting existing model components,
enabling a model representation of sharp boundaries within the
skin such as the follicle/dermal boundary.

The ECM also impacts regeneration in tissues other than skin. In
a model of tendon healing, Dudziuk et al. (2019) employ a
continuous integro-PDE model to study the orientation of
collagen fibers during scar formation. This work highlights the

role of the initial fiber orientations in determining the final
structure of the collagen network. Later work using a similar
mathematical framework (Carrillo et al., 2021), adds local
alignment interactions between collagen fibers and simplifies this
model under appropriate limits, allowing for a parameterization
based on experimental data.

A large fraction of mathematical models currently investigating
wound healing focus on the role of ECM fibers, in particular, fiber
alignment and orientation. Through different mathematical
approaches, these models agree that the ECM structure and
configuration of the fibers facilitate cell migration and guide the
cells towards the wounded site, contributing to the success of
wound healing.

3 Tissue structure and morphology

One of the major functions of the ECM is to mechanically
support and maintain tissue shape both during tissue formation and
in homeostasis (Cruz Walma and Yamada, 2020). The ECM
provides not only mechanical support, but also regulatory input
that can determine cell fates. For example, stem cells in mammalian
skin need contact with the BM to retain their proliferative potential
(Rousselle et al., 2022; Shen et al., 2023). Here, we review modeling
approaches that focus on the ECM’s impact on tissue structure
(Sections 3.1, 3.2) and its effects in patterning and
morphogenesis (Section 3.3).

3.1 Cell-ECM mechanics and ECM structure

A fascinating observation is the transmission of long-ranged
cellular forces via the ECM. Experimental work in the 1980s showed
that fibroblasts exert sufficient force to densify and align collagen
fibers over distances much larger than the cells themselves, and that
these aligned ECM tracts encourage cell migration (Stopak and
Harris, 1982). Cellular forces lead to the formation of so-called
intercellular ECM bridges, which are visible bands of dense and
aligned ECM between distant cells (Panchenko et al., 2022). These
experimental observations inspired the development of Turing-type
mechanochemical models. Turing models, first proposed by Turing
(1952), are a class of pattern formation models that rely on the
reaction and diffusion of chemicals. A well-known example consists
of two chemical species, a short-ranged activator and a long-ranged
inhibitor (Kondo and Miura, 2010). Mechanochemical Turing
models, pioneered by Oster et al. (1983), substitute one or more
chemical species by mechanical constitutive equations coupling cell
and ECM fields. These models explicitly describe the ECM as a
continuum field with variable concentration and displacement via
diffusive, advective, and convective flows. Like its chemical cousin,
the mechanochemical Turing model predicts the formation of
spatial patterns of spots or stripes denoting regions of high cell
and ECM density.

In the seminal model by Oster et al. (1983), fibroblast
contraction takes the role of both activator and inhibitor of the
typical biochemical Turing model. On the one hand, contraction
pulls in both nearby collagen and nearby cells; the local increase in
cells and collagen leads to greater local contraction in a positive
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feedback loop, thus acting as a short-ranged activator. On the other
hand, this leads to a decrease of both cell and collagen density at a
longer range, thus acting as a long-ranged inhibitor. An extensive
body of work has built on this, for instance, to include more complex
cellular behavior such as cell division and haptotaxis (Murray et al.,
1988; Holmes and Sleeman, 2000; Tranqui and Tracqui, 2000).
Models of this type are widely applied to in vitro endothelial cell
sprouting on ECM substrates (Manoussaki, 2003; Murray, 2003;
Namy et al., 2004; Tosin et al., 2006), patterning of epidermal
placodes and dermal papillae (Murray et al., 1988), patterning
during limb morphogenesis (Oster et al., 1985; Murray et al.,
1988), wound healing (Tranquillo and Murray, 1992; Olsen et al.,
1995; 1998a), and tumor metastasis (Tracqui, 1995). Variations of
the model have been developed to include other types of ECM
mechanics such as osmotic swelling and de-swelling due to the
secretion or degradation of hyaluronic acid (Oster et al., 1985).
Several studies also analyze how the choice of constitutive
equation for the cell forces and matrix displacement impacts the
patterns predicted by the model (Byrne and Chaplain, 1996; Villa
et al., 2021). Patterns consistent with mechanochemical Turing
models are observed experimentally and are suggested to lay
down the pre-pattern for skin follicle morphogenesis (Palmquist
et al., 2022).

Another widely-used approach to understand how cell forces
spread through the ECM and ultimately form intercellular ECM
bridges is based on mechanical models (Wang and Xu, 2020).
Many models of this type consider a large (sometimes infinite)
ECM gel seeded with a relatively small number of contractile
cells, often modeled as shrinking circles or ellipses. Multiscale
models combining a microscopic discrete mechanical fiber model
with a macroscopic continuum ECM biogel model have also been
used (Aghvami et al., 2013). This body of work predicts various
contributing mechanisms to intercellular ECM bridge formation,
including cell elongation (Abhilash et al., 2014; Han et al., 2018),
ECM fiber buckling (Notbohm et al., 2015; Han et al., 2018), focal
adhesion mechanics (Cao et al., 2017), non-linear ECM fiber
mechanics (Goren et al., 2020; Grekas et al., 2021; Sopher et al.,
2023), fiber re-orientation (Goren et al., 2020; Panchenko et al.,
2022), force-dependent crosslink breakage and plastic ECM
deformation (Kim et al., 2017; Ban et al., 2018; 2019;
Malandrino et al., 2019). Clearly, many different mechanisms
can qualitatively explain long-ranged force transmission.
However, the precise ECM network architecture can
quantitatively affect the range and heterogeneity of
propagation of cellular forces through ECM (Humphries et al.,
2017). Thus, a close matching of simulated ECM to quantitative
experimental data is paramount.

Although the aforementioned models successfully capture
realistic ECM mechanics, they tend to oversimplify cell shape. To
address this shortcoming, some approaches incorporate
deformable cells coupled to discrete mechanical models of
ECM networks. Perhaps the earliest such model was developed
by Reinhardt and Gooch (2014), in which cells are made up of
multiple membrane elements that interface with fibers from a 2D
ECM network model. In follow-up work, Reinhardt and Gooch
(2018) calibrate their model against experimental measurements
of collagen biophysical properties. Both models successfully
replicate the formation of intercellular ECM bridges. A similar

approach is used by Slater et al. (2021) and combined with a more
sophisticated ECM network model that includes force-dependent
crosslinker unbinding. Eichinger et al. (2021) hybridized an ABM
with an ECM fiber network that is fitted to confocal microscopy
data of collagen gels. In follow up work, Paukner et al. (2023) use
this model to investigate the minimal criteria needed to obtain
durotaxis. They identify two sufficient conditions for durotaxis.
Firstly, the cell must adhere to ECM via catch-slip bonds.
Secondly, the cell must continuously pull on their adhesions
to the ECM via actomyosin contraction of its internal cytoskeletal
network. Interestingly, both of these factors are included in a
different model of a CPM cell on a continuum ECM substrate
(discussed in Section 2 in the context of cell migration), which
also predicts emerging durotaxis (Rens and Merks, 2020). The
fact that two models with such different implementations come
to the same conclusion supports the notion that indeed, the
biomechanics of integrin bonds and cytoskeletal activity are key
to durotaxis. To allow even more cell shape flexibility, Tsingos
et al. (2023) hybridized a CPM with a discrete mechanical ECM
model that captures long-ranged strain and force transmission
through the ECM network. They highlight a transition from
viscoplastic to viscoelastic ECM mechanical properties as the
density of fiber crosslinking is increased.

