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Assisted Reproductive Technologies (ART) have revolutionized infertility
treatment and animal breeding, but their success largely depends on selecting
high-quality oocytes for fertilization and embryos for transfer. During
preimplantation development, embryos undergo complex morphogenetic
processes, such as compaction and cavitation, driven by cellular forces
dependent on cytoskeletal dynamics and cell-cell interactions. These
processes are pivotal in dictating an embryo’s capacity to implant and
progress to full-term development. Hence, a comprehensive grasp of the
biomechanical attributes characterizing healthy oocytes and embryos is
essential for selecting those with higher developmental potential. Various
noninvasive techniques have emerged as valuable tools for assessing
biomechanical properties without disturbing the oocyte or embryo
physiological state, including morphokinetics, analysis of cytoplasmic
movement velocity, or quantification of cortical tension and elasticity using
microaspiration. By shedding light on the cytoskeletal processes involved in
chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion,
underlying oogenesis, and embryonic development, this review explores the
significance of embryo biomechanics in ART and its potential implications for
improving clinical IVF outcomes, offering valuable insights and research
directions to enhance oocyte and embryo selection procedures.
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1 Introduction

Infertility has been recognized by the World Health
Organization (WHO) as a disease and a global public health
issue since 2013, following 2 decades of research into its personal
and social consequences suffered by those affected (Fidler, 1999;
Daar and Merali, 2002; Inhorn et al., 2002; Macaluso et al., 2010;
Lemoine and Ravitsky, 2013; Rouchou, 2013; Gimenes et al., 2014;
Nik Hazlina et al., 2022). It is estimated that it affects around 10% of
couples of reproductive age (Vander Borght and Wyns, 2018), and
even 15% of all women (Sadecki et al., 2022).

Assisted Reproductive Technologies (ART), especially in vitro
fertilization (IVF), have become one of the most important
procedures for treating infertility. Although there have been great
advancements in IVF procedures over the years, the live birth rate
per ART cycle remains low, especially for patients in advanced
maternal age. While women below 35 may be expecting, depending
on the reporting institution, about 33%/40%/18% success rate,
women over 40 face only about 29%/15%/9% chance to give
birth (according to Human Fertilisation & Embryology Authority
[HEFA], 2021; Society for Assisted Reproductive Technology
[SART], 2022; European Society of Human Reproduction and
Embryology [ESHRE], 2023, respectively). Consequently, many
couples must undergo several IVF cycles to succeed. This brings
additional health risks for women, resulting in their psychological
and emotional distress (especially in societies where infertility and
ART are stigmatized), and further limits ART accessibility due to
economic barriers (Daar and Merali, 2002; Cui, 2010; Macaluso
et al., 2010; Rouchou, 2013; Nik Hazlina et al., 2022).

Additionally, IVF is an important method in livestock breeding
programs (Silber et al., 2013; Sirard, 2018), and the production of
phenotypically valuable livestock (Hansen, 2014), which has been a
steadily growing area of commerce (Blondin, 2017; Moore and
Hasler, 2017; Sanches et al., 2019; Viana, 2019). IVF is also used
as a means of overcoming the significant challenges of managing
small, isolated populations in zoos (Herrick, 2019) and the
preservation of endangered species (Saragusty et al., 2016;
Hildebrandt et al., 2018; Kochan et al., 2019; Lanyon and
Burgess, 2019).

IVF is increasingly often accompanied by other procedures, such
as in vitro oocyte maturation and cryopreservation of gametes and
embryos. Around 25% of female chemotherapy-treated patients,
before the age of 30, develop acute ovarian failure or premature
menopause (Letourneau et al., 2012) and the risk reaches 40% for
women under 40 andmore than 80% for women over 40 (Rosenberg
and Partridge, 2013). A strategy to preserve fertility in certain groups
of female cancer patients is the cryopreservation of ovarian follicles
ahead of the oncological treatment and in vitro maturation of
oocytes before fertilization after recovery. This approach may
also be applied to women with polycystic ovary syndrome, a
group of patients with a high risk of ovarian hyperstimulation
syndrome (Walls et al., 2015). Both oocyte and sperm
cryopreservation are a fertility conservation option for
transgender individuals undergoing hormone replacement
therapy and genital reconstructive surgery (De Roo et al., 2016)
and serve as an efficient banking method of gametes and embryos
for infertility patients (Di Santo et al., 2012; Liang and Motan, 2016)
and donors (Lindheim and Klock, 2018; Mignini Renzini et al.,

2021). In vitromaturation and cryopreservation are also widely used
tools in assisted reproduction of domestic and endangered animals
(Gandolfi and Brevini, 2010; Hildebrandt et al., 2018;
Sjunnesson, 2020).

The efficiency of IVF can be raised by transferring multiple
embryos in a single cycle, but it can result in multiple pregnancies
and, as a consequence, in serious health complications for mothers
and their offspring (Ombelet et al., 2005; Skora and Frankfurter,
2012). Many clinics have therefore introduced elective single embryo
transfers (eSET), according to guidelines of good clinical practice.
Consequently, scientists and the medical industry are urged to
develop novel and reliable methods to select high-quality
embryos for transfer. Thus, protocols for noninvasive assessment
of embryo competence are a valuable addition to the IVF
procedures. Furthermore, the evaluation of oocyte quality serves
the purpose of selecting the most suitable oocytes for fertilization.
This becomes especially vital when legal restrictions limit the
number of eggs that can be fertilized (e.g., six in Poland, unless
specific medical conditions or age criteria are met). Reliable
evaluation processes allow embryologists to personalize IVF
treatments for each patient, including considerations such as the
logistics of oocyte cryobanking and helping to manage patient
expectations. Equally significant, the outcome of oocyte
evaluation can yield supplementary insights that prove valuable
in assessing the quality of the resulting embryos.

