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Breast cancer (BC) is the most common type of cancer in women, and remains
one of the major causes of death in women worldwide. It is now well established
that alterations inmembrane trafficking are implicated in BC progression. Indeed,
membrane trafficking pathways regulate BC cell proliferation,migration, invasion,
and metastasis. The 22 members of the ADP-ribosylation factor (ARF) and
the >60 members of the rat sarcoma (RAS)-related in brain (RAB) families of
small GTP-binding proteins (GTPases), which belong to the RAS superfamily, are
master regulators of membrane trafficking pathways. ARF-like (ARL) subfamily
members are involved in various processes, including vesicle budding and cargo
selection. Moreover, ARFs regulate cytoskeleton organization and signal
transduction. RABs are key regulators of all steps of membrane trafficking.
Interestingly, the activity and/or expression of some of these proteins is found
dysregulated in BC. Here, we review how the processes regulated by ARFs and
RABs are subverted in BC, including secretion/exocytosis, endocytosis/recycling,
autophagy/lysosome trafficking, cytoskeleton dynamics, integrin-mediated
signaling, among others. Thus, we provide a comprehensive overview of the
roles played by ARF and RAB family members, as well as their regulators in BC
progression, aiming to lay the foundation for future research in this field. This
research should focus on further dissecting themolecular mechanisms regulated
by ARFs and RABs that are subverted in BC, and exploring their use as therapeutic
targets or prognostic markers.
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1 Introduction

Breast cancer (BC) is the most frequent type of cancer diagnosed in women worldwide.
According to Cancer statistics 2023, 31% of newly-diagnosed cancers in women are BC,
with a 15%mortality rate (Siegel et al., 2023). Therefore, the mortality and morbidity caused
by BC remain high in the female population. BC is a heterogeneous disease that can be
classified in different types and subtypes, according to the histological characteristics,
behavior and responses to treatment. In general, BC can be divided in non-invasive and
invasive carcinomas. Non-invasive BCs can be either ductal carcinomas in situ (DCIS) or
lobular carcinomas in situ (LCIS) (Makki, 2015). Both of these non-invasive forms of BC
have the potential to progress to an invasive state, becoming invasive ductal carcinomas
(IDCs) or invasive lobular carcinomas (ILs), respectively (Makki, 2015). Molecular
subtyping, which is based on the expression of hormone receptors, is another
important type of BC classification. The molecular subtypes include: luminal A tumors,
which are estrogen receptor (ER)-positive, progesterone receptor (PR)-positive and human
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epidermal growth factor receptor 2 (HER2)-negative, and have the
best prognosis; luminal B tumors, which are ER-positive, have low
PR expression, and can be either HER2-positive or HER2-negative;
HER2-enriched tumors, which have an amplification of the
HER2 gene, do not express ER or PR and are highly
proliferative; and triple-negative BC (TNBC), which is defined by
the absence of ER, PR and HER2, and has the worst prognosis of all
subtypes (Makki, 2015).

Membrane trafficking is a highly regulated intracellular
communication system that allows the specific transport of lipids,
proteins and other cargoes between different membrane-bound
compartments, ensuring normal cell and tissue homeostasis
(Zhao and Zhang, 2020). This system involves the formation of
vesicles that transport selected cargoes between donor and acceptor
compartments. Membrane trafficking can be divided in 5 steps,
namely: vesicle budding, transport, tethering, docking, and fusion
(Mima, 2018). Members of the RAS superfamily of small guanosine
triphosphate (GTP)-binding proteins (GTPases) play key roles in
membrane trafficking. This superfamily comprises five different
families: RAS oncoproteins, RAS homologous (RHO) proteins,
RAS-related in brain (RAB), RAS-like nuclear proteins (RAN)
and ADP-ribosylation factor (ARF) proteins (Wennerberg et al.,
2005). RAS GTPases function as molecular switches, alternating
between an active state, when bound to GTP, and an inactive state,
when bound to guanosine diphosphate (GDP) (Arrazola Sastre et al.,
2021) (Figure 1). When active, these proteins recruit effectors,
allowing them to perform downstream functions.

The RAB family is the largest of the RAS superfamily and its
members are master regulators of all steps of membrane trafficking.
These proteins are evolutionarily conserved and found in several
organisms, from yeast to humans. To date, more than 60 RABs have
been identified in the human genome, divided into 44 subfamilies
(Jin et al., 2021). Importantly, several RAB subfamilies comprise
distinct isoforms–defined as having >70% of homology–that can
perform (partially) redundant functions (Pereira-Leal and Seabra,
2000). RAB proteins have several highly conserved regions that are
also present in other members of the RAS superfamily. This is the
case of the switch I and switch II regions, which change
conformation upon GTP binding, and interact with effector
proteins. Additionally, RABs possess a hypervariable C-terminal
motif that displays one of the following combinations of aminoacids:
XXXCC, XXCCX, XCCXX, CCXXX, XXCXC and XCXXX (where X
is any aminoacid) (Pylypenko et al., 2018). The cysteines are
subjected to a post-translation modification named prenylation,
which consists in the addition of hydrophobic geranylgeranyl
groups, and is essential for membrane binding (Leung et al.,
2006) (Figure 1). RABs assist in vesicle formation/budding, allow
the transport of cargoes within the cell by interacting with motor
proteins, and regulate tethering, docking and fusion of vesicles with
acceptor compartments.

The ARF family of small GTPases includes ca. 30 proteins in
mammals, which are also key regulators of membrane trafficking.
This family includes 6 ARFs (5 in humans, since we lack ARF2),
22 ARF-like (ARL) proteins, two secretion-associated RAS-related