Intercellular ECM bridges have been proposed to be involved
in long-ranged sensing and potentially communication between
distant cells (Panchenko et al., 2022; Nahum et al., 2023). By
considering a range of mathematical approaches, the models
highlight the key role of cell-derived forces and fiber
realignment in the formation of intercellular ECM bridges.
Furthermore, many different ECM mechanical properties are
permissive to long-ranged force transmission, suggesting this
mode of mechanosensing is robust to variations in ECM
composition, and could be co-opted to regulate cell function
in different tissue contexts. Indeed, long-ranged mechanical
interactions mediated by ECM have been proposed to guide
collective cell migration, orchestrate wound healing, and allow
cells to coordinate during morphogenesis (Sapir and Tzlil, 2017).
The pattern-formation potential of relatively simple force-based
interactions between cells and ECM are beautifully demonstrated
by the Turing-type models. As continuum models, Turing-type
models provide an excellent tool at tissue length-scales, while
mechanical ECM models tend to focus on smaller cellular scales,
but with few exceptions have not incorporated detailed cellular
behavior models typically seen in ABM. Recent advances in
coupling mechanical network models of the ECM with ABM
frameworks such as CPM will enable to investigate how long-
ranged sensing and communication impact on migration and
pattern formation at the cellular level.

3.2 Tissue integrity

The role of ECM in maintaining tissue integrity has long been
appreciated in biomedical engineering, where continuum
mechanical modeling of biological tissues including ECM is
applied to predict the effects of injury in joint cartilages, the
cardiovascular system, and bones, as well as to design
synthetic biomaterials for prosthetics, such as arterial stents
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and heart valve replacements (Khaniki et al., 2023). The strong
focus on biomedical engineering has led to the development of
many sophisticated material models, for which the reader is
referred to excellent reviews elsewhere (Holzapfel et al., 2019;
Guo et al., 2022c).

In many ABMs, ECM surrounding the tissue of interest is
included by creating a new type of agent. Frequently, these ECM
agents are made immobile and act as a physical boundary as well
as attachment points for the freely-moving cells. Although clearly
a simplification, this approach permits an investigation of how
ECM structure affects cell behavior. For example, Buske et al.
(2011) models the BM lining the mammalian intestinal
epithelium by discrete points with pre-specified positions in
the shape of a typical intestinal crypt. A key assumption of
this model is that local tissue curvature affects cell
proliferation via Wnt-signaling (Huelsken and Behrens, 2002),
enabling self-regulation of the proliferative compartment size.
Similarly, in a model of mammalian skin epidermis by Sütterlin
et al. (2017), cells are simulated using ellipsoids and the BM
either as a flat or curved static surface. In this model, feedback
regulation between surface skin layers and deep skin layers in
contact with the BM ensures that the epidermis achieves a
minimum homeostatic depth regardless of BM curvature, and
showed that cell proliferation adjusts to fill deeper ECM clefts. A
static reticular network—a structure made of close association of
fibroblasts with ECM—is used in a CPM of T cell motility in the
lymph nodes (Beltman et al., 2007). This model suggests that
many features of T cell motility such as stop-and-go motion can
be explained by cells colliding with the maze-like
reticular network.

Discrete mechanical models of laminin structure have been used
to explore how BM integrity affects adjacent tissues, using, for
example, a 2D honeycomb lattice (Reuten et al., 2021). By
removing nodes in this lattice, ECM softening by Netrin-4, a BM
component associated with reducedmetastases and better prognoses
in cancer patients, is modeled. A similar laminin polygonal model is
constructed to explain how laminin ECM aids in epithelial sheet
migration during optic cup morphogenesis in zebrafish embryos
(Soans et al., 2022). The model proposes that weakening of the
laminin matrix creates holes in the BM that prevent
collective migration.

The ECM plays a key role in maintaining the integrity of
surrounding tissues. The models reviewed in this section simplify
the ECM as a static barrier. Despite this strong simplification,
such models permit the study of how the mere presence of a steric
obstacle can regulate cell motility and proliferation dynamics.

3.3 Morphogenesis

Morphogenesis refers to the acquisition of tissue shape during
development, which may involve formation of patterns of cell
clumps, but also cell migration, cell adhesion, cell shape change,
and differentiation—all processes that can be regulated by the ECM
(Cruz Walma and Yamada, 2020). In this section, we first review
models of cell and ECM pattern formation before focusing on
models considering the influence of ECM on the generation of
tissue shape.

3.3.1 Cell and ECM patterning
Besides the aforementioned mechanochemical Turing models,

other ECM-mediated pattern-forming mechanisms have been
studied with computational models. A general study of pattern-
forming potential uses a cellular automaton model in which each
lattice site contains either a cell, ECM particle, or fluid medium
(Grant et al., 2006). Phenomenological rules are used to explore how
cells self-organize into different structures, including cysts
surrounding a fluid-filled lumen, cysts surrounding an ECM
lumen, or boundaries separating a fluid phase from an ECM
interior like an epithelium. In a more involved approach, Checa
et al. (2015) combine a cellular automaton model with a continuum
mechanics-based description of the ECM to study how cell behavior
such as stiffness-mediated realignment coupled to ECM mechanics
leads to the formation of patterns of aligned cells and fibers.

To study how patterned ECM emerges from fibroblast
migration, Wershof et al. (2019) use a Vicsek model (a type of
ABM) coupled to an ECM model on a lattice. Three mechanisms
contribute to fibroblast motility: migration noise, cell-cell guidance,
and cell-matrix guidance. Cells affect the underlying ECM via fiber
deposition, realignment, and degradation. In the absence of cell-
matrix guidance, the ECM is either completely disorganized (high
migration noise, low cell-cell guidance), or organizes into long
coherent strands (low migration noise, high cell-cell guidance).
Cell-matrix guidance leads to the generation of wavy fibers and
swirls reminiscent of patterns in various tissue types observed by
the authors.

