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Gastric cancer (GC) is a tumor characterized by high incidence andmortality, with
metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs)
are an important intercellular communication medium. They contain bioactive
substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological
role in the process of GC metastasis. Through mechanisms such as remodeling
the tumor microenvironment (TME), immune suppression, promoting
angiogenesis, and facilitating epithelial–mesenchymal transition (EMT) and
mesothelial–mesenchymal transition (MMT), EVs promote invasion and
metastasis in GC. Further exploration of the biological roles of EVs will
contribute to our understanding of the mechanisms underlying GC metastasis
and may provide novel targets and strategies for the diagnosis and treatment of
GC. In this review, we summarize the mechanisms by which EVs influence GC
metastasis from four aspects: remodeling the TME, modulating the immune
system, influencing angiogenesis, and modulating the processes of EMT and
MMT. Finally, we briefly summarized the organotropism of GC metastasis as well
as the potential and limitations of EVs in GC.
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1 Introduction

Gastric cancer (GC) is one of the most prevalent tumors globally. According to the
2020 Global Cancer Epidemiology report, GC has the fifth highest incidence and the fourth
highest mortality (Sung et al., 2021). Metastasis is the leading cause of death in GC patients,
with more than 90% of GC-related deaths attributed to metastasis. Patients with GC
metastasis often survive less than 1 year (Orditura et al., 2014). Tumor metastasis follows
the theory of “seed” and “soil,” being influenced by both the characteristics of the primary
tumor cells and themicroenvironment of the metastatic site (Akhtar et al., 2019). The tumor
microenvironment (TME) refers to the complex environment composed of cells, stroma,
and molecular components surrounding the tumor, it plays an important role in the process
of GCmetastasis, promoting tumor cell dissemination through various mechanisms such as
immune response modulation, extracellular matrix remodeling, and angiogenesis
promotion (Tang et al., 2022). Epithelial-mesenchymal transition (EMT) refers to the
process in which epithelial cells lose their epithelial characteristics and acquire enhanced
mesenchymal features, resulting in a more invasive and migratory phenotype. Similarly,
mesothelial-mesenchymal transition (MMT) refers to the process in which mesothelial cells
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undergo changes in cell morphology and acquire characteristics of
mesenchymal cells. Both types of cellular transformation enhance
the invasive and metastatic capabilities of tumor cells, thereby
promoting tumor metastasis (Sandoval et al., 2013; Li et al.,
2023a). Tumor cell metastasis is also influenced by the immune
system. Under normal circumstances, tumor cells can be recognized
and eliminated by the immune system, inhibiting tumor
development. However, tumor cells can evade immune system
attacks through various mechanisms, thereby promoting tumor
metastasis (Becerril-Rico et al., 2021). Additionally, adequate
nutrient supply is essential for tumor growth and metastasis.
Neoangiogenesis provides a foundation for tumor growth and
metastasis, while vascular leakage provides more pathways for
tumor cell dissemination (Wang et al., 2022a). These factors
interact with each other, ultimately promoting GC metastasis.

Extracellular vesicles (EVs) are membrane-enclosed vesicles
released by cells, and they can be secreted by almost all cell
types. Their diameters typically range from 30 to 5,000 nm.
Generally, based on the size, origin, and functional characteristics
of EVs, they can be classified into different subtypes, including
exosomes, microvesicles, and apoptotic bodies (Kalluri and
McAndrews, 2023; Pourali et al., 2023). EVs were discovered as
early as the 1960s, but at that time, little was known about them
(Bonucci, 1967; Wolf, 1967; Anderson, 1969). Subsequent research
has shown that biological substances such as nucleic acids, proteins,
and lipids are found in EVs; they can interact with recipient cells,
transmit information, and alter the function and behavior of
recipient cells, playing a crucial role in intercellular
communication (Majood et al., 2022; Kalluri and
McAndrews, 2023).

Numerous studies have reported a close association between
EVs and GC metastasis. EVs exhibit a dual role in GC metastasis, as
they can both promote and inhibit GC metastasis. This may depend
on factors such as the cargos, origins, and characteristics of the
recipient cells of EVs (Kalluri and McAndrews, 2023). EVs can
influence GC metastasis through remodeling the TME, modulating
the immune system, influencing angiogenesis, and modulating the
processes of EMT andMMT (Gao et al., 2021a). Figure 1 and Table 1
summarize the relevant mechanisms by which EVs influence GC
metastasis. Previous studies have summarized the role of EVs in
promoting the formation of pre-metastatic niches in GC, whereas
this review focuses on systematically and comprehensively
summarizing the bidirectional regulatory role of EVs in GC
metastasis from the above-mentioned aspects, expanding our
understanding of the role of EVs in GC metastasis. The clinical
translation of this knowledge will be helpful for the early
treatment of GC.

2 EVs affect the metastasis of GC by
remodeling the TME

The TME refers to the complex ecosystem composed of cells and
the extracellular matrix surrounding the tumor. It includes
mesenchymal stem cells (MSCs), immune cells, cancer-associated
fibroblasts (CAFs), the extracellular matrix, and EVs, among others
(Majood et al., 2022). The TME plays a crucial role in GCmetastasis,
where processes like angiogenesis, immune evasion, tumor-related
inflammation, and matrix remodeling interact to promote the
dissemination of GC cells (Yang et al., 2023). Numerous studies

FIGURE 1
Extracellular vesicles (EVs) influence gastric cancer (GC) metastasis. EVs can promote GC metastasis to sites such as the liver, lungs, lymph nodes,
and peritoneum by remodeling the tumor microenvironment (TME), inhibiting the immune system, promoting angiogenesis, and facilitating
epithelial–mesenchymal transition (EMT) and mesothelial–mesenchymal transition (MMT). Figure was created with BioRender.com.
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TABLE 1 Mechanisms by which extracellular vesicles influence gastric cancer metastasis.