Plenty of methods for oocyte and embryo selection have been
previously proposed (Patrizio et al., 2007; Rienzi et al., 2011; Ajduk
and Zernicka-Goetz, 2013; Anagnostopoulou et al., 2022), but their
adaptation into a clinical setting has proved challenging, either due
to conflicting results or time, personnel, and financial constraints
(Ajduk and Zernicka-Goetz, 2013). Current methods used in clinics
are primarily based on the assessment of oocyte or embryo
morphology, often combined with time-lapse imaging providing
extra information on cellular divisions and morphogenetic events
occurring during embryo preimplantation development (so called
morphokinetics). However, morphology assessment of oocytes is
often more informative than predictive (Nikiforov et al., 2022), and
in embryos—it allows for excluding low-quality specimens, but not
necessarily for indicating those of the highest viability (Gardner and
Balaban, 2016). Moreover, this approach is prone to intra- and
interobserver bias (Paternot et al., 2009; Bormann et al., 2020).
Recently, artificial intelligence algorithms have been explored as a
means of enhancing these methods (Zaninovic and Rosenwaks,
2020). However, some scholars point out that this approach still
requires proper standardization of methodology (Kragh and
Karstoft, 2021). Another technique applied in the evaluation of
embryos is preimplantation genetic testing (PGT; Madero et al.,
2023). Preimplantation genetic testing for monogenic gene defects
(PGT-M) is a well-established method for selecting embryos devoid
of disease-related mutations. However, the efficiency and accuracy
of preimplantation genetic testing for aneuploidy (PGT-A) and
preimplantation genetic testing for structural rearrangements
(PGT-SR) remains limited, due to embryonic mosaicism
(Popovic et al., 2020; Giuliano et al., 2023). Moreover, all types
of preimplantation genetic testing are highly invasive, requiring
biopsy of embryonic cells (as a source of genetic material for
analysis). Furthermore, PGT-A is controversial due to the lack of
unambiguous evidence to support its use (Mastenbroek et al., 2021).
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TABLE 1 Advantages and limitations of noninvasive techniques used in assessment of biomechanical properties of oocytes and embryos.

Technique Type of information provided Advantages Disadvantages

Analysis of cavitation
dynamics

- Timing and extent of blastocoel expansion - Enables estimation of the
biomechanical properties of the

blastocyst

- Requires in vitro culture up to expanded blastocyst
stage and periodic exposure to light (time-lapse

imaging)

- Parameters describing amplitude, frequency,
and duration of expansion-contraction cycles of

the blastocoel

- May utilize standard time-lapse
recordings obtained for
morphokinetic analysis

- Does not offer information about sub-cellular
structures

- Quantifiable data

Analysis of cytoplasmic
velocity

- Velocity and direction of the cytoplasmic
movement

- Simple technique providing
biomechanically relevant

measurements

- Measurements are very easily disrupted by external
movement of the analyzed cells

- Fast cytoplasmic movements typical for freshly
fertilized oocytes precisely mimic the pattern of

sperm-induced Ca2+ oscillations

- Quantifiable data - Until now has been applied only in experimental
setting

Atomic force
spectroscopy (AFS)

- Young’s modulus, stiffness, and adhesion force - Provides precise biomechanical
measurements at the nanoscale

- Limited to studies of the zona pellucida (making it
imprecise for oocyte/embryo properties assessment)
or requiring zona removal (making it invasive)

- Quantifiable data - Expensive setup and maintenance costs

- Until now has been applied only in experimental
setting

Cortical tension (CT)
measurements by
microaspiration

- Measures the force required to aspirate a
portion of the cell, providing information about
its surface tension or viscoelastic properties

- Simple technique providing
biomechanically relevant

measurements

- Limited to studies of the zona pellucida (making it
imprecise for oocyte/embryo properties assessment)
or requiring zona removal (making it invasive)

- Quantifiable data - Until now has been applied only in experimental
setting

Harmonic generation
microscopy (HGM)

- Imaging of sub-cellular morphology, including
metaphase spindles, based on nonlinear optical

processes

- Provides 3D sub-cellular
structural information

- If light of longer wavelength is used, low spatial
resolution limits detailed analysis, for shorter

wavelengths—potentially invasive

- Obtained data is only indirectly related to cellular
biomechanics

- Requires an expensive setup and maintenance

- Until now has been applied only in experimental
setting

Optical coherence
microscopy (OCM)

- 3D reconstructions of intracellular architecture,
including metaphase spindles, based on intrinsic
contrasting of back-scattered coherent light

- Offers 3D sub-cellular structural
information

- Limited spatial resolution affecting detailed
structural analysis

- Quantifiable data - Obtained data is only indirectly related to cellular
biomechanics

- Requires a fairly expensive setup

- Until now has been applied only in experimental
setting

Polarized light
microscopy (PLM)

- Visualization of anisotropic cellular structures,
such as metaphase spindles or zona pellucida,
based on detection of changes in refractive

indices and birefringence

- Used in ART on every-day basis - Obtained data is only indirectly related to cellular
biomechanics

- Simple technique

- Quantifiable data

Quantitative phase
imaging (QPI)

- Captures phase shifts and refractive indices
using off-axis illumination

- Offers 3D sub-cellular structural
information

- Applicability limited to high refractive index
structures within cells

- Quantitative imaging of sub-cellular
morphology

- Quantifiable data - Obtained data is only indirectly related to cellular
biomechanics

- Until now has been applied only in experimental
setting
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As quality assessment protocols still require improvement,
numerous novel methods of quality assessment have been
proposed in recent years. One is the metabolic profiling of the
embryos, which is achieved by the chemical analysis of spent
culture media (Nagy et al., 2009; Zhao et al., 2013; Salmerón
et al., 2021). Another technique, fluorescent lifetime imaging
microscopy (FLIM) uses the differences in the exponential
decay rate of the photon emission of autofluorescent coenzymes
NAD(P)H and FAD2+ and allows for quantification of their
concentration and thus energy metabolism of the embryo (Ma
et al., 2019; Venturas et al., 2022; Venturas et al., 2023). This
technique, however, uses UV light to excite autofluorescence,
raising concerns about its invasiveness. Finally, it is also
possible to analyze the chemical composition of oocytes and
embryos using coherent anti-Stokes Raman scattering (CARS;
Bogliolo et al., 2013; Davidson et al., 2013; Bradley et al., 2016;
Jasensky et al., 2016; Ishigaki et al., 2017; Rusciano et al., 2017;
Arena et al., 2021). CARS detects the vibrational spectra of
biomolecules, depending on the mass of the atoms constituting
the molecule and the strength of their respective bonds (Robert,
2009). Although not particularly efficient in identifying proteins,
CARS provides a reliable quantitative analysis of lipids (Evans and
Xie, 2008; Zumbusch et al., 2013).