To explain the formation of cell clumps in their experimental
in vitro work on mesenchymal cell condensation, Zeng et al. (2004)
develop a CPM where cells secrete fibronectin on the lattice sites
they occupy, forming insoluble non-diffusing deposits. Cells
perform haptotaxis toward fibronectin, and cell-fibronectin
adhesion leads to the upregulation of cell-cell adhesion proteins.
Rapidly and randomly moving cells progressively clump and slow
down due to the self-reinforcing loop of fibronectin secretion and
increased cell-cell adhesion. This model correctly recapitulates that
cell seeding density is correlated with the transition from spots to
stripes, and the fact that (unlike Turing patterns) the clump patterns
are highly irregular.

White adipose tissue is organized into lobules separated by
collagen-rich septa, which Peurichard et al. (2017) sought to
model with an ABM representing adipocytes as spheres and
ECM fibers as lines. They recapitulate the formation of lobules
and septa by simple mechanical interactions; as islands of adipocytes
expand by cell proliferation and growth, they compress collagen
fibers into septa until the tissue is densely packed to an extent that no
new cell growth can occur.

During development, the mammalian skin BM changes from an
initially flat surface to an undulated one (Shen et al., 2023). In this
context, the interaction between cell proliferation and the ECM is
also the focus of several models where the BM is represented as a
collection of small spheres (Kobayashi et al., 2018; Ohno et al., 2021).
The authors argue that mechanical buckling alone cannot explain
undulation, as buckling neither gives a direction of undulation nor
does it lead to irregular undulations, as observed in the skin. In
contrast, their model shows that cell division dynamics could bias
the ECM curvature due to cells pinching off the ECM when
detaching. In addition, the positioning of stem cells along the

Frontiers in Cell and Developmental Biology frontiersin.org15

Crossley et al. 10.3389/fcell.2024.1354132

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1354132


tips of the undulated BM emerges spontaneously due to the
combined action of cell-ECM adhesion and cell division.

Realignment of the ECM by migrating cells leads to the
formation of patterns, an observation that has also been made in
other models of cell migration (Painter, 2009). In particular, cell-
ECM guidance causes the organization of migrating cells into long
coherent, directed strands. Cell clumping, on the other hand, is a
result of a feedback loop between cell secretion of fibronectin and
increased cell-cell adhesion. Different patterns can emerge by steric
interactions due to cell proliferation. As shown by Peurichard et al.
(2017), cell growth can compress strands of initially loose ECM to
form thick septa. In the skin, cell proliferation may underlie the
formation of undulations in the BM (Kobayashi et al., 2018; Ohno
et al., 2021).

3.3.2 Blood vessel morphogenesis
3.3.2.1 Models of angiogenesis

Angiogenesis refers to the formation of new blood vessels from
pre-existing ones (Folkman, 2006) (Figure 4A). During
angiogenesis, hypoxic tissues, such as tumors, secrete vascular
endothelial growth factor (VEGF), which diffuses around cells
and acts as a chemotactic cue for endothelial cells. Endothelial
cells sprout from pre-existing blood vessels and migrate towards
the source of VEGF. The ECM plays central role in angiogenesis and
vascular remodeling, which has led to extensive theoretical work
explicitly including the ECM. Here, we highlight some of these
modeling works, and refer the reader to more in-depth reviews
elsewhere (Heck et al., 2015; Abdalrahman and Checa, 2022;
Crawshaw et al., 2023).

The role of different cues in angiogenesis is a long-standing
question. In this context, Anderson and Chaplain (1998) study the
balance between chemotaxis and haptotaxis. Their continuum
model predicts that, when chemotaxis prevails, cells quickly reach
their target tissue. However when haptotaxis dominates, the sprout
moves slower and can fail to reach its target tissue. As the continuum
approach cannot track individual cells, and thus precludes analysis
of sprout morphology, the authors also derive a discrete cellular
automaton model. In this model, migration via chemotaxis is
predicted to favor straight sprouts, whilst haptotaxis favors the
formation of sprouts looping onto themselves to form
anastomoses. In contrast to Anderson and Chaplain (1998),

Levine et al. (2001) argue, based on experimental evidence, for
‘negative’ haptotaxis, that is, cell movement from high to low
substrate concentrations. In their continuum model, endothelial
cells secrete MMPs in response to VEGF, locally degrading
fibronectin. Thus, the cells at the migrating front carve a path for
following cells, promoting further migration despite the absence of
chemotaxis.

The seminal ABM of Anderson and Chaplain (1998) inspired
many other ABMs of angiogenesis, including CPMs. Bauer et al.
(2007) introduce a model of interstitial ECM as line segments in the
CPM lattice, and model how cells crawl on top of, adhere to, and
degrade ECM. The ECM is a static obstacle around which cells must
move, a task well-suited to be modeled with the CPM. Here and in a
follow-up model (Bauer et al., 2009), an optimum ECM fiber density
is required for successful angiogenesis. In sparse ECM, degradation
reduces sprout extension speed, while in dense ECM, degradation
enhances sprout extension speed. However, beyond a threshold
ECM density, sprout migration slows down considerably. A
similar ECM density optimum is also found in a hybrid model
by Milde et al. (2008). They represent the ECM as a tensor with
density and directionality in 3D, while the cells at the sprout tip are
modeled as agents. The model predicts that low ECM densities lead
to slowly advancing but unbranched vessels, intermediate ECM
densities cause the vessels to advance quickly but form many
branches, while at very high ECM densities, vessels advance
slowly and branch frequently. In line with the model by
Anderson and Chaplain (1998), increased fibronectin-directed
haptotaxis leads to increased vessel tortuosity, as haptotaxis acts
as a local autocrine directional cue.

Daub and Merks (2013) investigate the roles of MMPs in the
balance of chemotaxis, haptotaxis and haptokinesis (faster cell speed
toward denser ECM). The model combines CPM with a mechanical
continuum ECM model, and predicts that strong chemotaxis favors
long unbranched sprouts, while stronger haptotaxis or -kinesis
favors short branched sprouts. These predictions are similar to
those by Anderson and Chaplain (1998). Boas et al. (2012) also
study sprout morphology, but include both MMPs and soluble
MMP inhibitors. At low secretion of both factors or high levels
of MMP secretion, sprouts showed tubular morphology; at high
levels of MMP activator secretion, sprouts developed into cyst-like
structures; and high secretion of both MMP and their activators led

FIGURE 4
Schematic depiction of angiogenesis and vasculogenesis. (A) Angiogenesis is a process in which new blood vessels form from a pre-existing
network, whilst (B) vasculogenesis is the process by which randomly scattered cells spontaneously form vessel networks. During both of these processes,
the underlying ECM plays an important role.
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to collective movement of the entire endothelial cell population
without sprouting. In follow-up work the authors explored and
experimentally validated the positive feedback loop between ECM
degradation, and release of bound growth factors that further
stimulate MMP production (Boas et al., 2018).