FIGURE 1
Regulation of the activation/inactivation cycle and membrane binding of RABs and ARFs. After RAB proteins are synthesized, they associate with
cytosolic RAB escort proteins (REPs) to form a stable complex. To associate with membranes, RABs and ARFs undergo prenylation and myristoylation,
respectively, which are the most common post-translational modifications for these GTPases. RABs and ARFs cycle between an active GTP-bound state
and an inactive GDP-bound state. Active GTP-bound forms bind to effectors to regulate several cellular processes. The GDP/GTP cycle is regulated
by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyze the exchange of GDP for GTP and GAPs promote
the hydrolysis of GTP to GDP. RAB GDP dissociation inhibitors (GDIs) can maintain RAB GTPases in an inactive GDP-bound state by sequestering the
proteins in their GDP-bound form and preventing their activation. Created with BioRender.
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(SAR), and the tripartite motif-containing protein 23 (TRIM23)
protein (Reiner and Lundquist, 2018; Sztul et al., 2019). ARFs1-6 are
highly conserved in structure and sequence. Moreover, these
proteins are classified into three types, based on their sequence:
type I (ARF1-ARF3), which share more than 96% sequence identity;
type II (ARF4 and ARF5), which share 90% sequence identity; and
type III (ARF6), which shares more than 65% sequence identity with
type I and II ARFs. ARF1-5 localize to the Golgi, while
ARF6 localizes to the plasma membrane (PM) and endosomes
(Donaldson, 2003; Li et al., 2004; Kahn et al., 2006). SAR1A and
SAR1B have high homology, sharing around 90% of sequence
identity, and localize to the endoplasmic reticulum (ER). These
proteins regulate the budding of vesicles coated with coat protein
complex II (COPII) and are involved in ER-to-Golgi trafficking
(Saito et al., 2017; Sztul et al., 2019). TRIM23 is implicated in
antiviral defense, through the regulation of autophagy and adipocyte
differentiation (Arimoto et al., 2010; Watanabe et al., 2015). ARLs
are more divergent than ARFs or SARS, sharing between 40% and
60% of identity among them (Sztul et al., 2019). Furthermore, these
proteins localize to several compartments within the cell and
participate in multiple cellular processes, including cargo sorting
at the Golgi, lysosome positioning, cilia function, cytoskeleton
dynamics, among others (Marwaha et al., 2019). Members of the
ARF family can be further subdivided into different paralogs (e.g.,
ARL13A and ARL13B) that arose from a common ancestor (Kahn
et al., 2014). One feature that distinguishes the ARF family from the
other families of RAS small GTPases, including RABs, is the
presence of an N-terminal extension of around 14 amino acids
that is post-translationally modified to allow membrane binding.
Moreover, while ARFs are all myristoylated, ARLs can be
myristoylated, palmitoylated or acetylated (Donaldson and
Jackson, 2011; Sztul et al., 2019).

The activation/inactivation of RABs and ARFs is tightly
regulated to ensure the occurrence of specific cellular processes at
precise times and locations. The cycling between GTP- and GDP-
bound states is controlled by guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins (GAPs). GEFs catalyze the
exchange of GDP for GTP, activating these proteins. Conversely,
GAPs catalyze the hydrolysis of GTP to GDP, which leads to their
inactivation (Figure 1).

The activity of RABGTPases is intrinsically associated with their
membrane binding capacity. After RABs are synthesized, they
associate with cytosolic RAB escort proteins (REP1 and 2),
forming a stable complex (Alory and Balch, 2003). Subsequently,
REPs present RAB proteins to the enzyme RAB geranylgeranyl
transferase (RABGGTase), which catalyzes their prenylation.
Moreover, RABs are further recognized by RAB GDP
-dissociation inhibitors (GDIs). GDIs assist in the dissociation of
geranylgeranylated RABs from membranes, allowing their
stabilization in the cytosol (Figure 1).

In the case of ARF family proteins, they need to be recruited to
membranes to be activated. Indeed, ARFs are recruited to
membranes via an N-terminal amphipathic helix in the GDP-
bound state. After GEF-mediated GDP/GTP exchange, a
conformational rearrangement allows the insertion of the lipid
group into the lipid bilayer, stabilizing these proteins on
intracellular membranes (Sztul et al., 2019; Li and Guo,
2022) (Figure 1).

As regulators of all membrane trafficking steps, RAB and ARF
family proteins are essential for the maintenance of cellular
homeostasis. Cargoes transported by this system are determinant
for several biological processes such as migration, invasion,
metabolism and autophagy. Therefore, it is not surprising that
the subversion of these mechanisms by tumor cells plays a key
role in BC progression (Casalou et al., 2016; Casalou et al., 2020; Jin
et al., 2021; Chen et al., 2022). Additionally, mutations and
amplifications and/or post-translational modification changes of
ARFs and RABs often lead to the dysregulation of their
expression and activity (Casalou et al., 2020; Matos, 2021). These
have increasingly been recognized as having an important role in
BC. Herein, we review the function in membrane trafficking of the
members of the RAB and ARF families implicated in BC, and discuss
how they are modulated (Table 1). We divided the proteins reviewed
according to the pathways of membrane trafficking they regulate,
namely secretion/exocytosis; endocytosis/recycling; lysosomes/
autophagy; cytoskeleton dynamics; ciliary functions; and others.
We also discuss how the regulation of ARFs and RABs by GEFs and
GAPs contributes to BC cell proliferation, migration and invasion.
Our main goal is to highlight the relevance of the subversion of
membrane trafficking regulators in BC progression, and propose
how they could be used as therapeutic targets or prognostic markers.

2 Secretion/exocytosis

2.1 RAB2A

RAB2 family comprises two isoforms (RAB2A and RAB2B) that
localize to the Golgi, regulating bidirectional trafficking between the
ER and the Golgi (Goud et al., 2018). High expression of RAB2A was
detected in BC, compared to adjacent normal mammary tissue
(Kajiho et al., 2016). Moreover, RAB2A is significantly associated
with poor prognosis markers (Kajiho et al., 2016). Additionally,
RAB2A was shown to mediate the exocytosis of membrane type 1-
matrix metalloproteinase (MT1-MMP), an essential MMP for
extracellular matrix (ECM) remodeling and BC cell invasion.
Furthermore, RAB2A controls the trafficking of E-cadherin from
the Golgi to the PM, ultimately regulating cell compaction,
junctional stability, and tumor invasiveness (Kajiho et al., 2016;
Kajiho et al., 2017).

2.2 RAB3

RAB3 subfamily comprises four functionally redundant
isoforms: RAB3A, RAB3B, RAB3C and RAB3D. They share a
high degree of protein sequence homology (~80%) and similar
subcellular localization, namely in synaptic and secretory vesicles
(Schlüter et al., 2002). RAB3A, RAB3B, RAB3C are primarily
expressed in neuronal cells, while RAB3D is mostly observed in
non-neuronal secretory cells, such as pancreas and mast cells (Millar
et al., 2002; Riedel et al., 2002; Schlüter et al., 2002). Although the
precise functions of the different RAB3 isoforms are not entirely
established, they are involved in synaptic vesicle exocytosis (Schlüter
et al., 2006) and secretory granule maturation (Kögel et al., 2013).
Moreover, RAB3A and RAB3D were found to be required for
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docking and fusion of lysosomes and secretory vesicles, respectively,
during regulated secretion in non-neuronal cells (Millar et al., 2002;
Encarnação et al., 2016). Interestingly, RAB3A, RAB3B and RAB3D
were shown to promote breast, colon, esophagus, melanoma,
osteosarcoma and glioma tumor progression by increasing cell

proliferation, migration, and invasion (Raffaniello, 2021).
Additionally, RAB3D expression levels are higher in BC cells and
positively correlate with tumor stage (Yang et al., 2015).
Furthermore, RAB3D was found to regulate epithelial-to-
mesenchymal transition (EMT) and promote BC tumor cell

TABLE 1 Expression of ARF and RAB family proteins in human breast cancer samples and/or cell lines.

