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Functional selectivity refers to the activation of differential signalling and cellular
outputs downstream of the same membrane-bound receptor when activated by
two or more different ligands. Functional selectivity has been described and
extensively studied for G-protein Coupled Receptors (GPCRs), leading to
specific therapeutic options for dysregulated GPCRs functions. However,
studies regarding the functional selectivity of Receptor Tyrosine Kinases (RTKs)
remain sparse. Here, we will summarize recent data about RTK functional
selectivity focusing on how the nature and the amount of RTK ligands and the
crosstalk of RTKs with other membrane proteins regulate the specificity of RTK
signalling. In addition, we will discuss how structural changes in RTKs upon ligand
binding affects selective signalling pathways. Much remains to be known about the
integration of different signals affecting RTK signalling specificity to orchestrate
long-term cellular outcomes. Recent advancements in omics, specifically
quantitative phosphoproteomics, and in systems biology methods to study,
model and integrate different types of large-scale omics data have increased
our ability to compare several signals affecting RTK functional selectivity in a
global, system-wide fashion. We will discuss how such methods facilitate the
exploration of important signalling hubs and enable data-driven predictions
aiming at improving the efficacy of therapeutics for diseases like cancer, where
redundant RTK signalling pathways often compromise treatment efficacy.
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1 Introduction

Receptor Tyrosine Kinases (RTKs), including Fibroblast and Epidermal Growth Factor
Receptors (FGFR and EGFR, respectively), are plasma membrane-bound receptors that play
crucial roles during development and in adult tissue homeostasis by regulating several
biological processes like cell proliferation, migration, differentiation, and survival
(Sigismund et al., 2017; Wintheiser and Silberstein, 2021; Ornitz and Itoh, 2022). Upon
ligand binding, RTKs initiate signalling cascades which regulate such cellular responses, and
which include both canonical and non-canonical signalling players (Figure 1). For instance,
canonical signalling players include the MAPK, STAT3, and the PI3K-AKT signalling
pathways, whereas adhesion molecules are considered non-canonical regulators of RTK
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signalling (Ferguson et al., 2021). Dysregulation of signalling
cascades downstream of RTKs is one of the hallmarks of human
diseases, including genetic diseases and cancer, and signalling
molecules are among the known drug targets (Orrico, 2023).
However, how the cells commit to distinct cellular outputs by
regulating RTK signalling cascades in response to perturbations
is still a mystery. Uncovering how signalling specificity downstream
of RTKs is regulated will open new avenues for targeted therapies
for patients.

2 Functional selectivity

The activation of differential signalling and cellular outputs
downstream of the same membrane-bound receptor when

activated by two or more different ligands is known as functional
selectivity (Karl et al., 2020). Here, we will discuss recent
biochemical, cell biological, structural, computational, and
system-levels studies of functional selectivity in the context of
RTK signalling.

Functional selectivity has been extensively studied for G-protein
coupled receptors (GPCRs) to develop more fine-tuned drugs with
less side effects (Smith et al., 2018; Onaran and Costa, 2021).
However, studies on RTK functional selectivity remain sparse,
except for a few advances in the last decade concerning different
ligands binding to the same RTK and regulating specific signalling
outputs (Karl et al., 2020). Besides distinct ligands priming the
receptors for selective signalling pathways, other variables like ligand
concentrations in the extracellular environment and crosstalk
between RTKs or with other plasma membrane molecules can

FIGURE 1
Regulation of functional selectivity. (A) RTKs reside on the plasmamembrane and are exposed to several factors in the extracellular environment that
modulate their functions. Ligand identity and concentration as well as the crosstalk of RTKs with other molecules regulate RTKs signalling (exemplified by
PI3K/AKT, STAT3, MAPK) in space (early, late, recycling endosomes) and time (min vs. hours). RTK signalling specificity in turn determines the functional
outcomes of the cell (proliferation, migration, death). P, phosphorylation event. (B) Structural regulation of functional selectivity based on the
FGFR2b bound to its two known ligands FGF7 or FGF10 and to HSPGs. Different ligands induce different structural alterations that determine the PTMs
and downstream signalling. Receptors can dimerise independent of ligands.
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also mediate differential functional outcomes. The next sections will
consider how ligand identity, ligand concentration and other
molecules at the plasma membrane drive selective RTK
signalling. We will also discuss how functional selectivity is
regulated in space and time during receptor trafficking and by
RTK structural alterations (Figure 1).