Several models focus on mechanical cues in angiogenesis.
Edgar et al. (2013) represent local ECM orientation as a vector
field that biases the growth direction of blood vessels. They later
expanded this model to simulate how macroscopic gel
deformations affected local ECM fiber orientation and vessel
sprouting (Edgar et al., 2015). Stéphanou et al. (2015) model
individual endothelial cells superimposed on a continuum
chemo-mechanical model of the ECM. They include a strain-
biased diffusion tensor, allowing matrix deformation to feed back
directly on cell migration direction. They identify an
intermediate parameter range for cell traction forces and ECM
stiffness that enable angiogenesis.

Recent models have extended previous work by introducing
Delta-Notch signaling pathways to model phenotype acquisition of
sprout tip and stalk cells. Extending a model by van Oers et al. (2014)
where a CPM is hybridized with a continuum mechanics model of
the ECM, Vega et al. (2020) introduce Delta-Notch-Jagged signaling.
The model predicts that higher Delta reduces the number of sprouts
and thickens them, while higher Jagged leads to more branching as it
promotes lateral sprout induction. ECM mechanics play into this
dynamic by promoting cell extension and lateral branch
anastomosis. In follow-up work, the authors combine their
angiogenesis model with a model of retinal cells and BM to
simulate age-related macular degeneration (Vega et al., 2021).
They predict that impaired intercellular adhesion, excess VEGF
and Jagged expression contribute to the disease. More recently,
Stepanova et al. (2021) develop a 2D hybrid, multiscale model for
angiogenesis with phenotype-dependent cell-ECM interactions. At
the subcellular level, a stochastic model of VEGF-Delta-Notch
signaling determines two phenotypes: Delta-high tip cells and
Notch-high stalk cells. The phenotypes differ at the cellular scale,
as tip cells are more motile, degrade interstitial ECM, and deposit
BM. Interstitial ECM prevents cell migration, while the deposited
BM prevents sprout branching. Finally, the tissue scale employs
ODEs to track changes in ECM component concentrations, and
ECM fiber orientation. As in many other models, cell migration
direction and ECM fiber alignment mutually influence each other.
In contrast to other models, here both branching and chemotactic
sensitivity emerge dynamically. Further, this model identifies
interstitial ECM degradation and BM deposition as crucial
processes in determining number and length of vessel branches.

A few common characteristics emerge in these studies. First,
chemotaxis and haptotaxis are often predicted to have opposing
effects on sprout migration velocity and morphology. Second,
mechanical features—ECM density, stiffness, cell forces—display
a non-monotonic relationship with cell migration, being optimal
at an intermediate value. Finally, newer models have begun
extending the scales to include biochemical signalling.
Nevertheless, due to the different mechanisms investigated in
each study, comparing the validity of these models remains
challenging. Quantitative comparisons of models to
experimental data will be invaluable to identify the leading
mechanisms of angiogenesis.

3.3.2.2 Models of vasculogenesis
An alternative way of blood vessel formation is vasculogenesis,

wherein blood vessels are created de novo from scattered endothelial
cells (Figure 4B). Experimental vasculogenesis in the tube formation
assay begins with isolated cells plated on ECM. The cells then
coalesce into strands, forming a loose cell network (Arnaoutova
et al., 2009). As mentioned earlier, mechanochemical Turing models
have been applied to vasculogenesis (Manoussaki, 2003; Murray,
2003; Namy et al., 2004; Tosin et al., 2006). In general, these models
predict the formation of stable patterns of cell strands, which
correspond to positions where cell forces densified ECM.

Tomodel the formation of vascular networks in embryos, Köhn-
Luque et al. (2011) propose and experimentally validate a model
where VEGF, secreted by adjacent tissue, can be immobilized
through binding to the ECM (Köhn-Luque et al., 2013). Thus, in
contrast to angiogenesis, secreted VEGF does not form a gradient,
but is uniformly present. In their model, randomly distributed CPM
cells deposit ECM on the lattice sites they occupy. Because deposited
ECM binds VEGF, sequestered VEGF locally accumulates. These
local bound VEGF gradients induce cell chemotaxis, effectively
encouraging cells to stretch and move towards locations they
previously visited.

Using a CPM hybridized with a continuum mechanics model of
ECM, vanOers et al. (2014) model cell-generated ECM strains, while
the reciprocal coupling of the ECM to cells occurs indirectly by
biasing cell motility towards regions of higher ECM strain. Follow-
up work by Ramos et al. (2018) shows that cells elongate and align
along tracts of high strain, demonstrating that patterning requires an
intermediate level of ECM stiffness. More recently, Carrasco-Mantis
et al. (2023a) study the effects of the ECM on vasculogenesis using a
3D ABM. They predict a strong relationship between ECM stiffness
and vascular network proliferation, and in particular, that as the
viscoelasticity of the ECM is increased, the vascular network
proliferates less, such that network growth occurs primarily in
regions of stiffer ECM. These predictions are partially validated
through comparisons with existing experimental studies of
vasculogenesis. Noerr et al. (2023) use an ABM in which cells
align along directions of strongest ECM strain through the
exertion of dipole forces. Three parameters are found to affect
the ability to form a vascular network in the model: cell density,
cell contractility, and substrate stiffness. Substrates that enable long-
ranged force transmission are found to be most suited to lead to
vascular network formation even at low cell densities.

The reviewed studies predict that the success of vasculogenesis
strongly depends on the ECM. Although playing a different role
during angiogenesis, VEGF facilitates vasculogenesis through local
accumulation by binding to ECM, creating pockets of high VEGF
concentration to which cells preferentially migrate towards. Another
common theme among models is the role of ECM mechanics, as
vasculature development requires some level of ECM stiffness to
enable cells to sense each other over longer distances and thus
coordinate their alignment.

3.3.3 Tissue morphogenesis
3.3.3.1 Cell-driven morphogenesis

Morphogenetic events can often be traced back to cellular
changes, such as cell shape changes and cell rearrangements. A
textbook example is invagination, which is often ascribed to apical
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cell constriction (Figure 5). Davidson et al. (1995) develops a highly
detailed continuum mechanical model of invagination in the early
sea urchin gastrula that includes separate layers for apical, lateral,
and basal cell sides, as well as various layers of the ECM. They then
systematically test five competing hypotheses: apical cell
constriction, lateral cell tractoring, apical ring contraction,
apicobasal contraction, and ECM swelling. Surprisingly, all of
these mechanisms are found to reproduce invagination, but
require different mechanical parameters. For example, the model
predicts that apical cell constriction requires similar cell and ECM
stiffnesses, while an ECM swelling hypotheses requires the ECM to
be much stiffer than the cells.