Recently, the application of biomechanical quality assessment
in ART has been a growing area of research as well. Biomechanical
properties of oocytes and embryos reflect the functionality of key
cellular components, including cytoskeleton and intracellular
junctions. Therefore, examination of the oocyte/embryo
biomechanics may provide novel insights into the quality of
those intracellular structures, and, in consequence, improve
oocyte/embryo evaluation protocols. Many invasive approaches
to the analysis of the biomechanical properties of cells have been
proposed. Structure of biomechanically relevant cellular
components may be studied with fluorescent probes and
confocal microscopy (Kölle et al., 2009). On the other hand,
confocal microscopy, together with special nanomechanical
chips, can be used to assess the intracellular pressure (Gómez-
Martínez et al., 2013). The chip comprises of a mechanical sensor
and an optical reference area created by two parallel reflecting
membranes, separated by a vacuum gap. Waves can only pass
through the reference area when they are in resonance with it. By
analyzing the reflected light’s intensity, the system can quantify the
pressure-induced membrane deflection. Another interesting
method is the implementation of magnetically responsive
ferrofluid microdroplets that enable highly precise
measurements of mechanical properties, such as viscosity in
tissues and embryos (Campàs, 2016; Serwane et al., 2017). The
viscosity of tissue affects the movement and deformation of the
microdroplets under the influence of the magnetic field, allowing
for precise quantitative measurements of mechanical properties.
While these approaches have shown promise in research, their
application in ART is limited due to concerns about their potential
to disrupt natural developmental processes. Noninvasive
techniques described in this review (Table 1) represent an
alternative, yet promising, avenue for gaining deeper insights
into the biomechanical aspects of oocytes and embryos during
ART, offering valuable contributions to improving clinical
outcomes and reproductive health.

2 Cytoskeletal functions, dynamics, and
alternations in oocytes

The developmental capabilities of mammalian embryos are
largely determined by the oocyte cargo (Stitzel and Seydoux,
2007; Li et al., 2010). Although fragmentation of DNA or other
deterioration of sperm can diminish an embryo’s potency, the
oocyte contributes the vast majority of the cytoplasmic contents:
cytoskeleton components essential for a multitude of inter- and
intracellular processes, mitochondria providing energy to the
embryo, lipid droplets supplying metabolic reserves, and
maternal mRNA and proteins accumulated during oocyte
growth, required as a guiding template before embryonic genome
activation. Identifying features of a high-quality oocyte can therefore
facilitate ART procedures.

Studies have shown that the biomechanical properties of
mammalian oocytes reflect their developmental competence
(Ebner et al., 2003; Liu et al., 2010). Whilst these properties stem
partially from the zona pellucida’s mechanical characteristics, they
predominantly depend on cellular biomechanics. The zona may
harden as a result of cortical granule exocytosis at fertilization (the
main element of the polyspermy block; Murayama et al., 2006; Shen
et al., 2019), but also, as shown in the mouse, during premature
cortical granule exocytosis in the in vitro matured and vitrified
oocytes (Carroll et al., 1990; Ducibella et al., 1990). Premature zona
hardening inhibits in vitro fertilization via gamete co-incubation, as
sperm cannot penetrate the zona (Carroll et al., 1990). Conversely,
cellular mechanics, i.e., elastic (ability to resist deformation) and
plastic (ability to undergo permanent deformation) behavior of cells,
reflect their cytoskeletal functionality (Larson et al., 2010; Chaigne
et al., 2013; Chaigne et al., 2015; Mackenzie et al., 2016). The
cytoskeleton plays a key role in the segregation of chromosomes,
cytokinesis, and cellular trafficking, each of which is important for
cell cycle progression (Tang, 2012; D’Avino et al., 2015; Prosser and
Pelletier, 2017). Microtubules build metaphase spindles, while actin
and myosin are required for the spindle positioning and formation
of the cytokinetic contraction ring (Schuh and Ellenberg, 2008).
Disturbances in the function of these components can result in
aneuploidy, which has detrimental effects on future embryonic
development, especially when first appearing in meiosis (McCoy
et al., 2023). A functioning actomyosin cytoskeleton is also
invaluable during so-called cytoplasmic maturation, a process
concurrent with the meiotic maturation of oocytes. Research
conducted predominantly on mouse oocytes indicates that during
cytoplasmic maturation relocation of organelles occurs.
Mitochondria move from the perinuclear region towards the cell
periphery (Dalton and Carroll, 2013), the Golgi apparatus fragments
and shifts to the center of the gamete (Moreno et al., 2002), and the
endoplasmic reticulum gathers in the cortical region (Mehlmann
et al., 1995; FitzHarris et al., 2007). These changes in organelle
distribution depend on intact actin filaments (Dalton and Carroll,
2013). Simultaneously, dynamic changes in the cytoskeleton itself
occur. In mouse oocytes, metaphase I spindle migration is supported
by an ARP2/3-dependent thickening of the cortical F-actin
meshwork, nucleated by formin-2 (Leader et al., 2002; Dumont
et al., 2007; Schuh and Ellenberg, 2008) and Spire 1/2 (Pfender et al.,
2011). As the cortical F-actin thickens, myosin-II is excluded from
the cortex, leading to its softening (Chaigne et al., 2013). These
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events are regulated by phosphorylated (active) myosin-II regulatory
light chain and phosphorylated ezrin-radixin-moesin complex and
coordinated temporally by the MOS-MAPK pathway (Larson et al.,
2010; Chaigne et al., 2013; Chaigne et al., 2015). Cortical tension
(CT) resulting from the force generated by the actomyosin
cytoskeleton must be strictly regulated to allow normal spindle
migration and positioning: too low or too high CT both lead to
spindle anomalies (Chaigne et al., 2013; Chaigne et al., 2015). As
shown for human and mouse oocytes, actin filaments may also
infiltrate the meiotic spindle and regulate the correct alignment and
segregation of the chromosomes (Mogessie and Schuh, 2017).