Membrane trafficking
pathways

RABs/
ARFs

Subcellular localization Up/Downregulated in
breast cancer

References

Secretion/Exocytosis

RAB2A ER, Golgi, bidirectional trafficking Upregulated Kajiho et al. (2016)

RAB3B Synaptic vesicles and secretory vesicles,
Golgi (non-secretory cells)

Upregulated Zhang et al. (2020)

RAB3D Synaptic vesicles and secretory vesicles,
Golgi (non-secretory cells)

Upregulated Yang et al. (2015)

RAB8A TGN, PM Upregulated Bravo-Cordero et al. (2007), Liu et al.
(2022)

RAB27A Secretory vesicles Upregulated Wang et al. (2008), Bobrie et al. (2012)

RAB27B Secretory vesicles Upregulated Hendrix et al. (2010), Zhang et al.
(2012)

RAB40B Golgi Upregulated Jacob et al. (2016)

ARF1 Cytosol, Golgi Upregulated Schlienger et al. (2015), Luchsinger et al.
(2018), Qin et al. (2021)

ARF3 Cytosol, Golgi Upregulated Huang et al. (2019), Zhang et al. (2019)

ARF4 Cytosol, Golgi, endosomes Upregulated Jang et al. (2012), Howley et al. (2018)

ARFRP1 TGN ND Gao et al. (2022)

ARL4C Cytosol, PM Downregulated Li et al. (2020)

Endocytosis/Recycling

RAB5A EEs Upregulated Frittoli et al. (2014)

RAB13 TGN, REs, LEs PM ND Sahgal et al. (2019)

RAB11A ERC, TGN Upregulated Wang et al. (2015)

RAB11B ERC, TGN Upregulateda Howe et al. (2020)

RAB11C
(RAB25)

Apical recycling compartment Upregulated/Downregulated Cheng et al. (2010), Mitra et al. (2016)

RAB21 EEs ND Pellinen et al. (2006)

RAB34 Endosomes, lysosomes Upregulated Sun et al. (2018)

RAB35 Endosomes, PM Upregulated/Downregulated Allaire et al. (2013), Zhu et al. (2013),
Deng et al. (2016)

ARF6 PM, endosomes, RE, cortical actin Upregulated Hashimoto et al. (2004), Morishige et al.
(2008), Huang et al. (2022)

Lysosomes/Autophagy

RAB26 EEs, LEs, lysosomes, secretory granules Downregulated Liu et al. (2021)

ARL8A Lysosomes Upregulated Kothari et al. (2021)

ARL8B Lysosomes Upregulated Wu et al. (2020), Kothari et al. (2021)

Cytoskeleton dynamics ARL2 Cytosol, mitochondria Downregulated Beghin et al. (2007), Beghin et al.
(2008), Beghin et al. (2009)

Ciliary trafficking ARL13B Cilia, actin, EEs, REs, CDRs Upregulated Casalou et al. (2019)

Others ARL11 Nucleus, cytosol, cortical actin ND Frank et al. (2006), Yendamuri et al.
(2008)

aRAB11B is upregulated in brain metastases.

RAB, RAS-related in brain; ARF, ADP-ribosylation factor; ARL, ARF-like; ND, not determined; CDRs, circular dorsal ruffles; EEs, early endosomes; ER, endoplasmic reticulum; ERC, endocytic

recycling compartment; LEs, late endosomes; PM, plasma membrane; REs, recycling endosomes; TGN, trans-Golgi network.
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motility, invasion and metastasis through the activation of the AKT/
GSK-3β/SNAIL signaling pathway (Yang et al., 2015). Finally,
RAB3B expression is upregulated in aggressive luminal B BC
cells in response to the amplification of the inositol-requiring
enzyme 1 (IRE-1) gene, which acts as an oncogenic factor to
repress a subset of tumor suppressor microRNAs (miRs) via
regulated IRE1-dependent decay (Zhang et al., 2020).

2.3 RAB8

RAB8 has two isoforms, RAB8A and RAB8B, which mediate the
trafficking from the trans-Golgi network (TGN) to the PM,
controlling the apical/basolateral transport of proteins in
epithelial cells (Sato et al., 2007; Stenmark, 2009). In BC,
RAB8 regulates the exocytosis of MT1-MMP, which promotes
collagen degradation and cell invasion (Bravo-Cordero et al.,
2007). Recently, Liu et al. showed that RAB8A is upregulated in
BC (Liu et al., 2022). Moreover, RAB8A promotes the surface
expression of tropomyosin-related kinase B (TRKB), which leads
to the proliferation, migration and invasion of BC cells, through
activation of the AKT and extracellular signal-regulated kinase
(ERK) 1/2 signaling pathways (Liu et al., 2022).

2.4 RAB27

The two isoforms of RAB27—RAB27A and RAB27B–are
involved in regulated secretion. These have 71% of homology
and recruit the same effector proteins. However, the underlying
mechanisms by which they are involved in BC are different (Li
et al., 2018). RAB27 isoforms are associated with lysosome-related
organelles (LROs) and control exosome secretion in BC (Li et al.,
2018). Indeed, RAB27A has been associated with the upregulation
of exosome secretion by enhancing the secretion of insulin growth
factor-II (IGF-II) in BC subtypes TNBC and HER2+ (Wang et al.,
2008). RAB27B is upregulated in ER-positive BC and associated
with an increased secretion of mesenchymal proteins, like
vimentin and fibronectin, to the extracellular milieu (Bobrie
et al., 2012; Zhang et al., 2012). Therefore, RAB27B
upregulation is associated with poor prognosis in BC (Hendrix
et al., 2010; Zhang et al., 2012).

2.5 RAB40

The RAB40 subfamily contains four isoforms (RAB40A,
RAB40AL, RAB40B, and RAB40C), which are enriched in the
Golgi (Stenmark, 2009; Duan et al., 2021). In BC, RAB40B was
shown to interact with tyrosine kinase substrate with 5 SH3 domains
(TKS5), an adaptor protein that acts as a scaffold, bringing
membrane and intracellular elements close to invadopodia (Jacob
et al., 2013; Jacob et al., 2016). This interaction is required to target
MMP-2- and MMP-9-containing vesicles to invadopodia,
promoting ECM remodeling during BC progression (Jacob et al.,
2013; Jacob et al., 2016). Moreover, the same authors found RAB40B
to be highly expressed in more aggressive cancers, as well as in basal
BC subtype. Additionally, RAB40C was found to regulate focal

adhesion number, size, and distribution in migrating BC cells
(Han et al., 2022).