Cell rearrangement is another paradigmatic morphogenetic
event, and an excellent use-case for ABMs. Longo et al. (2004)
develop a cellular automaton model of radial intercalation in tissue
extension of the blastocoel roof of Xenopus laevis embryos. The
model consists of several stacked cell layers, where at the very
bottom they are lined with a layer of fibronectin ECM. Using
phenomenological rules for cell motility and fibronectin
deposition, they recapitulate the pattern of tissue elongation and
basal fibronectin enrichment. The model predicts that groups of
initially adjacent cells disperse laterally during intercalation, which
they subsequently verify with cell transplantation experiments. The
model also shows that the fibronectin layer reduces cell dispersion by
promoting cell adhesion, and thus prevents overextension of
the tissue.

3.3.3.2 Somitogenesis
During vertebrate development, somites form by segmental

epithelialization of mesenchymal cells derived from the
presomitic mesoderm at the posterior end of the embryo. The
cells in each segment become patterned by spatio-temporal gene
activity oscillations in a mechanism known as the clock-and-
wavefront model (Baker et al., 2006). Truskinovsky et al. (2014)
argues that chemical models of somitogenesis are insufficient to
explain physical separation of the tissue into segments, and propose
a mechanical model where inter-tissue coupling via fibronectin
ECM plays a crucial role. This model predicts that segments

form because the presomitic mesoderm is a relatively soft tissue
that extends while mechanically connected to and confined by
relatively rigid layers. A similar physical mechanism is used by
Nelemans et al. (2020) where the ECM is represented as a
mesenchymal cell type in the context of a CPM. This work
predicts that imposed exterior mechanical strain leads to the
separation of somites, which is also experimentally verified by
mechanical manipulation of tissue explants. Supportive of the
predictions of these modeling approaches, new intriguing
experimental evidence indicates that the fibronectin ECM plays a
role in regulating left-right somite symmetry (Naganathan et al.,
2022) and inter-tissue growth coordination (Guillon et al., 2020).

3.3.3.3 Folding morphogenesis
A recurring theme in morphogenesis is the reshaping of flat or

tubular tissue into more complex topologies with folds, bends, and
loops. Tissue folding can occur via multiple mechanisms, including
cell growth, migration either of single cells or epithelial sheets,
confinement-imposed forces by adjacent tissues, and also from a
mechanical mismatch between adjacent tissue layers such as
epithelia and ECM-rich mesenchyme (Hughes et al., 2018;
Agarwal et al., 2022). For example, Gardiner et al. (2015) exert
compressive forces on a subcellular ABMwhere cells and the BM are
represented by clusters of particles. When lateral cell-cell adhesion is
high, the tissue responds by mechanical buckling. In contrast, when
vertical cell-ECM adhesion prevails, the tissue resists buckling and
instead adapts to compression by cell shape changes to columnar
morphology. Although tissue folding is a highly reproducible
process in embryonic morphogenesis, mimicking it in vitro
remains a challenge. To address this, Hughes et al. (2018)
developed an experimental bioengineered tissue scaffold whose
folding pattern is predicted using a continuum mechanical
model. By combining experimental work with modeling, cell
contraction is found to condense ECM into specific locations,
which allows the tissue to locally support greater tensile strength.
These bands of condensed ECM are thus akin to predetermined
faultlines that facilitate tissue folding in a robust,
predictable pattern.

FIGURE 5
Schematic depiction of processes of invagination. (A) Apical constriction: a cell shape change whereby the apical side of the cell actively contracts
and shrinks, forming a concave indentation (Martin and Goldstein, 2014). (B) Buckling: external mechanical forces cause a tissue sheet to bend, cell
shapes change passively as a consequence of the change in tissue curvature (Nelson, 2016).
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An example of the flat to folded transition is seen in the
Drosophila wing imaginal disc - a bilayered epithelium
surrounded by BM that develops stereotypical folds and
eventually gives rise to the adult wing of the fly (Martín et al.,
2009). Using a continuum mechanical model, Keller et al. (2018)
estimate mechanical properties of the tissue through comparison
with stretching experiments. Interestingly, a stiffer layer of ECM at
one side of the tissue is necessary to replicate experimental
measurements. Tozluoǧlu et al. (2019) develop a continuum
mechanics model of the wing disc and the underlying BM. In
their model, folding at the stereotypic positions requires both
differential planar tissue growth and mechanical constraining by
uniform elastic compression from the BM. Though this model
correctly predicts folding, it cannot resolve individual cells and
the contribution of cell shape changes. To address this,
Nematbakhsh et al. (2020) develop a 2D subcellular element
model that includes detailed cell shape, nuclear shape and
position, and homotypic and heterotypic cell-cell and cell-ECM
contacts. Using a combination of modeling and experiments, they
find that actomyosin contractility is required to initiate tissue
folding, but is dispensable afterwards. In contrast, ECM tension
cannot create the initial fold, but is necessary to maintain it after
actomyosin activity ceases.

Several embryonic tissues start as a straight tube-like shape, then
fold and twist to produce loops. A classic example is the vertebrate
heart which undergoes cardiac looping, (Taber, 2003). The
embryonic heart consists of two epithelial cell layers enclosing a
thick layer of ECM, the cardiac jelly. Ramasubramanian et al. (2006)
develop a continuum mechanics model of both the outer
myoepithelium cell layer and the cardiac jelly. Each layer’s
material properties are adapted to match experimental data,
including deformation terms to account for cell migration, cell
growth, active contraction, and ECM swelling. This model
predicts that swelling of the cardiac jelly, though not responsible
for organ shape change, enhances structural integrity of the
epithelial layer by balancing cell forces.

The vertebrate intestine is another example of a tubular organ
that bends and loops. The first step of gut looping is a leftward tilt in
the tissue, which Kurpios et al. (2008) model by representing cells as
a collection of six membrane nodes and one internal node, all
mechanically connected via spring-dashpot mechanics
(Figure 6B). The ECM is represented indirectly by a spring-like

forces between adjacent cells. The model shows that, while cell shape
change leads to a slight leftward tilt, it fails to explain the full range of
motion of the tissue. Instead, the model predicts a synergistic effect
of asymmetric swelling of the ECM combined with asymmetric cell
shape changes. Looking at the scale of the entire organ, Savin et al.
(2011) elegantly combine ex vivo tissue explants with physical
rubber models and computational discrete mechanical models to
explain gut looping. Using a similar mechanical model as Kurpios
et al. (2008), Savin et al. (2011) show that looping emerges from a
mismatch of the mechanical parameters of two adjacent and
connected tissue layers, the intestinal epithelium and the ECM-
rich mesentery. Much like in a bimetallic strip, differential
expansion or shrinkage of one tissue leads to wrinkling, which
manifests as looping in the tube-shaped tissue.