2.1 Ligand identity

Upon binding to the same RTK, distinct ligands initiate specific
signalling cascades that lead to differential cellular outcomes (Sato
and Nakamura, 2004; Francavilla et al., 2013; Francavilla et al., 2016;
Watson et al., 2022) (Figure 1A, on the left). For example,
stimulating FGFR2 and EGFR with their cognate ligands
regulates distinct cellular outcomes like cell migration, cell
proliferation, or cell survival (Francavilla et al., 2013; Francavilla
et al., 2016; Watson et al., 2022). This biased signalling due to the
binding of distinct ligands to the same receptor was also observed in
other RTKs, such as in Insulin receptor family (Bareja et al., 2018).
Also different isoforms of ligands can differentially regulate cell
signalling, as shown for the two FGF8 isoforms FGF8a and FGF8b,
which induces proliferation and differentiation, respectively (Sato
and Nakamura, 2004). How ligand identity affects such diversity of
signalling outputs is still unknown. Several mechanisms have been
suggested, including distinct binding affinity of each ligand to their
cognate RTKs; regulation of receptor localisation and post-
translational modifications (PTMs); and assembly of specific
signalling complexes (Olsen et al., 2006; Zhang et al., 2006;
Francavilla et al., 2013; Francavilla et al., 2016) (https://www.
biorxiv.org/content/10.1101/2023.09.13.557663v1). For instance,
using quantitative phosphoproteomics to analyse global changes
of FGFR or EGFR signalling in response to their distinct ligands, it
has been shown that distinct PTM profiles on the receptors or on
their signalling adaptors drive the assembly of signalling complexes
to regulate receptor localization and ultimately cell fate (Francavilla
et al., 2013; Francavilla et al., 2016; Smith et al., 2021; Watson et al.,
2022). As the dysregulation of the balance between cellular outputs
is a hallmark of different diseases, including cancer (Hanahan,
2022), functionally selective RTK signalling holds the promise for
the development of improved cancer therapeutics. Therefore, more
studies need to be conducted on ligand-receptor relationships
through the lens of functional selectivity.

2.2 Ligand concentration

Regulation of cellular fate, particularly during development,
depends on the concentration gradient of morphogens, including
ligands for different RTKs (Stapornwongkul and Vincent, 2021;
Yang et al., 2023). Several studies suggest that concentration-
dependent signalling is regulated by a switch-like mechanism,
whereby cells respond to extracellular cues only past certain
concentration thresholds (Greenfeld et al., 2021; Johnson et al.,
2021; Thiemicke and Neuert, 2023). This has been shown for BPM
and FGF signalling during early phase of development (Serls et al.,
2005; Greenfeld et al., 2021). Consistent with this idea, altering the
concentration of the ligands for FGFR or EGFR can “switch” one

signalling pathway or cellular outcome to a different outcome (Sato
and Nakamura, 2004; Sigismund et al., 2013; Zinkle and
Mohammadi, 2018) (https://www.biorxiv.org/content/10.1101/
2023.09.13.557663v1) (Figure 1A, on the right). This explains the
tight regulation of RTK ligand availability observed in the
extracellular matrix under physiological conditions
(Thotakura et al., 2019). Indeed, in the case of FGFR ligands
binding with low affinity to the Heparan Sulphate Proteoglycans
(HSPGs) in the extracellular matrix, an increase in affinity due to
changes in the sulphation level of HSPGs, turns a shallow into a
steeper one resulting in epithelial cell elongation, but not
branching (Makarenkova et al., 2009). Furthermore, a switch-
like mechanism provides cells with a degree of buffering,
ensuring that stochastic fluctuations in ligand concentration
do not initiate unwanted and yet potent mitogenic signalling
cascades (Yang et al., 2023). Considering that aberrant RTK
ligand concentrations play an important role in cancer (Sharpe
et al., 2011), this buffer system is either lost or overloaded,
leading to uncontrolled mitogenic signalling. Therefore, more
efforts are necessary to uncover the molecular mechanisms
integrating the responses to ligand identity and
concentration, with the aim of controlling selective cellular
outputs in health and diseases.