Interestingly, Larson and others show that there are some
discrepancies in cytoskeleton modifications during meiotic
maturation between in vivo- and in vitro-matured mouse oocytes
(Larson et al., 2010). This could be linked to lower developmental
capabilities of in vitromatured humanmetaphase II oocytes (Jurema
and Nogueira, 2006). The cellular cytoskeleton is often damaged
during freezing and thawing procedures as well (Hosu et al., 2008;
Hendriks et al., 2015). Various cytoskeletal elements can also be
affected by postovulatory aging (i.e., the extended period between
ovulation and fertilization; reviewed in Miao et al., 2009; Takahashi
et al., 2013); in particular, actin distribution and myosin
functionality (McGinnis et al., 2015; Mackenzie et al., 2016).
Some authors have even suggested that reduced myosin light
chain kinase activity in aged mouse oocytes is linked to their
susceptibility to parthenogenetic activation, potentially by
dysregulation of membrane ion channels (McGinnis et al., 2015;
Mackenzie et al., 2016).

Cytoskeletal damage can be caused by reactive oxygen species
(ROS; Lord et al., 2013). In somatic cells, proteins damaged by
oxidation, such as carbonylated or glycated proteins, accumulate
with age and in several pathological states (Stadtman, 1992; Levine,
2002). These proteins are rendered inactive and tend to form large
aggregates in the cytoplasm. Similarly, the mammalian germline
accumulates these dysfunctional proteins (Hernebring et al., 2006;
Haucke et al., 2014), but they are eliminated to some extent during
embryo development (Hernebring et al., 2006). Oocytes may carry
varying amounts of advanced glycation end (AGE) products and
carbonylated or otherwise modified proteins, depending on
maternal age and overall female health. Notably, actin is a
common target for carbonylation (Aksenov et al., 2001; Soreghan
et al., 2003). Mouse oocytes subjected to postovulatory aging or
obtained from females of advanced reproductive age feature
increased ROS concentrations (Szpila et al., 2019; Czajkowska
and Ajduk, 2023). Similarly, vitrification is known to cause
oxidative stress in murine, porcine, and human oocytes (reviewed
in Tatone et al., 2010). Some studies report that increased ROS levels
can be also observed during murine and bovine oocyte in vitro
maturation (Morado et al., 2009; Xie et al., 2016). It is feasible that
carbonylation/glycation of proteins occurs not only in oocytes
obtained from old females but also in oocytes otherwise
subjected to oxidative stress (Berlett and Stadtman, 1997),
including postovulatory aging and vitrification. It can be
speculated that these oocytes’ cytoskeletal dysfunction could be,
at least in part, caused by the oxidation of cytoskeletal proteins
(Mihalas et al., 2018).

Cytoskeletal functionality is intricately linked to the successful
progression of meiosis, making it a pivotal factor in oocyte and early

embryo development. As a result, the assessment of cytoskeleton
quality in these cells, reflected among others by their biomechanical
properties, emerges as a valuable and predictive indicator, offering
critical insights into the outcomes of IVF procedures, thus
enhancing the understanding and potential success of ART.

3 Quality assessment of oocytes based
on cytoskeletal and biomechanical
properties

Some biomarkers indicative of the biomechanical properties,
e.g., zona pellucida and metaphase spindle, can be observed using
polarized light microscopy (PLM; Oldenbourg, 2013; Ajduk and
Szkulmowski, 2019). Importantly, zona birefringence also indicates
its ability to participate in the acrosome reaction and ability to
undergo proper polyspermy block, whereas shape of the metaphase
spindle can be associated with the ploidy and the maturation status
of the oocyte (Caamaño et al., 2010; Montag et al., 2013; Omidi
et al., 2017).

Alas, even PLM does not provide detailed information on inner
cell architecture, nor does it have a high in-depth resolution. These
limitations might be overcome by harmonic generation microscopy
(HGM; Hsieh et al., 2008; Thayil et al., 2011), which obtains
contrasts by the sample’s ability to emit photons with half the
wavelength of incident light. HGM has been shown to obtain 3D
images of microtubules in the spindle (Yu et al., 2014; Sanchez et al.,
2019) and myosin heavy-chain B (Mohler et al., 2003). However,
HGM is beset by the choice between the imaging depth when using
longer excitation wavelengths, which are less harmful to
biomaterials, and high spatial resolution when using shorter but
more invasive wavelengths (Aghigh et al., 2023). These limitations
are shared by optical coherence microscopy (OCM), which can be
used for metaphase spindle visualization (Karnowski et al., 2017). In
addition, both methods typically require a complex and expensive
setup, which might not be readily available in prospective fertility
clinics. A simpler solution can perhaps be found in quantitative
phase imaging (QPI) techniques, such as holographic microscopy or
interferometric phase imaging, which can provide quantitative
information about cell morphology based on 3D refractive index
distribution (Nguyen et al., 2022). These methods can be used to
study cytoskeletal organization and dynamics (Bon et al., 2014),
however, to date QPI has mostly been employed to study
membranous organelles such as mitochondria, which have a
higher refractive index (Sandoz et al., 2019; Salucci et al., 2020).