On a smaller spatial scale, the intestinal tissue starts as a flat
epithelium on top of a BM that folds to form multiple
undulations—the bottom of these undulations will form the
intestinal villi and crypts that house stem cells. Hannezo et al.
(2011) develop a mechanical continuum model of the intestinal
tissue, where epithelium, BM, and stroma are each modeled as layers
with separate mechanical parametrization. They predict that
different patterns can emerge by mechanical buckling—spots,
checkerboards, herringbone-stripes, and labyrinthine stripes—and
depend on parameter values for coupling of cell division and ECM
curvature, and the parameters for pressure exerted by the intestinal
epithelium. The elasticity of the BM is predicted to play a crucial role
in stabilizing the amplitude of the villus folds. Dunn et al. (2012)
develop an ABMof the BM to study how intestinal crypts attain their
morphology. They model the BM as discrete regions between
epithelium and stroma, each with a preferred curvature
maintained via spring-like forces (Figure 6A). Starting from a flat
sheet, a gradual change in BM local preferred curvature is imposed,
which results in gradual invagination of the intestinal crypt. The
depth of invagination also depends on the density of epithelial cells,
which results from a combination of proliferation, death, and
intercellular forces. For example, when cells adhere more strongly
they become denser, and their collective force overcomes the ECM
force and thereby reduces crypt depth. The model thus predicts that
deeper crypts emerge when intercellular connections are weak.
Shyer et al. (2013) develop a more detailed continuum mechanics
model of a section of the gut tube to model villus morphogenesis.
They take into account not only the epidermal and mesenchymal

FIGURE 6
Schematic of material models. (A) A spring-like model where the strain is linearly proportional to stress, and (B) a spring-dashpot model that depicts
the stress-strain relationship in viscoelastic materials. The spring permits fast, unrestricted motion, whilst the dashpot is effectively a damper that slows
motion in the opposite direction.
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layers (which includes the BM), but also surrounding muscular
layers, each modeled as a separate material. This study elegantly
demonstrates how mechanical coupling of layers growing or
shrinking at different rates can lead to development of tissue
folds. Interestingly, their model also recovers the same sort of
patterns found by Hannezo et al. (2011) in their more
abstract model.

Another tube-like structure that becomes looped is theC. elegans
gonad, which consists of an epithelium ensheathed by a BM.
Agarwal et al. (2022) model the gonad as a rectangular structure
with elastic walls representing the BM, and include cell-ECM
adhesions using elastic springs. To test their hypothesis that
asymmetric BM degradation induces looping, they impose
different spring constants on one side of the tissue. This
mechanical imbalance directs the tissue to always bend in the
direction opposite to weaker adhesions, which the authors verify
experimentally.

Many epithelial tissues such as lungs and secretory glands
develop by a branching of initially symmetric epithelial
structures. As in gut morphogenesis, these epithelia are usually
ensheathed by a BM, and further surrounded by an ECM-rich
mesenchymal tissue with contractile fibroblasts (Varner et al.,
2015). The interplay between epithelium and mesenchyme plays
a central role in determining the position of branch points, but the
nature of this interplay—chemical or mechanical—is under debate
(Varner et al., 2015). In an exploratory model, Wan et al. (2008)
investigate how mesenchymal fibroblast contraction may deform an
epithelial bud at the onset of branching. Their mechanical
continuum model explicitly includes both fibroblasts and ECM in
the mesenchyme using a fluid mixture model. Variations in density
and spatial distribution of contractile fibroblasts give rise to different
morphologies in the epithelial bud such as dimples and clefts.
Varner et al. (2015) combine experimental work in lung bud
explants with a continuum mechanical model of a growing flat
epithelial sheet surrounded by viscoelastic medium. Their model
predicts that explants branch due to growth in a confined
environment, which they verify experimentally by embedding
explants in increasing concentrations of Matrigel, a
commercially available matrix. Notably, the mechanism of
shape generation is highly reminiscent of the models of gut
and gonad morphogenesis discussed earlier, and suggest an
elegant underlying principle of tissue morphogenesis:
adjacent tissues each with different mechanical properties
and different growth rates. Crucially, both of these properties
are tunable by cells—tissue mechanics by changing ECM
composition, and growth by cell proliferation or ECM
swelling. In essence, this suggests that ECM composition is
part of evolution’s toolbox in shaping the diversity of forms in
the animal kingdom.

4 Discussion

The aim of this review is to highlight the variety of mathematical
models and computational tools available to study the composition
and function of the ECM across a range of biological systems and
scales, and to direct the interested reader to relevant papers. From
the vast number of examples presented, it is clear that mathematical

and computational investigations can help illuminate key behaviors
and mechanisms of interaction between cells and the ECM.

Throughout this review, we highlight models of cell migration,
including cancer cell progression and wound healing, alongside
models of tissue structure and morphology, that concern the
integrity and composition of a tissue. Notably, ECM structure,
particularly the mechanical properties, play a key role in both
cell migration and tissue morphology. A prime example of how
matrix stiffness affects cell migration is durotaxis, which different
modeling approaches demonstrate requires force-dependent focal
adhesion dynamics and contractile cytoskeletal activity (Rens and
Merks, 2020; Paukner et al., 2023). ECM stiffness also drives
vasculature formation, with simulations from Carrasco-Mantis
et al. (2023a) and Noerr et al. (2023) highlighting its importance
in coordinating cell behaviors via mechanical feedback. Fiber
alignment and orientation play a central role in several models,
including in migration and pattern formation. One such model of
wound healing (Cumming et al., 2010) produces simulations
concurrent with experimental data, emphasizing the importance
and role of ECM fiber properties during scar formation.

A major benefit of the use of mathematical models in biology is
their predictive power in guiding further experiments. Often,
hypotheses generated in silico are used to predict key parameters
or mechanisms within a system, which in turn expedite
corresponding experimental investigations by reducing their
required scope. For example, the ABM for NCC migration
considered by McLennan et al. (2023) was used to predict that
Trail and Colec12, factors expressed adjacent to the pathways along
which cranial NCCs migrate in chick, must only be highly expressed
for a fraction of the regions adjacent to NCC collectives for the
restriction of NCC movement to stereotypical migratory pathways.
This hypothesis was then tested in chick, where Colec12 and Trail
were also found to be highly expressed for around one-third of the
regions adjacent to the pathways along which NCC migration
occurs. In the context of neural crest biology, a similar ABM was
also used to predict distinct phenotypes in cranial NCCs at the
leading and trailing edge of collectives. This prediction motivated a
gene expression profile analysis of chick cranial NCCs, which also
found differential gene expression across NCC collectives
McLennan et al. (2012). Such findings highlight the predictive
power of mathematical and computational modeling in helping
to guide experiments towards mechanisms and parameters of
interest in understanding observations in vivo.

Another key purpose of mathematical models in biology is in
elucidating unexplained processes, for example, the role of the ECM
remodeling enzyme LOX during cancer cell migration (Nguyen
Edalgo and Ford Versypt, 2018). This particular model provides
predictions that could guide therapeutic treatments, such as
inhibiting LOX production to slow down ECM remodeling, thus
preventing the spread of cancer. Another example is the
investigation of how the ECM regulates the underpinning
molecular mechanisms of cell migration (Park et al., 2017). In
understanding how ECM structure impacts the molecular
mechanisms of cells, greater insight is developed into the design
of targeted pharmaceutical treatments that can inhibit or express
more migratory cell phenotypes.