EVs cargos Targets Mechanism Roles Refs

miR-27a SGC7901 Downregulate CSRP2 Promote
metastasis

Wang et al. (2018)

Circ_0088300 SGC7901, BGC823 Target miR-1305/JAK/STAT axis Promote
metastasis

Shi et al. (2021)

lncRNA DACT3-AS1 HGC-27 Target miR-181a-5p/sirtuin 1 axis Inhibit metastasis Qu et al. (2023)

miR-139 HGC-27 Reduce the expression of MMP11 in the TME Inhibit metastasis Xu et al. (2019)

CD9 OCUM-12, NUGC-3 - Promote
metastasis

Miki et al. (2018)

miR-301b-3p SGC-7901 Inhibit TXNIP Promote
metastasis

Zhu et al. (2022a)

THBS2 MGC-803 and mice - Promote
metastasis

Qi et al. (2023)

miR-221 BGC-823, HGC-27, SGC-7901 - Promote
metastasis

Wang et al. (2014), Ma et al.
(2017)

miR-29b MKN-45, NUGC-4, Murine
model

Inhibit TGF-β1 to suppress MMT Inhibit metastasis Kimura et al. (2023)

miR-374a-5p AGS, HGC-27 Upregulate the expression of adhesion molecules in
GC cells by targeting HAPLN1

Promote
metastasis

Ji et al. (2023)

- HGC-27 Inducing EMT by activating the AKT signaling
pathway

Promote
metastasis

Gu et al. (2016)

CD44 AGS, HGC-27 Activate of ERK/PPARγ/CPT1A pathway increases
FAO activity in BM-MSCs, resulting in the secretion of
IL-8 and STC1

Promote
metastasis

Huang et al. (2023b)

LINC01559 AGS, HGC-27 Sponge miR-1343-3p to upregulate PGK1 and
downregulate PTEN, therefore activate PI3K/AKT
pathway

Promote
metastasis

Wang et al. (2020)

UBR2 P53mBMMSC, MFC Regulate Wnt/β-catenin pathway Promote
metastasis

Mao et al. (2017)

L-PGDS SGC-7901, murine model Reduce the expression of stem cell markers, inhibit
STAT3 phosphorylation

Promote
metastasis

You et al. (2022)

HMGB1 OCUM-1 and MGC-803 Induction of M2-like polarization of macrophages by
inhibiting the NF-κB pathway

Promote
metastasis

Liu et al. (2023)

ELFN1-AS1 THP-1 Induce M2 polarization of macrophages by ELFN1-
AS1/miR-4644/PKM axis

Promote
metastasis

Ma et al. (2023a)

- M0-M, M0-GM Induce M2 polarization of macrophages via the
STAT3 pathway

Promote
metastasis

Ito et al. (2021)

miR4435-2HG MKN-45, AGS, mice Promote M2 polarization of macrophages by
regulating Jagged1/Notch and JAK1/STAT3 axes

Promote
metastasis

Li et al. (2022)

miR-519a-3p THP-1, mice Activate theMAPK/ERK pathway by targeting DUSP2,
thereby causing M2-like polarization of macrophages

Promote
metastasis

Qiu et al. (2022)

miR-92a-3p BMDM Induce macrophage PD-L1 expression by activating
ERK signaling via inhibiting PTEN expression in
BMDM

Promote
metastasis

Gu et al. (2023)

hsa_circ_0017252 THP-1, mice Inhibit macrophage M2 polarization by sponging miR-
17-5p

Inhibit metastasis Song et al. (2022)

- AGS, HGC27 Activate the P38MAPK pathway and upregulate the
expression of PD-L1

Promote
metastasis

Wang et al. (2021a)

ApoE MGC-803, MFC, mice Activate PI3K/AKT/mTOR signaling pathway Promote
metastasis

Zheng et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Mechanisms by which extracellular vesicles influence gastric cancer metastasis.

EVs cargos Targets Mechanism Roles Refs

TGF-β1 Naïve T cells Induce naïve T cells’ transition to FOXP3 regulatory
T cells that mediate immunosuppressive effect

Promote
metastasis

Yen et al. (2017)

- CD8 T cell, mice Increases frequency of effector memory CD4 T and
MDSC, decreases CD8 T cell and NK frequency,
developing an immunosuppressive TME

Promote
metastasis

Liu et al. (2020)

- Neutrophils Induce autophagy and pro-tumor activation of
neutrophils via HMGB1/TLR4/NF-κB signaling

Promote
metastasis

Zhang et al. (2018a)

miR-1246 Mice, AGS, HGC-27 Promote PD-L1 expression and CD8+ T cell apoptosis
by downregulating GSK3β

Promote
metastasis

Lu et al. (2023)

miR4435-2HG MKN-45, AGS, mice Promote M2 polarization of macrophages by
regulating Jagged1/Notch and JAK1/STAT3 axes,
promote EMT

Promote
metastasis

Li et al. (2022)

miR-552-5p SGC-7901, AGS, mice Promote EMT by interfering with the PTEN/
TOB1 axis

Promote
metastasis

Zhu et al. (2022b)

miR-223 SGC-7901 Induce EMT by targeting the PTEN-PI3K/AKT
pathway

Promote
metastasis

Zheng et al. (2020)

LncRNA HOTAIR NCI-N87, MKN45 Regulate the expression of EMT-related proteins Promote
metastasis

Chen et al. (2023b)

LncRNA ZFAS1 MKN28 - Promote
metastasis

Pan et al. (2017)