2.3 Other molecules

An added layer to the RTK signalling complexity is their
interplay with other receptors and molecules within the ECM,
such as adhesion molecules, integrins and HSPGs (Ferguson
et al., 2021) (Figure 1A, in the middle). The crosstalk between
different families of RTKs, for instance between FGFR and EGFR,
has been described in several cancer cell models with a role in
regulating the balance between cellular outputs like cell proliferation
and cell motility (Kunii et al., 2008; Smith et al., 2021). This
redundant mechanism regulating mitogenic signalling
downstream of different RTKs may be exploited in clinical
settings, where targeting multiple RTKs in concert produce better
clinical outcomes than single target strategies (Quintanal-Villalonga
et al., 2019; Le et al., 2021). RTKs are also known to heterodimerize
and interact with other receptor classes (Latko et al., 2019; Chen
et al., 2023a). For example, elucidation of GPCR-RTK crosstalk has
provided with novel targets for the development of
psychotherapeutics (Di Liberto et al., 2019). RTK crosstalk with
integrins or adhesion molecules was shown to be essential for the
control of EGFR or FGFR localization on the plasma membrane and
after internalization, which in turn regulates cell migration (Caswell
et al., 2008; Francavilla et al., 2009). More recently, it has been shown
that also the crosstalk between FGFR2 and EGFR regulates the
balance between cell proliferation and migration when the two
receptors interact on the recycling endosomes after
internalization (Smith et al., 2021). Together with data showing
functional interaction of FGFR with cell-surface molecules like
NCAM, galectin, and anosmin 1 (Gonzalez-Martinez et al., 2004;
Francavilla et al., 2009; Kucinska et al., 2019), this data points to the
crucial role of receptor interaction partners at different cellular
compartments, such as the plasma membrane or the endosomes,
as facilitators of functional selectivity.
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2.4 Spatiotemporal control of functional
selectivity

The spatiotemporal control of signalling pathways is essential
for cellular functions and RTK endocytosis is among the processes
regulating signalling in space and time (Sigismund et al., 2021). After
ligand-induced receptor internalization via clathrin- or not clathrin-
mediated endocytosis, into early endosomes (Figure 1A, on the
right), the ligand-receptor pair is still able to signal. For instance, a
low concentration of EGF leads to low levels of the PTM
ubiquitination on EGFR, clathrin-mediated endocytosis, the
recruitment of the signalling adapter protein Grb2 and sustained
signalling activation (Sigismund et al., 2013). Furthermore, EGFR
phosphorylates Akt and drive pro-survival signalling cascades from
the early endosomes (Wang et al., 2002). Therefore, the endosomes
are essential for propagating selected signalling cascades
downstream of different RTKs. Depending on ligand identity,
RTKs are sorted to either late endosomes for degradation into
lysosomes or to the recycling endosomes to go back to the cell
surface which affects downstream cellular responses and is regulated
by different molecular mechanisms (Figure 1A, on the left). For
instance, EGF induces EGFR degradation via the PTMs
ubiquitylation and phosphorylation (Francavilla et al., 2016) and
the assembly of a specific signalling complex (https://www.biorxiv.
org/content/10.1101/2023.09.13.557663v1). On the other hand,
FGF10 and TGFα induce phosphorylation-regulated recycling of
FGFR2b and EGFR respectively, which results in a pro-migratory
phenotype in epithelial cells (Francavilla et al., 2013; Francavilla
et al., 2016; Smith et al., 2021). The dichotomy between receptor
recycling and degradation regulates not only the fate of the ligand/
receptor pair but also signalling duration and specificity. For
instance, the availability as well as the retention of receptors on
the recycling endosomes controls the phosphorylation of the cell
cycle regulator CDK1 (Smith et al., 2021) and of the mTOR/ULK-
regulated autophagy pathway (Watson et al., 2022). When the
permanence of FGFR2b on recycling endosomes is impaired, the
coordination of cell motility and cell cycle is lost (Smith et al., 2021),
suggesting that the precise localization of FGFR2b signalling as well
as the timing of such localization regulate the balance between
different cellular responses in response to distinct ligands.

2.5 Selective signalling via RTK structural
alterations

Biased signalling may be also regulated by the structural
alterations of RTKs at the plasma membrane which would affect
downstream signalling cascades (Figure 1B). Changes in the
structural conformation of the same GPCR in response to
synthetic agonists are known to affect specific signalling
pathways due to unique ligand-receptor interactions (Jóźwiak and
Płazińska, 2021). Similarly, altered structural conformations have
been observed on RTKs in response to different ligands
(Mohammadi et al., 2005; Sarabipour and Hristova, 2016; Karl
et al., 2020; Huang et al., 2021). For instance, different structural
conformation of the ligand-binding pocket has been reported for
EGFR upon binding of its two ligands EGF and TGFα (Huang et al.,
2021), thus providing a molecular mechanism underlying functional

selectivity of EGFR signalling (Francavilla et al., 2016). Altered
conformations of receptors may drive distinct post-translational
modifications (PTMs) in their cytoplasmic domain, which
subsequently can drive functionally distinct cellular outcomes, as
shown for FGFR2b (Francavilla et al., 2013; Sarabipour and
Hristova, 2016). Finally, strength of dimerization has also been
shown to play a role in biased signalling downstream of both EGFRs
and FGFRs (Freed et al., 2017; Huang et al., 2017).