2.6 ARF1

ARF1 localizes to the Golgi, where it regulates the function and
structure of this compartment (Adarska et al., 2021). In BC,
ARF1 was found to be highly expressed and fundamental for
epidermal growth factor (EGF)-mediated phosphorylation of
focal adhesion kinase (FAK) and Src, regulating BC cell
proliferation and adhesion (Schlienger et al., 2015). The same
group performed in vivo studies and showed that ARF1 promotes
primary tumor growth and the formation of metastases (Schlienger
et al., 2016). Indeed, in non-invasive MCF-7 BC cells,
ARF1 overexpression leads to the formation of lung metastases. In
the same study, the authors found a link between ARF1 and the
regulation of several pathways that are involved in EMT (E-cadherin/
β-catenin, RAS, ERK1/2 and PI3K/AKT), as well as the upregulation
of EMT markers SLUG and SNAIL. Moreover, ARF-1-expressing
cells lose their epithelial features and acquire a more mesenchymal
shape. Finally, ARF1 overexpression in MCF-7 cells leads to the
activation of MMP-2 via FAK, contributing to the role of ARF1 in BC
invasion (Schlienger et al., 2016). Additionally, ARF1 disruption
sensitizes TNBC (MDA-MB-231) cells to the anti-tumor drugs
actinomycin D and vinblastine (Luchsinger et al., 2018).
Furthermore, it was shown that the recruitment of ARF1 and the
ARF GAP ARAP1 to circular dorsal ruffles (CDRs) promotes shear
stress-induced BC cell migration (Qin et al., 2021).

2.7 ARF3

ARF3 regulates the recruitment of coat complexes to the Golgi
apparatus and promotes the activation of phospholipase D (PLD)
and phosphatidyl-kinases (PI-kinases) (Sztul et al., 2019). In BC, it
was shown that the clinical stage positively correlates with
ARF3 expression, which is upregulated in 92.8% of malignant
cases (Huang et al., 2019). Furthermore, ARF3 mRNA and
protein expression levels were found upregulated in BC cell lines
and tissues (Huang et al., 2019). It was also observed that
ARF3 overexpression promotes BC cell proliferation, through the
regulation of the G1/S cell cycle transition (Huang et al., 2019). A
recent study, based on integrated analysis of microarray profile
datasets, revealed that ARF3 is a candidate gene involved in the
progression of pregnancy-associated BC (Zhang et al., 2019).

2.8 ARF4

As described for ARF1 and ARF3, ARF4 also localizes to the
Golgi, being required for the recruitment of coat proteins and the
retrieval of ER-resident proteins (Pennauer et al., 2021). ARF4, as
well as the ER-Golgi trafficking regulators COPI subunit β1
(COPB1) and USO1, were found to be upregulated in BC patient
samples (Howley et al., 2018). Moreover, it was reported that ARF4,
COPB1, and USO1 regulate BC cell growth and invasion by
mediating the retrograde transport of proteins from the Golgi to
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the ER via COPI-coated vesicles (Howley et al., 2018). ARF4 was also
shown to promote BC cell migration in response to phorbol-12-
myristate 13-acetate (PMA), a known gene expression inducer (Jang
et al., 2012).

2.9 ARFRP1

ARF-related protein 1 (ARFRP1) localizes to the TGN and
mediates the trafficking/sorting of various cargoes (e.g., glucose
transporters and E-cadherin) (Hesse et al., 2010). Furthermore,
recent studies have shown that ARFRP1 regulates the
recruitment of tethering factors to the TGN, upstream of
ARL1 and ARL5 (Ishida and Bonifacino, 2019). In particular,
ARFRP1 is involved in the recruitment of golgins, which are
dependent on ARL1, and Golgi-associated retrograde protein
(GARP), which is dependent on ARL5 (Ishida and Bonifacino,
2019). A recent proteome-based study proposed that
ARFRP1 regulates the radioresistance of BC cells (Gao et al.,
2022). Moreover, the authors found that ARFRP1 silencing leads
to an increase in radiation resistance of bothMCF-7 (luminal A) and
MDA-MB-231 (TNBC) BC cell lines (Gao et al., 2022).

2.10 ARL4C

ARL4 has three paralogs (ARL4A, ARL4C and ARL4D) that
localize to the PM. ARL4C was also found to localize to the cytosol
and the nucleus, and interact with α-tubulin. Additionally, ARL4C
regulates transferrin receptor transport from early endosomes
(EEs) to recycling endosomes (REs) (Wei et al., 2009).
Moreover, ARL4C was shown to be downregulated in BC
samples. Furthermore, the low levels of ARL4C in BC correlate
with those of the activated transcription factor 3 (ATF3), which is
also downregulated in BC (Li et al., 2020). These authors also
found that ATF3 promotes the transcription of ARL4C, which acts
as a negative regulator of breast tumor progression. Indeed, the
overexpression of ARL4C was shown to decrease BC cell
proliferation, migration, and invasion, leading to cell cycle
arrest (Li et al., 2020).

3 Endocytosis/recycling

3.1 RAB5A

RAB5 has three distinct isoforms (RAB5A, RAB5B, RAB5C)
that share more than 90% of sequence identity (Chen et al., 2009).
RAB5 plays a key role in endocytosis regulation, mediating the
transport and fusion of endocytic vesicles with EEs (Yuan and
Song, 2020). In a meta-analysis of five human breast tumor gene
expression datasets, RAB5A expression, but not RAB5B or
RAB5C, was shown to correlate with poor prognosis (Frittoli
et al., 2014). Additionally, RAB5A expression is significantly
higher in matched lymph node metastases, compared to their
primary tumors. RAB5A transports β3-integrin and MT1-MMP
to invadopodia, through a RAB4-dependent pathway, allowing
their maturation into competent ECM-degrading structures,

which promotes invasion of metastatic BC cells (Frittoli
et al., 2014).

3.2 RAB13

RAB13 plays a role in both secretory and endocytic recycling
pathways. It localizes to the TGN, REs, late endosomes and the PM
(Ioannou and McPherson, 2016). Silencing of RAB13 in TNBC
MDA-MB-231 cells leads to the intracellular accumulation of active
β1-integrin, reducing integrin activity in focal adhesions and
impairing cell migration. This suggests that RAB13 plays a role
in facilitating the recycling of active β1-integrin to the PM (Sahgal
et al., 2019).

3.3 RAB21

RAB21 localizes mainly to EEs and the PM, being involved in the
early endocytic pathway (Simpson et al., 2004). In BC, RAB21 was
shown to regulate the endo/exocytic trafficking of integrins,
stimulating MDA-MB-231 TNBC cell adhesion and migration
(Pellinen et al., 2006).