LncRNA PCGEM1 AGS, MKN45 Maintain stability and reduce the degradation of
SNAI1, which could promote the EMT

Promote
metastasis

Piao et al. (2021)

LINC01480 AGS, NCI-N87 and mice Upregulation of VCAM1 expression promotes EMT by
binding to miR-204-5p

Promote
metastasis

Zhang et al. (2023a)

FRLnc1 HGC-27, MKN45 Activate ERK signaling pathway to promote the EMT Promote
metastasis

Zhang et al. (2021a)

LINC00355 AGS Interact with HDAC3 to suppress
TP53INP1 transcription, which promotes EMT

Promote
metastasis

Zhao et al. (2023)

miR-196, miR92,
miR1307

HGC-27, AGS, mice Induce EMT by promoting the expression of EMT-
related proteins

Promote
metastasis

Hu et al. (2019)

miR-423-5p SGC-7901, HGC-27 Suppress the expression of the SUFU to promote EMT Promote
metastasis

Yang et al. (2018)

miR-301a-3p MGC-803, MKN-45 Promote EMT via MiR-301a-3p/PHD3/HIF-1α
positive feedback loop

Promote
metastasis

Xia et al. (2020)

TRIM3 MGC-803, SGC-7901, mice Downregulate the EMT regulators to induce the EMT Inhibit metastasis Fu et al. (2018)

GKN1 AGS, MKN1, tumor tissue Inhibit EMT by regulating EMT-related protein
expression

Inhibit metastasis Yoon et al. (2020)

miR-486-5p HMrSV5 Inhibit EMT by downregulating SAMD2, CDK4 and
ACTR3

Inhibit metastasis Lin et al. (2021)

circ-ITCH HGC-27, MGC-803, MKN-45 Inhibit EMT via regulating circ-ITCH/miR-199a-5p/
Klotho axis

Inhibit metastasis Wang et al. (2021b)

MMP2 MGC-803, HMrSV5 Activate the MAPK/ERK signaling to induce MMT Promote
metastasis

Deng et al. (2017)

miR-106a HMrSV5, abdominal tumor
model

Induce MMT via targeting Smad7 Promote
metastasis

Zhu et al. (2022c)

miR-21-5p HMrSV5, mice Induce MMT by activating TGF-β/Smad pathway via
target SMAD7

Promote
metastasis

Li et al. (2018)

SNHG2 AGS, mice Sponge miR-129-5p to boost E2F7 expression and
activate the MAPK/ERK signaling, thus induce MMT

Promote
metastasis

Zhang et al. (2022a)

(Continued on following page)
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TABLE 1 (Continued) Mechanisms by which extracellular vesicles influence gastric cancer metastasis.

EVs cargos Targets Mechanism Roles Refs

miR-519a-3p HUVEC Activate theMAPK/ERK pathway by targeting DUSP2,
thereby inducing angiogenesis

Promote
metastasis

Qiu et al. (2022)

miR-29a/c HUVEC, mice Inhibit angiogenesis by suppressing VEGF expression Inhibit metastasis Zhang et al. (2016)

GRP78 HUEhT-1cells Induce angiogenesis by increasing AKT
phosphorylation

Promote
metastasis

Iha et al. (2022)

circ29 HUVEC Induce angiogenesis by sponging miR-29a to regulate
the VEGF pathway

Promote
metastasis

Li et al. (2021)

ANG2 HUVECs, mice Induce angiogenesis by activating the PI3K/Akt signal
pathway

Promote
metastasis

Kalfon et al. (2022)

circ-RanGAP1 HGC-27 Sponge miR-877-3p to upregulate VEGFA expression Promote
metastasis

Lu et al. (2020)

circSHKBP1 BGC823, HGC27, mice Regulate the miR-582-3p/HUR/VEGF axis Promote
metastasis

Xie et al. (2020)

circFCHO2 HGC-27, AGS Activate the JAK1/STAT3 pathway via sponging miR-
194-5p to induce angiogenesis

Promote
metastasis

Zhang et al. (2022b)

HGF siRNA HUVEC, mice Inhibit angiogenesis by suppressing HGF/VEGF
expression

Inhibit metastasis Zhang et al. (2018b)

- HUVEC, mice Disrupt the endothelial barrier to promote the
transendothelial migration of tumor cells

Promote
metastasis

Wang et al. (2022b)

Abbreviations: TME, tumor microenvironment; MMT, mesothelial–mesenchymal transition; GC, gastric cancer; EMT, epithelial–mesenchymal transition.

FIGURE 2
Extracellular vesicles (EVs) derived from cancer-associated fibroblasts (CAFs) and mesenchymal stem cells (MSCs) in the tumor microenvironment
(TME) regulate gastric cancer (GC) metastasis through relevant mechanisms. Figure was created with BioRender.com.
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have reported that EVs modulate the TME through various
pathways, influencing the invasive and migratory abilities of
tumor cells and ultimately leading to tumor metastasis. Among
these, EVs derived from CAFs and MSCs exhibit important
regulatory effects on the TME. Figure 2 depicts the relevant
mechanisms by which EVs remodel the TME to influence GC
metastasis.