Our understanding of the role of conformational changes and
strength of receptor dimerization in functional selectivity has
increased due to the growing use of structural biology tools such
as cryo-Electron Microscopy (EM), x-ray crystallography and
fluorescence-based spectroscopic assays (Freed et al., 2017;
Huang et al., 2017; Zinkle and Mohammadi, 2018; Huang et al.,
2021). Recent data obtained with cryo-EM indicates that the
receptor dimerization process may be asymmetric and monomers
of different subfamilies of FGFRs can heterodimerise to drive
downstream signalling processes (Chen et al., 2023b). This data
challenges our current understanding of how functional selectivity is
regulated. We envision that recent advancements in cross-linking
mass spectrometry (Klykov et al., 2018; O’Reilly and Rappsilber,
2018) and hydrogen-deuterium exchange mass spectrometry
(Narang et al., 2020; Javed et al., 2023), both of which can be
used to investigate structural alterations of proteins in a dynamic
manner, will open novel avenues for structural functional selectivity.

3 Systems biology of functional
selectivity

Traditional biochemical and structural methods have been studying
functional selectivity by focusing on a small number of targets, failing to
account for the complexity and the interconnected nature of the cellular
signalling architecture. Systems biology, a field that deals with the
emergent properties driven by the complex interactions among
biological entities, provides the conceptual and computational
frameworks to overcome this barrier (Yue and Dutta, 2022)
(Table 1). The last decade has seen a rapid rise in the availability of
omics’ data for functional selectivity due to technological advances (Dai
and Shen, 2022), and the tandem rise in computational and algorithmic
tools (Chen et al., 2023a; Procopio et al., 2023). For instance,
phosphoproteomics provided the community with a rich source of
large-scale, unbiased data on RTK signalling (Franciosa et al., 2023). A
systems level approach would now focus on the global phosphorylation
landscape of signalling and their roles when integrated in a system (e.g.,
a cell) instead of focusing only on selected kinases, PTMs, or
one pathway.

One way in which systems biology enables us to study functional
selectivity is by building complex networks that can model a
particular system (Barabási and Oltvai, 2004; Ma’ayan, 2011). In
fact, network science has proved to be a valuable tool in describing
and predicting protein-protein interaction networks (Chen et al.,
2008; Kovács et al., 2019), gene regulatory and metabolic networks
(Lacroix et al., 2008; Emmert-Streib et al., 2014), and in inferring the
role of PTMs (Watson et al., 2021; Leutert et al., 2023), among
others. By identifying network substructures that are preferentially
activated by a particular ligand, network analysis can play a crucial
role in studying functional selectivity. For example, building protein
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interaction networks can uncover novel interaction partners under
functionally selective conditions, including cell perturbation with
different ligands (Kovács et al., 2019).

Systems biology also provides tools to build mathematical
models from large-scale omics’ data. For example, protein co-
expression patterns can be used to infer regulatory relationships
and subsequent network structure (Mayer et al., 2016). Boolean
models can then be used to simulate and study dynamic effects in
these networks (Hemedan et al., 2022). Since these models only
allows binary states, which is often not the case in biological systems,
multistate logic-based models exist that allow the modelling of
multiple states (Morris et al., 2010). Other modelling methods
include, but are not limited to, ordinary/partial differential
equations (ODE/PDE), stochastic models or constraint-based
models (see references in Table 1). However, to study functional
selectivity via computational modelling of proteomics data,
network/logic-based approaches or machine learning algorithms
may be more appropriate, since ODE/PDE require dynamic
information of signalling entities, which are not always captured

by proteomics experiments, and constraint-based models are mostly
suited to metabolic networks. Integrating data from different omics’
technologies provides a more comprehensive view of cellular
systems, which can elucidate functional selectivity at multiple
levels of a protein’s lifecycle (Chen et al., 2023b). More recently,
single-cell omics’ analysis has emerged to reveal new mechanisms of
functional selectivity based on cell heterogeneity, thus offering
insights into how the same signal can lead to different outcomes
in different cellular contexts (Ahmad and Budnik, 2023).