3.4 RAB11

The RAB11 subfamily encompasses three different isoforms:
RAB11A, RAB11B and RAB11C, also known as RAB25. While
RAB11A and RAB11B exhibit 90% amino acid identity,
RAB11A/B and RAB25 share 60% homology (Kelly et al., 2012).
RAB11 proteins localize to various subcellular compartments,
including the endocytic recycling compartment (ERC), REs,
apical recycling compartment (ARE), and the TGN (Welz et al.,
2014). Moreover, they mainly regulate cargo recycling from the ERC
to the cell surface, and also participate in exocytic transport from the
TGN (Ullrich et al., 1996; Chen et al., 1998; Ren et al., 1998).
Recently RAB11A and RAB11B were described by us to be required
for Ca2+-dependent lysosome exocytosis (Escrevente et al., 2021).

In BC, RAB11 controls the transport of α6β4-integrin from REs
and the TGN to the PM, enabling cell invasion under hypoxic
conditions (Yoon et al., 2005). The RAB11 isoforms have also
been associated with breast carcinogenesis. A miR that targets
RAB11A (miR-320a) was found to inhibit proliferation, migration,
and invasion ofMDA-MB-231 cells in vitro, as well as tumor growth in
amouse xenograft model (Wang et al., 2015). Additionally, the authors
found that RAB11AmRNA is overexpressed in BC samples, compared
to normal adjacent tissues (Wang et al., 2015). In a subsequent study,
miR-452was found to be a tumor suppressor gene that also inhibits BC
cell migration and invasion by targeting RAB11A (Li et al., 2017b).
Notably, RAB11A is upregulated in DCIS, a non-obligatory precursor
of invasive BC, when compared to adjacent normal tissues (Palmieri
et al., 2006). In the same study, the overexpression of a dominant-
negative RAB11A mutant (S25N) was observed to lead to decreased
EGF receptor (EGFR) recycling and cell proliferation in MCF10A
human breast epithelial cell line (Palmieri et al., 2006).

The role of RAB11B in BC remains relatively unexplored. However,
a recent study highlighted the importance of RAB11B in the adaptation
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of BC metastases to the brain microenvironment. Specifically, RAB11B
regulates the recycling of β1-integrin, enabling effective interaction
between BC cells and the brain ECM (Howe et al., 2020).

Interestingly, RAB25 plays a dual role in BC, functioning as a tumor
promoter in luminal cancers, and as a tumor inhibitor in TNBC. Indeed,
expression of RAB25 positively correlates with ER- and PR-positive BCs
and lymphatic metastasis (Yin et al., 2012). Moreover, it was shown that
RAB25 increases proliferation and migration of luminal B BC cell lines
(Mitra et al., 2016). On the other hand, RAB25 expression is lost in
hormone receptor-negative BC compared to matched normal
tissues and overexpression of this isoform reduces the proliferation of
MDA-MB-231 cells (Cheng et al., 2010).

3.5 RAB34

RAB34 regulates endosomal trafficking, autophagy and
lysosome maturation, by mediating the distribution of lysosomes
to the perinuclear region (Starling et al., 2016). Moreover, it
facilitates the internalization of receptors, transport of endocytic
vesicles to peri-Golgi regions, and regulates the fusion of
phagosomes with lysosomes (Kasmapour et al., 2012). In BC,
RAB34 overexpression was associated with increased tumor
invasiveness, migration and metastatic potential, as well as the
recycling of β3-integrin (Wang and Hong, 2005; Sun et al., 2018).

3.6 RAB35

RAB35 localizes to REs and the PM of different cell types, and
plays a role in several cellular functions, including endocytic recycling,
cytokinesis, cell polarity, exosome release, immunity, lipid homeostasis,
and phagocytosis (Klinkert and Echard, 2016). Therefore, it is not
surprising that RAB35 can exert an important role in different types of
cancer by controlling several aspects of cancer progression, such as cell
migration, proliferation and survival (Shaughnessy and Echard, 2018).
In MCF-7 luminal A BC cells, RAB35 activation by Wnt5a promotes
cell migration via the DVL2/RAB35/RAC1 signaling pathway (Zhu
et al., 2013). EGF-activated RAB35 can also lead to a more invasive
phenotype in BC cells. In its active form, RAB35 binds to microtubule-
associated monooxygenase, calponin and LIM domain containing-1
(MICAL-1) and promotes its activation. MICAL-1 activation increases
reactive oxygen species (ROS) generation and AKT phosphorylation,
leading to a more invasive phenotype (Deng et al., 2016). Additionally,
RAB35 expression was found to be downregulated in highly invasive
BC tumors, where ARF6 is hyperactivated (Allaire et al., 2013).
Enhanced ARF6 activation leads to integrin and EGFR recycling to
the cell surface, promoting cell migration (Allaire et al., 2013). Finally,
it was shown that some RAB35 pathogenic somatic mutations (G18V,
A29V and F45L) in BC can activate this protein and confer it
oncogenic properties (Shaughnessy and Echard, 2018).

3.7 ARF6

ARF6 is mainly localized at the cell periphery, where it
regulates endocytic recycling and cortical actin dynamics.
Moreover, this small GTPase is involved in the regulation of

cell division (Sztul et al., 2019). ARF6 has been extensively
studied in cancer and it is known to regulate cancer cell
growth, angiogenesis, invasion, and the formation of metastases
(Li R. et al., 2017). Moreover, high ARF6 expression and the
activation of downstream signaling pathways were associated
with poor overall survival of BC patients (Hashimoto et al.,
2004). It was also shown that ARF6 has a role in BC cell
invasion, as it was found to localize to invadopodia and
regulate the activity of these actin-rich structures, which
promote ECM degradation in tumors (Hashimoto et al., 2004).
Indeed, a study using BC cell lines with different invasive capacities
showed a correlation between ARF6 protein levels and BC cell
invasiveness (Hashimoto et al., 2004). The same authors also
observed that ARF6 silencing decreases the invasion capacity of
BC cells and regulates EGFR signaling (Morishige et al., 2008). A
recent study showed that ARF6 targets palmitoylated EGFR to
promote its trafficking from the Golgi to the PM, through the
recruitment of the exocyst tethering complex (Guo et al., 2022). As
mentioned, matrix remodeling/degradation is a key feature of BC
cell invasion. ARF6 activity and its effectors JIP3 and JIP4 have
been associated with MDA-MB-231 cell invasion through
invadopodia-mediated mechanisms (Marchesin et al., 2015). In
particular, the authors found that the binding of active ARF6 to
JIP3/JIP4 regulates the trafficking and exocytosis of MT1-MMP, a
key regulator of invadopodia function (Tanaka and Sakamoto,
2023). Furthermore, this study showed that the regulation of MT1-
MMP trafficking occurs via the recruitment of motor proteins
(dynactin-dynein and kinesin-1) by JIP3/JIP4 (Marchesin et al.,
2015). Recently, the role of ARF6 was associated with the tumor
microenvironment. Specifically, the chemokine (C-C motif) ligand
18 (CCL18), which is mainly produced by tumor-associated
macrophages and has been linked to the formation of
metastases in BC, was found to increase the expression of
ARF6 and the phosphorylated form of its downstream effector
AMAP1, an ARF GAP, in MCF-7 cells (Huang et al., 2022). In the
same study, the authors observed that CCL18 increases the levels of
miR-760 in exosomes, which activates an ARF6/Src/PI3K/AKT
signaling cascade and induces BC cell proliferation, migration,
invasion, and drug resistance.