Nevertheless, in order to refine and validate these models, it is
crucial to couple modeling with experimental investigations. To

Frontiers in Cell and Developmental Biology frontiersin.org20

Crossley et al. 10.3389/fcell.2024.1354132

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1354132


facilitate such collaborative efforts, in the following discussion, we
aim to provide brief guidance for determining the most appropriate
modeling framework for a given study. We discuss the challenges
faced when pairing mathematical and computational models with
sparse experimental data and also the benefits of fostering
interdisciplinary collaborations between theoreticians and
experimentalists.

4.1 Selecting an appropriate
modeling framework

Many mathematical models of biological processes neglect
the structure of the ECM and its interactions with cells, and this
review serves to highlight modeling efforts that explicitly
consider the ECM and its role in processes such as tumor
progression (Section 2.3), wound healing (Section 2.4), and
tissue morphogenesis (Section 3.3). The most appropriate
modeling framework to adopt depends on various factors
including the complexity of the system at hand, the
characteristic time and length scales of relevant processes, and
the overall purpose of a study. In this section, we highlight key
considerations for selecting a model framework and list the
relative advantages and disadvantages of each framework
considered.

When considering the composition of the ECM itself, the most
suitable modeling approach depends primarily on the spatial scale at
which the ECM is to be studied. For example, at the tissue level,
simulating each constituent cell and ECM particle will incur
significant computational costs (Saxena et al., 2021; Stack et al.,
2022) that make repeated simulations or parameter sweeping
infeasible. Therefore, over large length scales, continuum
representations of the ECM are often favored over ABMs due to
their lower computational demands. The coarse-graining of ABMs
offers a potential compromise between microscopic detail and
macroscopic simplicity (Simpson et al., 2009a; Penington et al.,
2011). For example, work by Voulgarelis et al. (2017) derives a
continuum representation of an ABM for tumor cell
reprogramming, which is found to produce similar results to
simulations of the underlying ABM for certain parameter
regimes. However, an advantage of using purely agent-based
representations of the ECM is that they permit greater
interpretability than continuum models through their detailed
descriptions of cell behaviors and cell-cell communication.
Furthermore, ABMs allow an even greater emphasis to be placed
on behaviors observed at the cell-scale and can often capture
interactions between cells and the ECM that continuum
frameworks cannot. For example, Bull et al. (2018) develop a
hybrid ABM model that is required to capture microbead
infiltration patterns in tumor spheroids. For subcellular level
studies, discrete mechanical models may be most suitable, as they
allow a more detailed representation of cell morphology and cell-cell
interactions based on the underlying physical properties of cells.
However, the use of such models is also primarily limited by the
computational resources required to simulate many cells at a
subcellular resolution. Alternatively, when a system of interest
comprises elements at vastly different characteristic length-scales,
combining agent-based and continuum approaches, for example,

into a hybrid model may be the most desirable solution in that it
offers accuracy of each relative counterpart in the system, without
the computational cost of a fully agent-based system. It is, therefore,
clear that the scale of the tissue and the scale at which the
interactions of interest are occurring is vital in establishing the
most appropriate modeling framework.

As well as defining the spatial scale of the system, it is also
important to consider the availability of experimental data for a
computational investigation. Mechanical models require precise
material properties and geometrical data to be accurately
calibrated, whereas continuum models require only macroscopic
data, such as spatially averaged mechanical properties and
concentrations of ECM constituents. In many cases, obtaining
biomechanical measurements requires specialized expertise that
may not be available to most experimental researchers. In
contrast, ABMs necessitate granular data at the cellular or
molecular level, such as individual cell behaviors and interaction
rules, that are ideal when high-resolution experimental data is
abundant. Hybrid models, such as coupled continuum and
mechanical models, are versatile and can be adapted to the
available data, making them suitable for scenarios with variable
data resolutions. The choice among these frameworks should,
therefore, be closely aligned with the quality, quantity, and scale
of the available data, ensuring that the chosen model can be
adequately parameterized and validated to produce reliable
insights into ECM composition and its effects on
biological processes.

Using data generated in experiments, a common paradigm in
biological modeling is to iteratively refine models upon comparing
model predictions with corresponding in vitro and in vivo studies.
As such, another important consideration in selecting a model is the
extent to which it may be adapted and refined to account for new
experimental findings. Continuum models are inherently adaptable
at the macroscopic level, easily integrating changes in material
properties and boundary conditions, which makes them suitable
for a broad range of tissue-scale scenarios of varying degrees of
complexity. Conversely, ABMs are easily mechanistically
interpretable and as a result, are particularly well suited to
refinement at an individual cell/ECM constituent level by
permitting biological mechanisms to be built into models with
relative ease. Furthermore, ABMs often contain more parameters
that can be independently varied for comparison to wide-ranging
biological phenomena. In general, mechanical models are less
flexible in terms of biological adaptability but can be highly
amenable to incorporating new mechanical data or in simulating
different physical scenarios. The flexibility of mechanical models lies
in their capacity to adjust to new geometries, loading conditions, and
material properties, all of which are crucial when exploring the bio-
mechanical aspects of the ECM.

Finally, the complexity of the biological system often dictates the
choice of mathematical model and resulting number of parameters
in the system, which represent quantities such as exchange rates,
substrate concentrations, and forces. In general, it is best to consider
the number of parameters attainable via experimental exploration
when choosing the most suitable modeling framework. It is also
possible to determine unknown parameter values through model
fitting. With this in mind, the larger the number of parameters, the
harder it can be to fit the results of the model to in vivo and in silico
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data. Moreover, some of these parameters may be difficult to
interpret biologically, and may in fact be an artifact of the model
development, for example, ABMs often include a parameter that sets
a threshold distance to limit cell-cell interactions.

In cases where fitting the model to experimental data is not
possible, other approaches can be used, such as machine learning
algorithms (Preen et al., 2019), that explore the parameter space to
find the optimum values and reach an objective function (Ozik et al.,
2018). These, however, have the drawback of requiring a large
amount of data, upwards of ten times the number of samples
versus number of features or parameters. Additionally,
interpretation of these models can be very difficult, with the
‘black box’ nature of many of these models providing metrics for
the predictive accuracy of a model, but inhibiting interpretation of
the underlying biological meaning (Xu and Jackson, 2019).

In summary, carefully assessing and balancing elements such as
the scale of the biological system, the specific objectives of the study,
and the accessibility and type of relevant data, is crucial when
considering the most suitable modeling framework for the
biological system of interest.