2.1 The impact of CAF-derived EVs on
the TME

CAFs are important components of the TME and can originate
from various precursors, including normal fibroblasts, MSCs, and
pericytes (Ning et al., 2018). CAFs possess multiple cellular
functions, including extracellular matrix deposition, metabolic
reprogramming, and chemoresistance, therefore, they play a
significant role in tumor metastasis (LeBleu and Kalluri, 2018;
Huang et al., 2023a). The oncogenic gene, miR-27a, can induce
fibroblast reprogramming into CAFs, and is overexpressed in GC-
derived EVs. Additionally, overexpression of miR-27a in CAFs can
enhance the metastatic behavior of GC cells by downregulating
CSRP2, thereby assisting tumor cells both in vitro and in vivo
during migration and invasion, but its downstream mechanisms
are still unclear (Wang et al., 2018). Human GC tissues and plasma
significantly overexpress circ_0088300 and circ_0088300 from
CAF-derived EVs sponged to miR-1305, leading to
downregulation of the JAK/STAT pathway and facilitating tumor
metastasis in GC cells (Shi et al., 2021). However, Qu et al. reported
that CAF-derived EVs carrying the disheveled binding antagonist of
beta catenin3 antisense1 were found to suppress the malignant
transformation of GC cells, including migration and invasion, by
targeting the miR-181a-5p/sirtuin 1 axis. Additionally, they
increased the sensitivity of GC cells to oxaliplatin (Qu et al.,
2023). Similarly, Xu et al. reported that EVs derived from CAFs
carriedmiR-139, which suppressed the metastasis of GC by reducing
the expression of matrix metalloproteinase 11, both in vivo and
in vitro within the TME (Xu et al., 2019). In addition, EVs derived
from CD9-positive CAFs significantly stimulated the metastasis of
scirrhous-type GC cells, and CD9-positive GC patients had
significantly lower 5-year survival, when compared with CD9-
negative GC patients. However, the specific molecular
mechanisms by which these EVs promote GC cell metastasis are
not yet fully understood (Miki et al., 2018).

2.2 The impact of MSC-derived EVs on
the TME

MSCs are another important component of the TME, and play a
crucial regulatory role in the occurrence and development of
tumors, involving anti-cancer effects, regulation of angiogenesis,
and anti-apoptosis functions (Kolf et al., 2007; Kidd et al., 2009; Ho
et al., 2013; Li et al., 2020a). EVs have also been recently found to
play a crucial role in tumormetastasis, particularly EVs derived from
MSCs, which have gained increasing attention (Zhao et al., 2021;
Zhu et al., 2022a; Qi et al., 2023). The overexpression of miR-221 is
significantly associated with advanced tumor lymphatic metastasis

(Liu et al., 2012), and a study reported that MSC-derived EVs
delivered miR-221 to GC cells and promoted their metastasis
(Wang et al., 2014). Several studies have also reported that MSC-
derived EVs can effectively influence the TME and tumor metastasis
through the delivery of miRNAs (Ma et al., 2017; Ji et al., 2023;
Kimura et al., 2023). Gu et al. found that MSC-derived EVs induced
EMT through the AKT pathway, thereby enhancing the metastasis
of GC, however, the key cargoes within these EVs still need to be
identified (Gu et al., 2016). Fatty acid oxidation (FAO) in stromal
cell metabolic reprogramming plays an important role in tumor
metastasis. EVs carrying CD44 derived from GC cells with lymph
node metastasis increased FAO activity in Bone marrow-derived
MSCs (BM-MSCs) by activating the ERK/PPARγ/CPT1A pathway,
resulting in the secretion of IL-8 and STC1, and promoting lymph
node metastasis (Huang et al., 2023b). In addition, Mao et al.
reported that MSC-derived EVs carrying LINC01559 activated
the PI3K/AKT pathway to enhance the migration of GC cells
(Wang et al., 2020). EVs secreted by p53-deficient BM-MSCs can
transport ubiquitin protein ligase E3 component n-recognin 2 to
GC cells and p53 wild-type BM-MSCs, to reprogram cells in the
TME and promote GC metastasis by activating the Wnt/β-catenin
pathway, but its underlying mechanisms have not been elucidated
yet (Mao et al., 2017). MSC-derived EVs can promote GC
metastasis, and can also inhibit it. You et al. generated EVs-
lipocalin-type prostaglandin D2 synthase (L-PGDS) by
transfecting MSCs with an adenovirus encoding L-PGDS. EVs-L-
PGDS inhibited the migration and invasion of GC cells and induced
apoptosis (You et al., 2022).

3 EVs influence the metastasis of GC by
modulating immune responses

The process of tumor metastasis is intricately linked to the
body’s immune system. To metastasize, tumor cells must evade
immune surveillance and escape from the killing mechanisms of the
seeding organs (Fan et al., 2020). Immune cells such as
macrophages, neutrophils, and T cells can recognize and
eliminate tumor cells, preventing or delaying further tumor
spread. Additionally, immune cells can produce cytokines and
chemokines that regulate the TME and influence the invasive
and metastatic abilities of tumor cells (Khan et al., 2023). EVs
participate in cell communication by transporting and delivering
bioactive substances such as nucleic acids and proteins, to regulate
the function of immune cells and influence tumor metastasis (Joyce
et al., 2016; Zhang et al., 2020). Figure 3 depicts the relevant
mechanisms by which EVs modulate the immune system to
influence GC metastasis.