4 Lysosomes/autophagy

4.1 RAB26

RAB26 is involved in several processes, including exocrine
granule maturation, amylase release from parotid acinar cells
and lysosome clustering in the perinuclear region (Nashida et al.,
2006; Tian et al., 2010; Li et al., 2012). Moreover, RAB26 increases
the integrity of adherens junctions in acute lung injury and regulates
the trafficking of cell surface receptors such as α2-adrenergic
receptor (Li et al., 2012; Dong et al., 2018). In BC, RAB26 acts as
a tumor suppressor gene by reducing focal adhesion association of
Src kinase and inducing autophagic degradation of phosphorylated
Src, which results in the inhibition of migration and invasion of BC
cells (Liu et al., 2021). Furthermore, BC datasets showed that higher
RAB26 expression is associated with a significantly higher overall
survival (Liu et al., 2021).
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4.2 ARL8

ARL8 has two paralogs–ARL8A and ARL8B–both localized to
lysosomes. Whereas the function of ARL8A is still poorly
understood, ARL8B is well studied and known to regulate the
kinesin-dependent anterograde movement (towards the cell
periphery) of lysosomes (Rosa-Ferreira and Munro, 2011; Khatter
et al., 2015). Interestingly, two recent reports showed evidence that
ARL8 also regulates long-range endolysosomal retrograde
movement (towards the perinuclear region) (Keren-Kaplan et al.,
2022; Kumar et al., 2022). ARL8A and ARL8B were found to be
upregulated in both luminal A and TNBC cell lines, upon silencing
of the Ca2+-binding protein TBC1 domain family member 9
(TBC1D9, a RAB GAP), which is associated with an impairment
of TNBC progression (Kothari et al., 2021). A recent study showed
evidence that the movement of lysosomes towards the cell periphery
promotes the invasion of radiation-surviving BC cells in vitro, as
well as tumor metastasis in vivo (Wu et al., 2020). In particular, the
recruitment by the biogenesis of lysosome-related organelles
complex 1 (BLOC-1)-related complex (BORC) and activation of
ARL8B leads to binding to the effector Sif-A and kinesin-interacting
protein (SKIP), which promotes lysosome anterograde movement
(Wu et al., 2020). At the cell periphery, lysosomes can be exocytosed
and release ECM-degrading proteases, leading to BC cell invasion
(Machado et al., 2015; Wu et al., 2020).

5 Cytoskeleton dynamics

5.1 ARL2

ARL2 is highly conserved, and it was found to localize to the
cytosol and mitochondria (Sztul et al., 2019). Moreover, this small
GTPase was shown to regulate the α/β-tubulin biogenesis and
microtubule dynamics, as well as mitochondria motility, fusion,
and ATP levels (Bhamidipati et al., 2000; Newman et al., 2014;
Francis et al., 2017; Newman et al., 2017). ARL2 was also shown to
regulate α/β-tubulin polymerization in MCF-7 cells. Furthermore, it
was also observed that a lower expression of ARL2 leads to enhanced
resistance to cytotoxic agents (Beghin et al., 2007; Beghin et al.,
2008). This mechanism is regulated by protein phosphatase 2A
(PP2A), which fails to dephosphorylate p53 when ARL2 expression
is low (Beghin et al., 2008). The same group also used orthotopic
mouse models to show that ARL2-depleted BC cells have an
enhanced clonogenic potential, less contact inhibition, and
proliferation, as well as impaired tumor growth (Beghin et al., 2009).

6 Cilliary trafficking

6.1 ARL13B

ARL13 presents two paralogs (ARL13A and ARL13B) that
only share around 43% sequence homology (Marwaha et al.,
2019). ARL13B is a well-established regulator of cilia structure
and function (Seixas et al., 2016; Revenkova et al., 2018).
Moreover, our group described that the interaction of
ARL13B with the actin cytoskeleton, mediated by its effector

non-muscle myosin IIA (NMIIA), promotes the formation of
CDRs and, consequently, cell migration (Casalou et al., 2014).
Furthermore, we showed that ARL13B plays a role in BC
progression, through a mechanism likely independent of cilia
(Casalou et al., 2019). Specifically, we found that the silencing of
ARL13B leads to an impairment in BC cell migration and
invasion in vitro, as well as tumor growth and metastasis in
vivo. Moreover, we gathered evidence to support that ARL13B
promotes BC cell migration and invasion through the regulation
of integrin-dependent signaling and cell-ECM adhesion
(Casalou et al., 2019). The results obatined in this study
suggest that ARL13B interacts with β3-integrin, regulates the
formation of stress fibers and the size of focal adhesions, which
results in the modulation of the cell-ECM adhesion and cell
motility (Casalou et al., 2019).

7 Other functions

7.1 ARL11

ARL11, which is also named ADP-ribosylation factor-like tumor
suppressor gene-1 (ARLTS1), was initially described as a tumor
suppressor (Calin et al., 2005). Yet, little is known about its
function(s) and localization. Nevertheless, in a recent study, it
was observed that ARL11 localizes to the nucleus, cytosol, and
cortical actin (Arya et al., 2018). These authors also found that
ARL11 is essential for liposaccharide (LPS)-induced macrophage
activation by interacting with phosphorylated ERK1/2 on actin
structures (Arya et al., 2018). Different variants of ARL11 have
been linked to familial and sporadic cases of cancer. In this regard,
the mutations W149Stop and C148R are the best characterized
(Yendamuri et al., 2008). The former is a nonsense mutation that
results in the production of a truncated protein that is unable to bind
GTP, which leads to a decrease in apoptosis (Petrocca et al., 2006).
Furthermore, both mutations were associated with familial cases of
BC (Frank et al., 2006; Yendamuri et al., 2008).