4.2 Open challenges

Due to the inherent complexity of the ECM, containing
components that vary vastly in composition and size, it can be
difficult to quantify its properties experimentally. Methods
mentioned in Section 1.2 can identify ECM components and
characterize ECM structure, chemical composition, and
mechanics. However, the specialized expertise essential to each
method underscores the importance of interdisciplinary
collaborations. Advances in obtaining quantitive and qualitative
data of the ECM will greatly enhance in silico models by
allowing for more accurate predictions to be made through
enhanced model parameterization.

One of the most pertinent aspects of mathematical modeling in
biology is the integration of models over multiple spatial and
temporal scales. For example, molecular interactions occur at a
vastly different rate from cellular or tissue level dynamics and
therefore must be modeled at a different temporal scale. Linking
such scales can be difficult depending on the numerical approaches
taken, where the simulations and results from one scale define the
parameters and variables at another. Multi-scale models are an
excellent tool for simulating processes that occur over vastly
different time or length-scales, but can become prohibitively
complex as more interactions and biological phenomena are
considered. The development of a multi-scale model most
certainly means an increase in the size of the model and
computational power needed for simulations. As a model
increases in size, typically the number of variables and
parameters will also increase. Some of these issues can be tackled,
for example, if there are sufficient data available, such that unknown
parameters can be constrained to a realistic regime. However,
without such constraints, these models can become too complex
to systematically analyze and biological interpretation can be lost.

Computational implementation can also be a barrier to
developing such models. Although there are many available
software packages for building computational models (see

Table 4 for a list of resources), they are built with a specific
modeling approach in mind. Thus, often one needs to develop
new codes tailored to a specific biological question, reducing the
possibility of fully leveraging hybrid or multi-scale systems, and
requiring extensive programming ability.

All of these challenges apply to models that either do or do not
include the ECM. Models that include the ECM are intrinsically
more complex due to at least one additional variable in themodel (or
more if including specific components of the ECM) and their
associated properties. The implementation of large, all-
encompassing models is something many aspire to, and work is
ongoing in the field of mathematical biology to improve and perfect
these models to elucidate the most relevant and important
information (Eftimie, 2022).

4.3 Mathematical modeling as a tool in
collaborative biological research

This review highlights that the development of models and the
interpretation of wet lab results are intricately linked, drawing insights
and questions from the existing literature and data. In general,
mathematical models are developed to investigate previously
unexplored experimental conditions or to predict behavior in
conditions that are experimentally intractable. Hence, mathematical
models provide an alternative way to explore new theories and
hypotheses that can then be tested and validated experimentally.

A major benefit of using mathematical models to study
biological systems is their ability to provide an efficient approach
to rapidly executing numerous simulations with wide-ranging
parameter sets, such that relevant biological parameter ranges
may be quickly identified for further testing in experiments. This
route also proves to be faster and vastly less expensive than the cost
and time-intensive nature associated with setting up and performing
experiments both in vitro and in vivo. Instead, models excel in
exploring conditions that, in the lab, are challenging to replicate or
analyze with available equipment. In the development of novel
therapies, models may be used to study the effects of biological
perturbations in a system. This, in turn, can be used to predict or
highlight parameters of particular importance in the prevention of
diseases, eliminating the need for costly interventions after the onset
of pathogenesis. Furthermore, it is often difficult, or impossible, to
experimentally stain numerous cell phenotypes for identification in
microscopy. In such cases, mathematical models can be used to
predict the presence of certain phenotypes that experiments cannot
replicate, in order to enhance the understanding of the underlying
cell-ECM interactions, and help develop targeted treatments specific
to a given phenotype. Additionally, mathematical simulations
provide a systematic approach to exploring mechanical
perturbations within systems, for example, stiffness of the ECM
(Aparicio-Yuste et al., 2022), and structure of fiber networks and
their alignment (Lee et al., 2017).

In highly complex systems where designing experiments and
gathering data can be difficult, model predictions aim to help in
determining significant molecules or pathways in a system. This
approach simplifies the system and narrows down the scope of focus
towards interesting processes and behaviors, helping to guide
experimental design.
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In this way, mathematical models work most effectively when
there is direct synergy between both the experimental and
computational counterparts. As such, collaborative efforts often
unveil new research questions during the construction and
validation of biological hypotheses, establishing a continuous
cycle of model development, refinement, and experimental data
generation that yields new insights and perspectives.
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TABLE 4 A list of computational resources for modeling cell-ECM interactions in cell migration and tissue morphogenesis.

Resource Description Publications

CompuCell3D https://compucell3d.org/ A C++ and Python-based software environment coupling ABMs for
cellular processes to reaction-diffusion PDE models for chemicals in the
cellular microenvironment

Swat et al. (2012); Izaguirre et al. (2004)

Chaste https://www.cs.ox.ac.uk/projects/
chaste/

A C++ based open-source environment for the simulation of multi-scale
models of cellular processes coupling discrete lattice-based and lattice-free
models for cell populations to continuum models for chemical transport

Pitt-Francis et al. (2009); Mirams et al. (2013);
Cooper et al. (2020)

CellSys https://bio.tools/cellsys A C++ based modular software tool for off-lattice simulations of 2D and
3D growth and morphogenesis processes, permitting real-time 3D
visualization of simulations

Hoehme and Drasdo (2010)

PhysiCell http://physicell.org/ A C++ based open-source framework for 3D physics-based simulations of
multicellular systems. An agent-based framework for cell movement and
interactions is coupled to a PDE solver for chemicals secreted by cells

Ghaffarizadeh et al. (2018)

PhysiBoss https://github.com/PhysiBoSS A PhysiCell-based framework that allows for the simulation of signaling
and regulatory networks in individual cells

Letort et al. (2019); Ponce-de Leon et al. (2023)

Morpheus https://morpheus.gitlab.io An open-source multi-scale modeling environment for the simulation of
cell-based models coupling 2D and 3D cellular Potts models, ODEs, and
PDEs

Starruß et al. (2014)

VirtualLeaf https://code.google.com/
archive/p/virtualleaf/

An open-source C++ based ABM software to model plant cells and tissues Merks et al. (2011); Merks and Guravage (2012)

Tissue Forge https://compucell3d.org/
TissueForge

A C, C++, and Python-based interactive environment for the simulation
of biological and biophysical systems from sub-cellular to tissue-level
scales

Sego et al. (2023)

COMSOL https://www.comsol.com An FEM-based numerical PDE solver environment for the simulation of
complex biological and biophysical systems

Multiphysics (1998)

FEniCS https://fenicsproject.org An open-source platform for solving complex PDEs with an FEM,
offering C++ and Python interfacing

Alnaes et al. (2015)

VCell https://vcell.org A Java, C++, and Perl-based open-source platform for the simulation of
biochemical and electrophysiological systems through deterministic and
stochastic ODE- and PDE-basedmodels with data-integration capabilities

Schaff et al. (1997); Cowan et al. (2012)
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