Macrophages are one of the most important components of the
immune system. They exist in two subtypes: M1, which inhibits
tumor development, and M2, which promotes tumor development.
M2 macrophages can alter the TME, promoting the invasion and
migration of tumor cells and providing support for tumor cells
metastasis (Chen et al., 2023a; Liu et al., 2023). Increasing evidence
suggests that EVs can interact with macrophages, induce
M2 polarization of macrophages, and promote the metastasis of
GC (Ma et al., 2023a). A study reported that EVs derived from GC
induced M2 polarization of macrophages through the
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STAT3 pathway; M2-polarized macrophages secrete IL-6 to
promote the migration of GC cells, leading to peritoneal
metastasis of GC, but the cargoes that play a key role in these
EVs are still unclear (Ito et al., 2021). Li et al. reported that miR4435-
2HG from GC-derived EVs promoted M2 polarization in
macrophages through the Jagged1/Notch and JAK1/STAT3 axis,
leading to the metastasis of GC (Li et al., 2022). In the study by Qiu
et al., miR-519a-3p from GC-derived EVs was found to accumulate
mainly in the liver, and EVs enriched with miR-519a-3p stimulated
the MAPK/ERK pathway by targeting DUSP2, leading to
M2 polarization of macrophages; M2 polarized macrophages
accelerated liver metastasis of GC by promoting the formation of
pre-metastatic niches and by inducing angiogenesis in the liver.
Interestingly, phosphorylation of STAT3 has also been shown to be a
key factor in macrophage M2 polarization. However, whether
DUSP2 can also promote M2 polarization in macrophages by
regulating STAT3 phosphorylation still requires further
investigation (Qiu et al., 2022). Similarly, Gu et al. reported that
miR-92a-3p from GC-derived EVs accumulated in the lungs. These
EVs activated the ERK signaling pathway, induced immune-
suppressive phenotypic differentiation of macrophages, increased
PD-L1 expression, and promoted lung metastasis of GC.
Furthermore, inhibition of the ERK signaling pathway with
PD98059 significantly reduced PD-L1 expression in macrophages
and inhibited the colonization of GC cells in the lungs (Gu et al.,
2023). EVs can promote M2 polarization of macrophages, and can
also inhibit M2 polarization. A previous study reported that hsa_
circ_0017252 from GC-derived EVs effectively inhibited
M2 polarization of macrophages, thereby suppressing the

invasion and migration of GC cells (Song et al., 2022). In
addition to EVs derived from GC, EVs derived from
macrophages can also affect GC metastasis. A study reported that
EVs derived fromM2 macrophages enhanced the expression of PD-
L1 through the P38MAPK pathway, leading to immune escape and
promoting themetastasis of GC, however, the study failed to identify
the key cargoes in EVs and did not perform more in-depth
functional inhibition analysis (Wang et al., 2021a).
Apolipoprotein E (ApoE) is a protein with high specificity found
in EVs derived from M2-polarized macrophages. EVs secreted by
M2 tumor-associated macrophages transfer functional ApoE to
GC cells, resulting in activation of the PI3K-AKT signaling
pathway and remodeling of the cell cytoskeleton to support
migration, thereby promoting the metastasis of GC both in vitro
and in vivo (Zheng et al., 2018).

In addition to macrophages, neutrophils and T lymphocytes are
also important components of the immune system, and increasing
evidence suggests that EVs can affect GC metastasis by acting on
neutrophils and T lymphocytes. Transforming growth factor-β1
(TGF-β1) is an immunosuppressive cytokine produced by
immune and tumor cells. Yen et al. reported that overexpression
of TGF-β1 in EVs fromGC patients was associated with lymph node
metastasis, and further research has revealed that TGF-β1 in EVs
converted naive T cells into FOXP3 Treg cells in vitro, allowing
tumor cells to regulate immune surveillance, leading to lymph node
metastasis of GC (Yen et al., 2017). EVs derived from GC cells are
mainly absorbed by macrophages and NK cells in the lungs and
implanted in the lungs, so these EVs can alter the gene expression
and cytokine secretion levels of CD8 T cells, inducing apoptosis of

FIGURE 3
Extracellular vesicles (EVs) can influence gastric cancer (GC) metastasis by modulating immune cells such as macrophages and T cells. Figure was
created with BioRender.com.
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CD8 T cells. Prolonged exposure to GC-derived EVs leads to the
formation of an immunosuppressive TME in the lungs of mice,
resulting in a reduction of CD8 T cells, which promotes lung
metastasis of GC. Further research is needed to identify the key
cargoes that play a role in these EVs (Liu et al., 2020). Zhang et al.
reported that EVs derived from GC cells induced N2 polarization of
neutrophils by the HMGB1/TLR4/NF-κB signaling pathway,
promoting autophagy and tumor activation, and N2-polarized
neutrophils, in turn, promoted the metastasis of GC (Zhang
et al., 2018a). In addition, Lu et al. discovered the overexpression
of miR-1246 in GC-derived EVs. Mouse experiments have shown
that the overexpressed miR-1246 can promote lymphangiogenesis
and lymph node metastasis in vivo. Further research revealed that
miR-1246 promotes lymphangiogenesis and lymph node metastasis
by inhibiting GSK3β to enhance PD-L1 expression and induce CD8+
T cell apoptosis (Lu et al., 2023).

4 EVs affect the metastasis of GC
through EMT and MMT

4.1 EVs regulate the metastasis of GC by
modulating EMT

EMT is considered a driving force for tumor cells metastasis, and
is a significant contributor to cancer recurrence and metastasis
(Zheng et al., 2020; Zhu et al., 2022b). The loss of epithelial cell
markers (such as E-cadherin) and the acquisition of mesenchymal
cell markers (such as N-cadherin and vimentin) are two key steps in
EMT (Kimura et al., 2023). During EMT, tumor cells lose polarity of
epithelial cells and acquire mesenchymal-like motility, which
enhances their invasive and migratory abilities, which is
considered as the initial stage of tumor metastasis (Maharati and
Moghbeli, 2023). EVs can carry various bioactive molecules,

FIGURE 4
Extracellular vesicles (EVs) can influence gastric cancer (GC) metastasis by modulating the processes of epithelial–mesenchymal transition (EMT)
and mesothelial–mesenchymal transition (MMT). Figure was created with BioRender.com.
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including proteins, lipids, and nucleic acids, that can regulate EMT
by modulating gene expression, activating related signaling
pathways, and altering the TME, thereby influencing the
metastatic ability of GC (Pan et al., 2017; Piao et al., 2021; Zhang
et al., 2023a; Chen et al., 2023b). Figure 4 depicts the relevant
mechanisms by which EVs modulate EMT to influence GC
metastasis.