Cellular mechanics depend on cytoskeletal function, thus
probing oocytes or embryos for their biomechanical
characteristics can provide insight into their developmental
potential. One such method is the analysis of cytoplasmic
velocity. Cytoplasmic velocity measurement combines time-lapse
imaging with particle image velocimetry (PIV) analysis. PIV is an
algorithm frequently used in fluid dynamics that follows the
displacement of bright and dark pixel patterns in consecutive
images to establish the velocity and direction of the fluid
(cytoplasm) movement (Westerweel, 1997; Figure 1). Studies
have demonstrated that cytoplasmic velocity monitored at the
time of fertilization reflects the capacity of mouse zygotes to
correctly complete preimplantation and full-term development
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(Ajduk et al., 2011). These movements can also be observed in
human zygotes (Swann et al., 2012). Fast directional cytoplasmic
movements (the so-called “speed-peaks”) correspond to rhythmic
actomyosin-mediated spasms, coincident with fertilization-induced
Ca2+ oscillations (Ajduk et al., 2011). The mean basal speed
represents the average velocity of cytoplasmic movement between
speed-peaks, thereby providing information on the functionality of
the zygote actomyosin cytoskeleton. For example, a relative decrease

in mean basal speed is concurrent with both depolymerization and
overstabilization of actin filaments and inhibition of myosin (Ajduk
et al., 2011). Moreover, the mean basal speed in freshly fertilized
mouse oocytes correlates with the length of the second embryonic
cell cycle, the percentage of cells with fragmented nuclei, and the
percentage of primitive endoderm cells in the blastocyst (Milewski
et al., 2018). The basal velocity of cytoplasmic movement in
unfertilized (metaphase II) oocytes is slower than in their

FIGURE 1
Cytoplasmic movement velocity (CMV) assessment by Particle Image Velocimetry (PIV). (A, B) Images from the PIV software used by some of the
authors (Ajduk et al., 2011). PIV analysis was conducted for high-resolution time-lapse images of (A)mousemetaphase II oocyte, (B) polar trophectoderm
cell in a mouse blastocyst. Both the length and the color of the vectors visible inside the cells reflect the cytoplasmic velocity. Cyan represents the
slowest-moving vectors. Magenta represents the fastest-moving vectors. The graphs (below) show the mean cytoplasmic velocity in the analyzed
region over time. The direction of the vectors indicates the direction of cytoplasm displacement between frames. (C) Schematic representation of the PIV
algorithm. The algorithm divides the images into small interrogation windows, identifying the pattern of pixels in each window, and calculating the
displacement of particles between frames. This information is used to generate a map of velocity vectors representing the cytoplasmic flow and to
calculate mean cytoplasmic velocity.
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fertilized counterparts (Ajduk et al., 2011). Both maternal and
postovulatory types of aging are detrimental to the actomyosin
cytoskeleton of mammalian, including human, metaphase II
oocytes (Pickering et al., 1988; Sun et al., 2012; McGinnis et al.,
2015; Mackenzie et al., 2016; Dunkley et al., 2022), which might
influence the cytoplasmic dynamics, resulting in lower basal speed in
aged oocytes.

Interestingly, the mean basal cytoplasmic speed is also indicative
of immature oocyte (so-called GV oocyte) quality (Bui et al., 2017).
There are two populations of GV oocytes, which are known to have
distinct developmental capabilities: oocytes with surrounded
nucleolus (or SN oocytes) that have already transcribed all
necessary RNAs and are transcriptionally inactive, and oocytes
with non-surrounded nucleolus (or NSN oocytes) that are still
transcribing (reviewed in: Tan et al., 2009). These two types of
GV oocytes differ in terms of the basal speed at various stages of
in vitro maturation (Bui et al., 2017).

Assessment of oocyte quality based on the monitoring of
actomyosin cytoskeleton-mediated cell mechanics can also utilize
techniques such as micropipette aspiration (Mackenzie et al., 2016;
Yanez et al., 2016) and indentation (Liu et al., 2012). Applying
negative pressure through a micropipette or positive force through a
microlever, results in the deformation of the cell allowing for the
calculation of the cell’s physical properties, such as CT or elasticity
(Figure 2). CT reflects the biochemical and structural features of the
oocyte cortex (Larson et al., 2010; Chaigne et al., 2013; Chaigne et al.,
2015; Mackenzie et al., 2016) and zona pellucida (Khalilian et al.,
2010; Shen et al., 2019). Studies on mouse oocytes devoid of zona
pellucida have shown that CT decreases six-fold during maturation,
then increases about 1.6-fold after fertilization (Larson et al., 2010).
Also, mature mouse oocytes are polarized, with CT differing 2.5-fold
between the stiff cortex over the meiotic spindle (the amicrovillar
domain) and the softer, opposing cortex, where the sperm binds
(microvillar domain; Larson et al., 2010). The purpose of this
asymmetry is unclear. However, in vitro matured oocytes have
reduced tension in the amicrovillar domain (Larson et al., 2010).
Viscoelastic equilibrium in the cortex is essential to achieve
asymmetric cytokinesis (Chaigne et al., 2013; Chaigne et al.,
2015). This equilibrium is characteristic of a viable oocyte (Yanez

et al., 2016). Too elastic or too plastic cortex results in anomalous
spindle migration (Chaigne et al., 2013; Chaigne et al., 2015) and
lowered developmental competence, likely due to less effective
cortical granule release at fertilization, which could lead to
polyspermy (Yanez et al., 2016). CT is also reduced in both
maternally (Liu et al., 2012) and postovulatory-aged oocytes
(Mackenzie et al., 2016). These differences in viscoelastic
properties, hence cytoskeletal properties, offer a valuable tool for
quality assessment. Methods for testing oocyte and embryo
cytoskeletal properties by CT analysis, however, are relatively
time-consuming and labor-intensive. Additionally, most protocols
presented to date feature the removal of the zona, which may
negatively affect overall embryo development (Fan et al., 2022).