4 Conclusion and perspectives

While pharmacological investigations into GPCR ligand bias has
made significant strides in recent years, research into RTK ligand bias is
lagging behind. More work needs to be done to investigate the role of
RTK functional selectivity in health and disease. Furthermore, the
availability of large-scale data and state of the art computational
methodologies, when utilised in the framework of systems biology,

TABLE 1 A few of the available tools for constructing and analysing cell signalling models.

Tool Model Description Source

COPASI ODE, PDE, Gillespie Focused on biochemical networks and their dynamics. It allows both static
and time-course simulations and stochastic simulation

https://copasi.org/ (Hoops et al., 2006)

GINsim Boolean Primarily used for modelling gene regulatory networks (GRNs). Provides
user-friendly interface for robust network-based analysis (e.g., identifying
steady states and network properties)

http://ginsim.org/ (Naldi et al., 2009)

StochPy Various stochastic
modelling algorithms

Particularly suitable for single cell and highly stochastic biochemical
networks. Being Python-based, it can be integrated with other python-
based computational tools

Python package (Maarleveld et al., 2013)

BoolNet Boolean Focused on simulating gene regulatory and signalling networks. Other
important applications include network reconstruction from experimental
data, state transition, and perturbation analysis

R package (Mussel et al., 2010)

TIMP Partial Variable
Projection

Built for analysing spectroscopic data obtained under multiple conditions
and time points

R package (Mullen and van Stokkum, 2007)

MaBoSS Boolean, Gillespie Provides framework for model construction, visualization, simulations of
mutations, drug treatments, and sensitivity analyses, and predict outcomes
of specific perturbations (gain or loss of function mutations)

https://maboss.curie.fr/ (Stoll et al., 2017)

BioUML ODE, Gillespie, Boolean An integrative platform providing user friendly access to various powerful
modelling tools. Integration with Bioconductor and Galaxy provides
increased functionalities

https://www.biouml.org/ (Kolpakov et al., 2019)

SPIDDOR Boolean Allows analysis of Boolean networks, perform perturbation analysis and is
most suitable for pharmacological investigation

R package (Irurzun-Arana et al., 2017)

CellNetAnalyzer Boolean, ODE It can be used for studying network dynamics, structure, and response to
perturbations

https://www2.mpi-magdeburg.mpg.de/projects/
cna/cna.html (Klamt et al., 2007)

PyBoolNet Boolean Various graph-based algorithms can be implemented for investigating
network properties. It is integrated with other well-established Python
packages for network analysis and visualisation

Python package (Klarner et al., 2017)

CellDesigner ODE/PDE CellDesigner can be used to simulate and draw biochemical networks. It is
seamlessly integrated with other tools due to its support for SBML (Systems
Biology Markup Language) format and SBW (Systems Biology
Workbench) compliancy

https://www.celldesigner.org/ (Matsuoka et al.,
2014)

BoolSi Boolean BoolSi can be used for simulating Boolean networks, enabling analysis of
network behaviors, manipulation of node states, and exploration of
conditions affecting network states

Python package https://openresearchsoftware.
metajnl.com/articles/10.5334/jors.308

CellNOpt Boolean, Fuzzy,
PDE/ODE

Cell-specific models can be created by training high throughput
biochemical data against previously known signalling pathways

R package (Gjerga et al., 2020)
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holds the potential to model living systems and being able to predict
biological outcomes. If applied to functional selectivity, system biology
will allow for rapid evaluation of different functionally selective
conditions in a high-throughput manner in silico. This information
will then be used to design targeted experiments to validate hypothesis
as well as better therapeutics that can preferentially bias RTKs towards a
particular cellular outcome (e.g., apoptosis in tumour cells). Research
and applications of RTK functional selectivity will take inspiration from
the field of GPCRs, where machine learning algorithms have been used
to predict if particular chemical scaffolds are more likely to show
G-protein or β-arrestin bias (Sanchez et al., 2021). Asmore data become
available on RTK signalling and functional bias with various synthetic
and natural ligands, the accumulation of data could facilitate the
development of predictive tools like those developed for GPCR
ligand bias. Ultimately, this heralds a new era of precision medicine,
where the therapeutics are more effective with minimal to no
side effects.
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