Forkhead box protein M1 (FOXM1) is an oncogene involved in
regulating tumor growth and metastasis. A study reported that
FOXM1-regulated long non-coding RNA (FRLnc1) was
significantly upregulated in serum EVs of GC patients, and a
significant association was found between FRLnc1 expression in
EVs and GC metastasis. Further research revealed that
FRLnc1 overexpression in EVs enhanced the activation of the
ERK pathway, downregulated E-cadherin, and upregulated Slug
and N-cadherin, promoting EMT in GC cells and facilitating GC
metastasis. However, further in vivo experiments are needed to
confirm this finding. In addition, the specific molecular
mechanisms by which FRLnc1 functions in GC metastasis also
need to be further studied (Zhang et al., 2021a). Zhao et al.
reported that the levels of LINC00355 in plasma EVs of GC
patients were significantly higher, when compared with healthy
patients, and LINC00355 was found to promote the metastasis of
GC cells. Further research revealed that EVs-derived
LINC00355 recruited HDAC3 to inhibit the expression of
tumor protein 53-induced nuclear protein 1, thereby promoting
EMT and resulting in the metastasis of GC (Zhao et al., 2023). Hu
et al. reported that EVs derived from malignant ascites of GC
patients promoted EMT signaling in GC cells and in a mouse
peritoneal tumor model, leading to peritoneal dissemination of the
tumor. Moreover, in a mouse peritoneal tumor model,
administration of malignant ascites-derived EVs resulted in a
significantly reduced median survival, when compared with the
control group, however, the molecular mechanisms by which EVs
promote peritoneal metastasis of GC has still not been fully
understood (Hu et al., 2019). Similarly, Yang et al. found a
significant correlation between the elevated expression levels of
miR-423-5p in serum EVs of GC patients and lymph node
metastasis. Further research revealed that miR-423-5p can
suppress the expression of the suppressor of fused protein
(SUFU), thereby promoting EMT to facilitate lymph node
metastasis in GC (Yang et al., 2018). Hypoxia is a typical
characteristic of the TME, and a hypoxic TME leads to changes
in tumor features such as angiogenesis, reprogramming of energy
metabolism, and immune evasion, resulting in tumor progression
(Bristow and Hill, 2008; Jain, 2014; Palazon et al., 2014). Xia et al.
reported that in the hypoxic TME, hypoxia-inducible factors 1α
increased the release of miR-301a-3p from GC-derived EVs, and
treatment of GC cells with these EVs resulted in upregulation of
mesenchymal cell markers (N-cadherin and vimentin) and
downregulation of epithelial cell markers (E-cadherin),
indicating that these EVs promoted tumor metastasis by
inducing EMT in GC cells (Xia et al., 2020). An additional
study reported that reducing GC-derived EVs altered the
molecular mechanisms associated with EMT signaling pathway
in GC cells, thereby reducing GC metastasis, particularly
peritoneal metastasis, which provided a new direction for the
treatment of GC patients (Shibamoto et al., 2022).

Not all EVs promote EMT and contribute to GC metastasis.
Tripartite motif-containing 3 (TRIM3) is a key regulator of tumor
cell development (Hatakeyama, 2011; Cambiaghi et al., 2012).
Compared to healthy patients, GC patients have decreased levels
of TRIM3 protein in serum EVs, and knockdown of TRIM3 in EVs
from GC patients can alter the expression of EMT-related factors
and promote GC metastasis. Conversely, in vivo studies have shown
that overexpression of TRIM3 in EVs can inhibit EMT and suppress
GCmetastasis (Fu et al., 2018). Gastric intrinsic factor 1 (GKN1) is a
gastric-specific tumor suppressor that maintains mucosal integrity
and regulates cell differentiation (Yoon et al., 2014; Xing et al., 2015;
Yoon et al., 2018). When GC cells were co-cultured with EVs rich in
GKN1, the expression of E-cadherin in GC cells increased, while the
expression of proteins such as N-cadherin significantly decreased,
suggesting that GKN1 derived from EVs inhibited GC metastasis by
suppressing EMT (Yoon et al., 2020). Studies have also shown that
biologically active substances such as miR-486-5p and circ-ITCH
delivered by EVs could inhibit the metastasis of GC by suppressing
EMT (Wang et al., 2021b; Lin et al., 2021).

4.2 EVs regulate the metastasis of GC by
modulating MMT

MMT refers to the process in which mesothelial cells acquire
characteristics of mesenchymal cells, allowing them to gain
increased invasiveness (Nakamura et al., 2015). The peritoneum
is composed of a monolayer of flat mesothelial cells and a thin layer
of submesothelial connective tissue, and the cohesive mesothelial
layer, when undamaged, acts as the primary defense against tumor
attachment (Mutsaers and Wilkosz, 2007). During MMT, as a
consequence of the dissociation from each other within the
monolayer, mesothelial cells lose their apical-basal polarity and
undergo reorganization of their actin cytoskeleton. In addition,
continuous submesothelial connective tissue is also disrupted
(Yáñez-Mó et al., 2003; Rynne-Vidal et al., 2015). MMT typically
occurs in the early stages of tumor cell peritoneal metastasis, through
MMT, the peritoneum can form a pre-metastatic niche, which
facilitates the adhesion and colonization of tumor cells (Sandoval
et al., 2013). Several studies have therefore reported that EVs could
mediate MMT and promote tumor metastasis (Zhu et al., 2020; Gao
et al., 2021b; Pascual-Antón et al., 2021). Figure 4 depicts the
relevant mechanisms by which EVs modulate MMT to influence
GC metastasis.