Another method to measure surface forces is atomic force
spectroscopy. Here, a sharp tip attached to a cantilever runs over
the surface of the sample. The deflection of the cantilever across the
sample surface is measured using a laser beam, which is reflected
onto a photodetector (Figure 3). The amount of deflection is used to
calculate the force exerted on the tip by the sample’s surface (Viljoen
et al., 2021). In its noninvasive form, in a similar manner to CT
measurements, atomic force spectroscopy is limited to the studies of
the zona pellucida (Boccaccio et al., 2012; Andolfi et al., 2016;
Battistella et al., 2022).

4 Molecular basis of embryo
biomechanics

The success of in vitro fertilization procedures is also contingent
on sperm quality and conditions of embryo culture (Chapuis et al.,
2017; Colaco and Sakkas, 2018; Consensus Group, 2020). Various
molecular mechanisms reflected in changes in biomechanical
properties are at play before the blastocyst, the last stage of
mammalian preimplantation development, is formed. A
blastocyst is built of an inner cell mass (ICM) and an outer
trophectoderm (TE) epithelial layer. As the blastocyst expands,
ICM cells differentiate into two lineages: the centrally located
epiblast (EPI) and the primitive endoderm (PE), also called
hypoblast, adjoined to the blastocyst cavity (blastocoel). The TE,

FIGURE 2
Cortical tension (CT, γ) analysis. CT analysis can be conducted by micropipette aspiration. Assessment of CT requires the measurement of cell
curvature radius and aspiration pressure (Ps) when the deformation length (L) becomes equal to the micropipette radius (Rp) and utilizes the
Young–Laplace equation.
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on the other hand, differentiates into the polar TE surrounding the
ICM and the mural TE surrounding the blastocyst cavity. The ICM
that will give rise to the embryo proper (resulting from the EPI) as
well as additional extraembryonic membranes (derived from the
PE), and the TE will participate in embryo implantation in the uterus
and form the future placenta.

Preimplantation development consists of multiple mitotic
divisions, which are highly dependent on actin networks
(Chaigne et al., 2016). Importantly, zygotic genome activation
(ZGA) is connected with maternal protein degradation (Toralova
et al., 2020), and considerable changes in cytoskeletal
makeup. During embryonic development, the configuration of
cells and cell lineages is shaped by the contractile nature of the
actomyosin cortex (Murrell et al., 2015; Coravos et al., 2017; Özgüç
and Maître, 2020). These cortical contractile forces are essential for
the formation of the cleavage furrow during cytokinesis (Fujiwara
and Pollard, 1976; Straight et al., 2003; Yamamoto et al., 2021), the
movement of cells during migration and maintenance of
appropriate cell positioning (Eddy et al., 2000; Tsai et al., 2019),
and the withdrawal of cellular blebs (Charras et al., 2006; Taneja and
Burnette, 2019). Moreover, changes in actomyosin contractility
drive processes such as apical constriction (Martin et al., 2009;
Solon et al., 2009) and the restructuring of cell-cell contacts (Bertet
et al., 2004; Maître et al., 2012).

Significant biomechanical alterations occur particularly during
the compaction of preimplantation embryos, a process that occurs at
the 8-cell stage in mice, 16-cell stage in humans, and 32-cell stage in
rabbits and cattle (Płusa and Piliszek, 2020). Compaction is
accompanied by intra-cellular polarization of blastomeres along the
apical-basal axis. In pre-compacted mouse embryos, actomyosin is
uniformly distributed in the cellular cortex, whereas during
compaction, it accumulates gradually in the apical, contact-free
region, and becomes excluded from the cell-cell contact sites (Zhu
et al., 2017). Moreover, as the mouse embryo undergoes compaction,
the cell adhesion protein, epithelial cadherin (E-cadherin),
translocates and becomes phosphorylated at the cell-cell contact
sites (Winkel et al., 1990). Additionally, ezrin, a protein
responsible for establishing and maintaining microvilli, undergoes

phosphorylation and relocates to the contact-free regions of the
membranes (Louvet et al., 1996).

Translocation of actomyosin occurring during compaction leads
to the progressive increase of the CT on the contact-free interface of
the blastomeres. At the same time, junctional E-cadherin keeps
actomyosin contractility low at the cell-cell contacts (Maître et al.,
2015). As a result, the inner and outer cells of a compacted embryo
differ in contractility (Maître et al., 2016). These changes in cellular
adhesion and CT are crucial not only for mouse embryo compaction
but also for the internalization of the cells that will later form the
inner cell mass (ICM; Samarage et al., 2015; Maître et al., 2016).

The biomechanical properties of preimplantation embryos are
dynamically regulated by various molecular pathways. The initiation
and maintenance of symmetry breaking in a compacting mouse
embryo depend on the activity of PLC-PKC signaling (Zhu et al.,
2017). On the other hand, formin regulates contractility in
preimplantation morphogenesis (Özgüç et al., 2022). The actin
nucleator ARP2/3 is critical for blastomere cytokinesis, and its
inhibition leads to the failure of blastocyst formation. The RHO-
associated coiled-coil-containing protein kinase (ROCK), associated
with cell migration and adhesion, vesicular trafficking, and
cytoskeletal dynamics, is involved in apicobasal cell polarity
proteins maintenance (Marikawa and Alarcon, 2018), and the
regulation of angiomotin (AMOT) localization (Mihajlović and
Bruce, 2016). AMOT is a scaffolding protein involved in cell-cell
junctions. As an activator of the Hippo pathway, it is crucial for the
specification of TE and ICM cells in the mouse blastocysts (reviewed
in: Mihajlović and Bruce, 2017). Interestingly, recently published
data on mouse and human embryos indicate that there is a tight link
between actomyosin contractility, lamin-A, a component of the
nuclear lamina, and AMOT stability (Skory et al., 2023). Nuclear
lamina is linked to the blastomere cortex via an F-actin network. As
actomyosin contractility increases during embryo development,
lamin-A levels rise as well. However, in cells that underwent
internalization in compacted embryos and lost their apical,
actomyosin-rich domain, lamin-A becomes downregulated. This
leads to the relocalization of actin nucleators from the nucleus to the
cytoplasm and an increase in cytoplasmic F-actin. In consequence,