8 RAB and ARF GEFs/GAPs in BC
progression

GEFs and GAPs regulate the activity of RAB and ARF proteins,
by promoting their activation or inactivation, respectively (Arrazola
Sastre et al., 2021). Consequently, the dysregulated expression of
GAPs/GEFs or altered interactions between GEFs/GAPs and RAB/
ARF proteins can play a pivotal role in BC progression. For instance,
it was shown that DENND2B, a GEF for RAB13, enhances RAB13-
mediated migration and invasion of MDA-MB-231 cells both
in vitro and in vivo (Ioannou et al., 2015). Moreover, Morishige
et al. showed that GEP100/BRAG2, an ARF6 GEF, is expressed in
70% of primary breast ductal carcinomas and contributes to the
invasive behavior of MDA-MB-231 BC cells (Morishige et al., 2008).
Specifically, the authors found that GEP100 binds to tyrosine-
phosphorylated EGFR to induce ARF6 activation, which
promotes the invasiveness of BC cells (Morishige et al., 2008).
Another study demonstrated that GEP100 mediates EGF-induced
cell invasion, through a ARF6/ERK/uPAR signaling cascade

Frontiers in Cell and Developmental Biology frontiersin.org08

Ferreira et al. 10.3389/fcell.2024.1350097

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1350097


(Hu et al., 2013). Furthermore, the ARF6 GEF EFA6B enables the
transport of EGFR to the PM, which promotes the progression of
EGFR-dependent tumors (Guo et al., 2022).

Similar to GEFs, RAB and ARF GAPs also play a role in BC
progression. For instance, the RAB5 GAP USP6NL, which regulates
endocytosis and signal transduction, is overexpressed in BC
(Avanzato et al., 2018). The authors also found that the depletion
of USP6NL in BC cells results in a decrease in EGFR/AKT levels,
GLUT1 degradation, and consequently, a reduction in cell
proliferation. Moreover, the depletion of RAB5 phenocopies the
effects of USP6NL, suggesting that RAB5 inactivation by USP6NL is
the mechanism involved in the regulation of BC cell metabolism and
growth (Avanzato et al., 2018). Furthermore, the balance between
ARF-GDP and ARF-GTP levels was found to be essential for MT1-
MMP trafficking and consequent invasion of BC cells (Loskutov
et al., 2015). This study highlighted the role of a scaffold protein,
NEDD9, which binds specifically to the ARF6 GAP ARAP3. The
NEDD9/ARAP3 complex is then targeted to active ARF6 bound to
the effector GGA3, promoting GTP hydrolysis and inactivation of
this ARF protein (Loskutov et al., 2015).

9 Discussion

As discussed, membrane trafficking regulators from the RAB
and ARF families are abnormally expressed in BC and several
studies linked the role of these small GTPases to BC progression.
Therefore, the development of new therapeutic tools that target
RABs/ARFs could be a promising strategy in BC treatment.
However, modulation of these proteins poses some challenges.
Indeed, they have very conserved regulatory roles, are expressed
in many cells and tissues and share structural features. Yet, there
is an increasing effort to find suitable strategies to modulate RAB/
ARF activity and expression. First, the development of
nucleotide-based competitive inhibitors is being explored to
block RAB/ARF activity. For example, CID1067700 is a direct
competitor of nucleotide binding and was originally developed to
target RAB7 (Hong et al., 2015). By maintaining the RAB in an
inactive conformation, this molecule effectively hinders the
interaction between the GTPase and downstream effectors.
Besides targeting RAB7, CID1067700 also shows inhibitory
effects to other small GTPases, including CDC42, RAS and
RAB2 (Agola et al., 2012; Hong et al., 2015). Importantly,
pan-small GTPase inhibitors may serve as a template for
designing more specific drugs in the future. Also, recent
studies showed that demethylzeylasteral (DMZ) inhibits
ARF1 activity by competing with GTP and impairing
ARF1 activation (Chang et al., 2022). Moreover, treatment of
4T1 BC cells with DMZ, leads to decreased proliferation and
reduced levels of ARF1-GTP (Chang et al., 2022). A dual ARF and
RAS inhibitor, Rasarfin, was described to inhibit receptor
internalization, by targeting ARF6, and signaling, by targeting
RAS. Rasarfin was also tested in MDA-MB-231 cells and shown
to promote a reduction in cell metabolism and both RAS and
ARF6 activities (Giubilaro et al., 2021). There is also evidence
that non-competitive inhibitors can be used to target ARF
activity. In particular, it was found that the antibiotic
chlortetracycline (CTC), which belongs to the tetracycline

family, inhibits ARF6 activity by preventing GDP/GTP
exchange through interaction with Mg2+ at the nucleotide-
binding site (Macia et al., 2021). Furthermore, treatment of
MDA-MB-231 BC cells with CTC impairs collective cell
migration and invasion in 3D cultures (Macia et al., 2021).

Targeting the GTPase activity can also be achieved through the
modulation of membrane association. RAB proteins must be
prenylated to associate with membranes and perform their
functions (Leung et al., 2006). Since prenylation is mediated by
RABGGTase, there is a growing effort to develop specific
RABGGTase inhibitors. Notably, in vitro studies have
demonstrated promising effects of these inhibitors in reducing
human mesothelioma and myeloma cell proliferation, inducing
cell cycle arrest and apoptosis, respectively (Roelofs et al., 2006;
Okamoto et al., 2014). RAB geranylgeranylation depends on
geranylgeranyl pyrophosphate, a product of the mevalonate
pathway (Baron and Seabra, 2008; Park et al., 2014).
Interestingly, it was recently shown that the inhibition of this
pathway, using statins, causes a decrease in BC cell adaptation to
the brain microenvironment by suppressing RAB11B activity (Howe
et al., 2020). Indeed, non-specific RAB11B inhibition by two
lipophilic statins (pitavastatin and simvastatin) impairs the
recycling of β1-integrin, subsequently reducing the ability of BC
cells to interact with the brain metastatic ECM, effectively
suppressing BC brain metastasis (Howe et al., 2020). While all
RABs require geranylgeranylation, the authors suggest that
inhibiting the mevalonate pathway could potentially be useful in
other RAB-mediated clinical scenarios beyond brain metastasis
prevention.

Another possible strategy to modulate RAB/ARF activity is the
targeting of their GEFs, GAPs or effectors. For example, one can
inhibit GEFs or stimulate GAP activity to reduce the levels of active
GTP-bound RABs/ARFs that promote cancer progression. Indeed, it
was shown that the silencing of DENND2B, a RAB13 GEF, impairs
RAB13-mediated migration and invasion of MDA-MB-231 cells
in vitro and in vivo (Ioannou et al., 2015). On the other hand,
enhancement of GEF activity or GAP inhibition can increase the
levels of GTP-bound RABs/ARFs that act as tumor inhibitors.
Additionally, interactions between RABs/ARFs and their GEFs or
their downstream effectors can be modulated. One can also target
directly downstream effectors by changing their expression levels or
blocking their function. Interestingly, a group of stapled peptides
that specifically target RAB11:FIP binding interface was shown to
effectively disrupt the interaction between various FIPs and both
RAB11A and RAB25 (Mitra et al., 2017). These inhibitors, known as
RFP14, RFP24, and RFP26, impair RAB11-mediated oncogenic
phenotypes, such as migration and proliferation, in BC cell lines
(Mitra et al., 2017). In another study, a distinct stapled peptide
(StRIP3) was found to exhibit selective binding to RAB8A, resulting
in the inhibition of RAB8A-effector interactions in vitro (Spiegel
et al., 2014). The GEF-mediated activation of ARF1 was shown to be
impaired by AMF-26. By targeting the activity of ARF1, AMF-26
was also found to induce Golgi disruption, leading to the regression
of BC in BSY-1 xenografts (Ohashi et al., 2012). Interestingly, the
ARF GEF inhibitor SecinH3, which impairs the activation of both
ARF1 and ARF6, was shown to decrease the growth of BC xenografts
and reduce the number of lung metastases (Zhao et al., 2016).
Moreover, the inhibitor LM11, which blocks the interaction between