Deng et al. reported that matrix metalloproteinase 2 in EVs
could induce MMT and promote peritoneal metastasis of GC by
activating the ERK pathway and increasing the expression of
mesenchymal markers, such as vimentin and fibronectin in
GC cells (Deng et al., 2017). Previous studies reported that miR-
106a was significantly upregulated in GC andmay be associated with
GC development (Wang et al., 2013; Espinosa-Parrilla et al., 2014).
Zhu et al. conducted related studies and found that miR-106a was
overexpressed in GC-derived EVs. Stimulation with miR-106a
suppressed the expression of Smad7, leading to increased
expression of α-SMA and fibronectin in mesothelial cells, to
promote MMT and facilitate peritoneal metastasis of GC (Zhu
et al., 2022c). Li et al. also found that GC-derived EVs carrying
miR-21-5p induced MMT in GC cells through the TGFβ/Smad
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pathway, resulting in peritoneal metastasis of GC (Li et al., 2018). An
additional study reported that the long non-coding RNA small
nucleolar RNA host gene 12 (SNHG12) promoted peritoneal
metastasis of GC, and the levels of SNHG12 expression in EVs
derived from GC patients with peritoneal metastasis were
significantly elevated, when compared with those without
peritoneal metastasis. GC-derived EVs could deliver SNHG12 to
human peritoneal mesothelial cells, inducing MMT and further
promoting peritoneal metastasis of GC, and further studies showed
that SNHG12 promoted peritoneal metastasis through the miR-129-
5p/E2F7/MAPK/ERK axis (Zhang et al., 2022a).

5 EVs influence GC metastasis by
regulating angiogenesis

Tumor growth and metastasis rely on blood vessels to provide
sufficient oxygen and nutrients. Neoangiogenesis provides a new
blood supply to tumors, allowing tumor cells to obtain more oxygen
and nutrients. It also provides a pathway for tumor cell metastasis
using newly formed blood vessels; tumor cells can enter the
bloodstream or lymphatic system and spread to distant organs

and tissues (Nowosad et al., 2023; Yao and Zeng, 2023). Previous
studies reported that EVs delivered various bioactive substances
(such as miR-29, miR-10a-5p, circ29, and GRP78) to promote the
expression of vascular endothelial growth factor (VEGF), thereby
promoting angiogenesis (Zhang et al., 2016; Li et al., 2021; Zhu et al.,
2022d; Iha et al., 2022). In addition, EVs increase vascular
permeability, making it easier for tumor cells to cross the
endothelial barrier of blood vessels to provide increased
opportunities for tumor cell metastasis (Dou et al., 2021).
Figure 5 depicts the relevant mechanisms by which EVs regulate
angiogenesis to influence GC metastasis.

The expression of angiopoietin-2 (ANG2) is significantly
increased in GC-derived EVs. ANG2 can activate the PI3K/AKT
signaling pathway to regulate angiogenesis. Moreover, ANG2 is
upregulated in GC omental metastatic samples, indicating that
ANG2 may promote GC metastasis by regulating angiogenesis
(Kalfon et al., 2022). The circ-RanGAP1 is overexpressed in the
EVs from plasma of GC patients and GC tissues, and elevated
expression of circ-RanGAP1 is strongly correlated with the
prognosis of patients with GC. In addition, circ-RanGAP1 can
induce VEGFA expression by sponging miR-877-3p, to promote
angiogenesis and thereby facilitate GC metastasis. Further

FIGURE 5
Extracellular vesicles (EVs) can influence gastric cancer (GC) metastasis by inducing angiogenesis. Figure was created with BioRender.com.
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experimental and clinical studies are needed in the future to confirm
whether treatments targeting circ-RanGAP1 can be applied in
clinical settings (Lu et al., 2020). EVs enriched with
circSHKBP1 are upregulated in GC patients, and the level of
circSHKBP1 in EVs significantly decreases after GC surgery.
CircSHKBP1 promotes VEGF secretion and induces its
expression by sponging miR-582-3p, to promote angiogenesis,
leading to lung metastasis of GC (Xie et al., 2020). The
expression of miR-519a-3p in serum-derived EVs is significantly
elevated in GC patients with liver metastasis (LM), when compared
with those without LM. EVs derived from GC with overexpression
of miR-519a-3p primarily accumulate in the liver, and induce
M2 polarization of macrophages by targeting DUSP2 and
activating the MAPK/ERK pathway, while M2-polarized
macrophages accelerate GC-LM by inducing angiogenesis (Qiu
et al., 2022). CircFCHO2 enhances the progression of GC by
activating the JAK1/STAT3 signaling pathway by sponging miR-
194-5p, and silencing circFCHO2 weakens angiogenesis and cancer
stem cell characteristics in GC cells. In addition, in vivo studies have
shown that silencing circFCHO2 inhibited lung metastasis of GC
(Zhang et al., 2022b). A similar study reported that EVs containing
hepatocyte growth factor siRNA administered through tail vein
injection in mice effectively inhibited tumor angiogenesis (Zhang
et al., 2018b). EVs promote angiogenesis and increase vascular
permeability. Wang et al. reported that plasma levels of EVs in
mice with GC and lung metastasis were significantly higher than
those without lung metastasis, indicating that EVs may promote GC
metastasis. Further studies showed that EVs activated endothelial
cells and induced cytoskeletal reorganization through a dynamin-
dependent pathway, disrupting the endothelial barrier and inducing
vascular leakage, leading to lung metastasis of GC. However, the
specific mechanisms of action of these EVs and their key cargoes are
still unclear (Wang et al., 2022b).