FIGURE 3
Atomic force spectroscopy. (A) Atomic force spectroscopy setup diagram. Details in the main text. (B) Force-distance curve analysis to measure the
viscoelastic properties of a material. 1) The cantilever tip approaches the sample until it makes contact, and the force at the interaction between the tip
and the sample is measured; 2) the tip is further compressed into the sample, deforming its surface, the forces acting on the tip during compression are
recorded, allowing for calculation of the surface stiffness; 3) the tip is retracted from the sample surface. Forces acting on the tip as it moves away
from the sample are measured allowing for calculation of surface adhesion.
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AMOT is stabilized and YAP, a key transcription coregulator
involved in cell lineage differentiation, undergoes
phosphorylation (Hippo pathway activated). Active Hippo
pathway directs inner cells towards the ICM fate. By contrast, in
outer cells, lamin-A levels are upregulated. This destabilizes AMOT
and prevents YAP phosphorylation (Hippo pathway inactive),
promoting TE cell fate (Skory et al., 2023).

A critical and final event in preimplantation development is the
formation of a blastocyst cavity, in which the radial symmetry of the
embryo is broken. In mouse, the apicobasal polarity of outer TE
permits the formation of an osmotic gradient that draws water from
the external environment via the apical compartment of blastomeres
(Eckert et al., 2004; Madan et al., 2007; Moriwaki et al., 2007) into
the basal intercellular regions sealed by tight junctions (Zenker et al.,
2018). Such fluid accumulation is driven by the secretion of
cytoplasmic actin-coated vesicles into the intercellular space
(Ryan et al., 2019). Hundreds of microlumens form throughout
the mouse embryo between cell-cell contacts by hydraulic fracturing,
directed by cadherin reorganization (Dumortier et al., 2019). Some
microlumens also display enrichment of the apical marker,
phosphorylated ezrin-radixin-moesin complex (Ryan et al., 2019).
Microlumens show a swelling phase followed by a siphoning of all
the fluid to a single cavity, guided by actomyosin contractions
(Dumortier et al., 2019; Schliffka et al., 2023).

Existing data clearly indicate that TE functionality depends on the
quality of its cytoskeleton and intracellular junctions that determine the
epithelial character of this layer. Additionally, the expression and
activity of proteins transporting ions, thus allowing for osmotic
gradient formation and consequent cavitation (Bazer et al., 2009;
Posfai et al., 2019), also play an important role in TE functioning.
These factors are associated with the biomechanical properties of
TE cells. It has been shown that inhibition of Na+/K+ pumps or
claudins in tight junctions affects the CT of TE cells (Chan et al.,
2019). Decreased TE cell tension also coincides with the disassembly of
vinculin from tight junctions and disrupts tight junction seal integrity
(Chan et al., 2019). Vinculin has been shown to regulate traction force
transmission via myosin contractility-dependent adhesion (Dumbauld
et al., 2013). Additionally, actin filament remodeling, required to form a
sealed TE epithelium, is tension-sensitive (Zenker et al., 2018).
Interestingly, it has been shown in mouse embryos that mechanical
stretching, typical for TE cells during cavity expansion, facilitates Cdx2
expression (Watanabe et al., 2017).Cdx2 expression is a prerequisite for
TE function (although not always for early stages of TE differentiation)
in mice, humans, and domestic animals (reviewed in: Piliszek and
Madeja, 2018; Posfai et al., 2019). Notably, keratins have been recently
proven to be another regulator of TE fate in both mouse and human
embryos: they enhance apical polarity and Cdx2 expression in outer
cells (Lim et al., 2020). Although keratin knockouts display trophoblast
fragility, placental bleeding, and lethality after implantation (Baribault
et al., 1993; Hesse et al., 2000; Tamai et al., 2000), depletion of keratins
8 and/or 18 (i.e., variants that are themost abundant in preimplantation
embryos; Lu et al., 2005) does not lead to severe phenotypes up to
blastocyst stage, either in mice or in cattle (Goossens et al., 2010; Lim
et al., 2020). Interestingly, in mouse embryos, keratin 8/18-knockdown
cells display a reduced nuclear expression of YAP (required for Cdx2
transcription) and CDX2 itself in TE cells.

Immediately prior to implantation, blastocysts hatch from the
zona pellucida, exposing the TE, which attaches to the endometrial

epithelium of the uterus. Blastocyst attachment initiates a complex
cascade of events that lead to the implantation and development of a
placenta. Importantly, implantation requires functional TE (Bazer
et al., 2009; Aplin and Ruane, 2017; Posfai et al., 2019) and failure in
implantation is the main source of reproduction loss in mammals,
including humans and cattle (Aplin and Ruane, 2017; D’Occhio
et al., 2020).

In summary, it is clear that the biomechanical properties of
embryos are highly associated with their developmental potential.
By gaining insights into how biomechanical factors influence the
formation and quality of embryos, and their subsequent
implantation, researchers can set forth noninvasive and robust
methods of assessing such properties which could help ART
practitioners make more informed decisions when selecting
embryos for transfer.