Frontiers in Cell and Developmental Biology frontiersin.org09

Ferreira et al. 10.3389/fcell.2024.1350097

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1350097


ARF1 and the GEF Cytohesin 2/ARNO, was shown to prevent
ARF1 activation (Xie et al., 2016). Remarkably, LM11 results in
impaired cell migration and invasion of MDA-MB-231 and Hs578T
TNBC cells. Furthermore, treatment with LM11 leads to a reduction

in the number of BC metastasis in a zebrafish model (Xie et al.,
2016). Finally, a study that used artificial membranes containing
ARF GTPases and GEFs to discover novel inhibitors, identified
Bragsin1 and Bragsin2 as potent inhibitors of the ARF-GEF BRAG2,

FIGURE 2
Localization and functions of RAB and ARF GTPases. Representation of membrane trafficking pathways and localization of RABs and ARFs in an
epithelial cell. Black arrows represent RAB and ARF functions in non-cancer cells, red arrows show tumor promotermechanisms and green arrows tumor
inhibiting functions, in BC. RAB2 is a key player in Golgi-to-endoplasmic reticulum (ER) trafficking. RAB3 and RAB27 mediate several types of regulated
secretion. RAB5 regulates early endosome homotypic fusion. Moreover, RAB5 and RAB34 are involved inmacropinocytosis. RAB8 participates in the
trafficking from the trans-Golgi network (TGN) to the plasma membrane, controlling the apical/basolateral transport of proteins in epithelial cells.
RAB11 and RAB35 mediate slow recycling from recycling endosomes. RAB25 controls trafficking from apical recycling endosomes to the apical plasma
membrane. RAB26 is involved in exocrine granule maturation and lysosome aggregation in the perinuclear region. RAB40 mediates intra-Golgi
trafficking. ARF1 regulates Golgi function and structure. ARF3 and ARF4 control the recruitment of coat proteins to the Golgi. ARFRP1 has been associated
with the trafficking of various cargoes, including E-cadherin. ARL2 localizes to the cytosol and mitochondria and regulates α/β-tubulin biogenesis.
ARL4 plays a role in the transport of transferrin receptors from early to recycling endosomes. ARL5B localizes to mitochondria and mediates retrograde
trafficking from endosomes to the Golgi. ARF6 is mainly localized at the cell periphery and is involved in the recycling of endosomes. ARL8A and ARL8B
best known function is the regulation of lysosome anterogrademovement. ARL13B is awell-known regulator of cilia structure and function and promotes
circular dorsal ruffle (CDR) formation and consequent cell migration. In BC, RAB2A, RAB5, RAB8, RAB40B and ARF6 participate in the transport of matrix
metalloproteinases (MMPs) to invadopodia. ARF6 mediates epidermal growth factor receptor (EGFR) trafficking from the Golgi to the plasmamembrane,
promoting the progression of EGFR-dependent tumors. RAB40C, ARF1 and ARL13B control BC cell migration through the regulation of focal adhesions.
ARF1 also regulates the formation of CDRs to promote cell migration. RAB27A controls the exocytosis ofmultivesicular bodies with consequent release of
exosomes that contribute to BC progression. RAB21 and RAB34 are involved in the endocytosis and recycling of integrins to enhance cell migration.
ARL8Bmediates the transport of lysosomes to the cell periphery, which leads to their exocytosis with consequent release of proteases to the extracellular
milieu. ARF4 regulates BC cell growth and invasion by mediating the transport of proteins from the Golgi to the ER. RAB26 reduces focal adhesion
association of Src kinase and induces the degradation of phosphorylated Src, resulting in the inhibition of migration and invasion of BC cells. Created
with BioRender.
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leading to the impairment of ARF activity (Nawrotek et al., 2019). In
the case of ARL13B, the blockade of its effector NMIIA with
blebbistatin impairs BC cell invasion (Derycke et al., 2011).

Finally, the use of small interfering RNAs (siRNAs) or miRs
to downregulate RAB/ARF expression could also be used as a
therapeutic strategy. Notably, miR-320a and miR-452 have been
shown to suppress proliferation, migration and invasion of
MDA-MB-231 cells, by targeting RAB11A (Wang et al., 2015;
Li W. et al., 2017). In addition, ectopic expression of miR-320a
inhibits tumor growth in a mouse xenograft model (Wang et al.,
2015). Additionally, a recent report showed that miR-139-5p/
ARF6 axis can be a promising pathway to target in BC treatment.
In this work, the authors showed that the anesthetic drug
sevoflurane (SEV), leads to an upregulation of miR-139-5p,
which decreases ARF6 expression (Wu et al., 2021).
Consequently, the SEV-mediated upregulation of miR-139-5p
leads to impaired migration, invasion, and EMT of MCF-7 and
MDA-MB-231 BC cells (Wu et al., 2021).

10 Conclusion and future perspectives

BC remains a deadly disease and a challenge at the therapeutic
level. We now know several intracellular pathways controlled by
different RABs and ARFs that are subverted in BC and others could
be uncovered in the future (Figure 2). Importantly, the modulation
of RAB/ARF expression, activity and function holds the potential
to provide novel therapeutic strategies and/or BC progression
markers. However, several hurdles remain to be overcome,
including the identification of effector molecules and further
characterization of the mechanisms involved in the changes in
membrane trafficking; the uncovering of the role played by the
crosstalk between RABs, ARFs and other RAS superfamily
members; and a better knowledge about the influence of
membrane assemblies and dynamics in the alterations observed.
While direct targeting of RABs and ARFs has proven challenging,
alternative methods to inhibit these proteins are starting to emerge.
These approaches include the impairment of nucleotide binding,
hindering the interaction between small GTPases and their
effectors, which blocks the recruitment to specific membrane
sites, as well as the targeting of their regulators such as GEFs,
GAPs or post-translational modification enzymes. Although more
challenging, modulation of expression RABs/ARFs could also be
used as a strategy to impair BC progression. Despite their
limitations, these novel strategies have shown encouraging
results and are gaining recognition. Consequently, further
studies are essential to identify new and more specific inhibitors
and assess their potential in preventing BC progression.
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