6 Organotropism

With the introduction of Stephen Paget’s “seed and soil”
theory, it has been recognized that tumor metastasis is not
random but rather a selective process that targets specific
organs (Akhtar et al., 2019). This phenomenon is known as
organotropism in tumor metastasis. GC also exhibits
organotropism during the metastatic process, where GC cells
possess the ability to selectively migrate to certain organs such
as the lungs, liver, and peritoneum (Urabe et al., 2021; He et al.,
2023). This selective metastasis may be attributed to the affinity
of EVs released by GC cells for specific recipient cells. Hoshino
et al. discovered that EVs containing integrins can specifically
bind to recipient cells, thereby forming pre-metastatic niches and
promoting metastasis organotropism in GC (Hoshino et al.,
2015). Additionally, Qiu et al. found that EVs rich in miR-
519a-3p can induce M2-like polarization of macrophages
through the MAPK/ERK pathway, and M2-like polarized
macrophages facilitate the formation of pre-metastatic niches
in the liver, thereby inducing liver-specific metastasis in GC (Qiu
et al., 2022). Similarly, studies have indicated that EVs can
promote metastasis organotropism of GC to organs such as
the lungs and peritoneum (Li et al., 2018; Zhang et al., 2022a).

7 Perspectives and future directions

EVs serve as important intercellular communicationmediators and
have great potential in the field of oncology. EVs carry a diverse range of
biomolecules that can not only influence tumor growth and metastasis
but also serve as tumor markers for cancer diagnosis (Su et al., 2023).
Analyzing biomarkers within EVs released by tumor cells therefore
facilitates noninvasive tumor diagnosis and monitoring, compared to
conventional diagnostic methods, it has the advantages of being rapid,
cost-effective, and highly specific (Zhang et al., 2022c; Ma et al., 2023b).
For example, the detection of urinary 3-gene expression levels can
differentiate between high-grade and low-grade prostate cancer, as well
as benign prostate diseases (McKiernan et al., 2016). Additionally, EVs
can serve as carriers for drug or small interfering RNA (siRNA) delivery,
they can be engineered to possess specific targeting and drug delivery
functions. By encapsulating drugs or siRNA within EVs, their stability
and bioavailability can be enhanced, while reducing their side effects
(Kimura et al., 2023; Zeng et al., 2023). For example, Yu et al. discovered
that encapsulating VEGFR2 siRNA within EVs for the treatment of
lung metastasis in mice with osteosarcoma is a more efficient and less
toxic therapeutic approach (Yu et al., 2023). Similarly, EVs have
demonstrated great potential as efficient delivery vehicles for drugs
such as paclitaxel and gemcitabine, highlighting their significant role in
tumor therapy (Saari et al., 2015; Li et al., 2020b).

However, there are still some limitations in the current
application of EVs in tumors. First, obtaining a sufficient
quantity and quality of EV samples remains a challenge. The
current sample sources primarily include body fluids such as
saliva, urine, and blood, but the content of EVs in these fluids is
low, and there are many nonspecific EVs present, limiting the
accuracy and reliability of their applications (Zhang et al., 2022c).
Furthermore, EVs are highly complex particles whose composition
and function are influenced by various factors such as cell type, state,
and the environment. Accurate identification, isolation, and
purification of EVs remain challenging and require further
development of technologies and methods (Wu et al., 2021). The
emerging methods of EVs separation based on size and charge, as
well as single EV analysis techniques in recent years, may help to
address these issues (Ko et al., 2021; Zhang et al., 2023b; Chen et al.,
2023c). Third, despite extensive studies on the roles of EVs in
tumors, the specific mechanisms of action of EVs, especially the
signaling pathways, are still not fully understood. In future studies, it
is necessary to further explore the specific molecular mechanisms by
which EVs affect GC metastasis (Wang et al., 2022b). Finally,
although numerous studies have reported the mechanisms of EVs
during tumor metastasis, current research is mainly limited to cell
and animal experiments, how to apply these findings to the clinic
will be one of the key focuses of future work (Kalluri and
McAndrews, 2023).

8 Conclusion

This review focuses on summarizing the biological roles of EVs in
GCmetastasis from the following aspects. Firstly, EVs can affect the cell
interactions and signal transduction in TME by releasing bioactive
molecules, thus regulating the process of GC metastasis (Zhang et al.,
2021b; Li et al., 2023b). Secondly, themolecules released by EVs, such as
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metastasis-related proteins and non-coding RNAs, can regulate the
EMT andMMTofGC cells, enhance themetastatic ability of GC (Deng
et al., 2017; Babaei et al., 2022; Ang et al., 2023). In addition, immune
regulatory molecules contained in EVs can regulate tumor immune
escape and immune suppression, thus affecting the immune recognition
and clearance of GC cells and affecting their metastasis (Kiya et al.,
2023; Yi et al., 2023). Finally, the bioactivemolecules in EVs can regulate
the expression of vascular growth factors, thereby affecting the
formation of new blood vessels. The newly formed blood vessels not
only increase the blood supply and nutrition of GC cells but also
enhance their metastatic ability (Wang et al., 2022b; Qiu et al.,
2022). It is also worth noting that tumor metastasis is a multi-step
and complex process, and EVs often interact through previously
mentioned multiple pathways to influence GC metastasis, so a
thorough investigation of the mechanisms of EVs in GC metastasis
is crucial for GC. Although a growing body of studies has revealed the
biological roles of EVs in GC metastasis, challenges and limitations still
exist. With the development of technologies and research, our
understanding and application of EVs will continue to improve,
providing more options and opportunities for diagnosing and
treating GC.
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