5 Quality assessment based on embryo
biomechanical properties

Time-lapse recordings used for classical morphogenetic analysis
of preimplantation embryos, if only covering cavitation and
blastocysts expansion events, may be applied for the assessment
of the biomechanical properties of TE. Mouse blastocysts with
inhibited actomyosin contractility, Na+/K+ pumps, or perturbed
tight junctions displayed a slower expansion rate (Chan et al.,
2019). Moreover, it has been shown in mouse embryos that
experimentally reduced cavity size and hydraulic pressure inside
the cavity are associated with the increased number of ICM cells and
perturbed specification and spatial separation of ICM lineages (EPI
and PE; Chan et al., 2019; Ryan et al., 2019). Analysis of the extent of
blastocyst expansion has been shown to be a predictor of pregnancy
success in human embryos (Du et al., 2016), and expansion kinetics
have been related to a human embryo’s ploidy: euploid embryos
expanded faster than aneuploid embryos (Huang et al., 2019). The
rate of blastocoel re-expansion in frozen-thawed embryos also has
been associated with pregnancy likelihood in both humans and
domestic animals (Leoni et al., 2008; Yin et al., 2016; Ebner et al.,
2017; Lin et al., 2017; Zhao et al., 2019). Interestingly, the rate of
human blastocyst re-expansion correlates with the number of
TE cells (Iwasawa et al., 2019). This observation has also been
confirmed in mouse embryos: smaller blastocyst size is associated
with slower blastocoel expansion (Chan et al., 2019).

Blastocyst cavity volume tends to oscillate during the expansion
period, undergoing contraction-expansion cycles (Figure 4). This
feature seems to be an intrinsic property of the blastocysts in all
animals examined, including humans (Niimura, 2003; Huang et al.,
2016), and is associated with waves of mitotic divisions in TE and
increasing TE cortical tension (Chan et al., 2019). However, the
interpretation of these contraction-expansion cycles in terms of
embryo quality is ambiguous. It has been reported that human
blastocysts that transiently collapsed have less potential to give rise
to pregnancy (Marcos et al., 2015; Gazzo et al., 2020; Sciorio et al.,
2020) and are characterized by higher aneuploidy odds (Gazzo et al.,
2020). Others have claimed that the occurrence of blastocyst collapse
is not an independent predictor of reduced live birth rate (Bodri
et al., 2016). It has been shown that mouse blastocysts exhibiting
stronger contractions of the lumen are less likely to hatch (Shimoda
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et al., 2016). Moreover, unusually frequent blastocoel contractions in
mouse embryos can be caused by aberrant intracellular junctions in
TE (Togashi et al., 2015). While the interpretation of contraction-
expansion cycles in blastocysts remains inconclusive, monitoring
cavitation dynamics might provide useful insights into the quality of
blastocyst cytoskeleton as well as the functionality of intracellular
junctions and proteins involved in filling blastocoel with fluid.
Further research is essential to validate the efficacy of such an
approach and its potential for application in ART.

PIV-based analysis of cytoplasmic movement in blastomeres is yet
anothermethod to provide insights into the biomechanical properties of
embryos. Cytoplasmic motion reflects the reorganization of cytoskeletal
elements that are key for the movement of signaling vesicles, and, as
described above, for both compaction and cavitation (Coumailleau
et al., 2009; Derivery et al., 2015; Zenker et al., 2017). The reorganization
of the actinomyosin cytoskeleton can be observed with PIV analysis
(Özgüç et al., 2022), and holds promise as a means to monitor and
assess the dynamics of these crucial phases in preimplantation embryo
development. Additionally, the analysis of cytoplasmic velocity with the
PIV algorithm could be applied in TE cells (Figure 1), where it is
associated with the functionality of keratin cytoskeleton, crucial for
subsequent implantation: keratin-depleted TE cells have a more mobile
(less “rigid”) cytoplasm (Lim et al., 2020).

Keratin 8/18 depletion also increased the apical curvature of
TE cells, which is indicative of lower apical tension (Lim et al., 2020).
Therefore, microaspiration or indentation methods may help in
detecting embryos with keratin defects. Interestingly, in mice, CT of
TE cells is associated with the embryo size at least at the early

blastocyst stage: smaller embryos (obtained by dissection of the
whole embryo in halves or quarters) display higher CT (Chan et al.,
2019). Therefore, measuring the CT of cells could provide
information on the functionality of the cellular cytoskeleton,
intracellular junctions, and ion pumps required for cavitation in
TE cells (Chan et al., 2019; Lim et al., 2020).

6 Summary

This review offers a comprehensive overview of the molecular
mechanisms that underlie the biomechanical properties of oocytes
and embryos, along with the potential noninvasive techniques for
assessing those properties. Our intent is to bridge the gap between
scientific research and practical applications, providing a
background for the suitability of the proposed techniques in the
context of ART.

As highlighted here, cytoskeletal proteins play a pivotal role in
determining the developmental potential of oocytes and embryos.
Cytoskeleton, particularly its actomyosin component, governs key
intracellular processes such as cell cycle progression or organelle
trafficking, and intercellular processes such as compaction and
cavitation. Elucidating biomechanical biomarkers characterizing a
high-quality oocyte and properly developing preimplantation
embryo with functional TE could provide a novel approach for
evaluating quality beyond conventional morphological assessment.
We draw attention to promising techniques, such as analysis of
cytoplasmic movement or cavitation-related morphokinetic

FIGURE 4
Dynamics of blastocyst cavitation. The equatorial area of blastocysts (dashed line) is measured at (A) the onset of cavitation, (B) the time-point of
maximum expansion just before the first contraction, (C) the last phase of the first contraction, (D) the time-point of maximum expansion before the next
contraction, (E) the last phase of the contraction. Time points (hh:mm) indicate the time of imaging and correspond to the graph below (F). (F) A graph
representing oscillations of the blastocyst size over time. The arrows indicate the time points corresponding to the measurements in (A–E).
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parameters as well as cortical tension and elasticity measurements,
which may offer novel insights into oocyte and embryo viability.

The integration of biomechanical assessments into ART could
refine currently used procedures. Conventional methods of oocyte
and embryo evaluation based solely on morphological criteria have
limitations in predicting implantation and pregnancy rates
accurately. Biomechanical assessment provides a more
comprehensive understanding of oocyte and embryo quality,
potentially enhancing the selection of oocytes and embryos with
higher developmental potential. While some questions and
ambiguities persist, and further research and validation are
imperative to establish the reliability and effectiveness of these
techniques in a clinical setting, ongoing research in cellular
biomechanics holds great potential for enhancing the success
rates of fertility treatments.
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