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Periodontal regeneration involves the composite action of cell, scaffolds and
signalingmolecules. There are numerous autologous sources of regenerative cells
which are present close to the vicinity of the periodontally debilitated site, the
primary one being the periodontal ligament stem cell, which is believed to have a
key role in regeneration. Various methods can be harnessed to optimize and
enhance the regenerative potential of PDLSCs such as the application of LASERs.
In the last few years there have been various studies which have evaluated the
effect of different types of LASERs on PDLSCs and the present review summarizes
the photo-biomodulative activity of LASERs in general and its beneficial role in the
stimulation of PDLSC specifically.
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Introduction

Periodontitis is a disease primarily characterized by inflammation and an interplay of
bacteria and endotoxins which impacts the soft and hard tissues of the periodontium. The
disease leads to significant cellular damage and tissue loss which eventually culminates in
bone loss (Hajishengallis, 2022; Zenobia and Darveau, 2022; Vitkov et al., 2023). The extent
of hard and soft tissue loss determines the treatment strategies; however, mechanical
debridement remains the cornerstone of periodontal treatment which turns the
inflammatory state of the periodontium to a resolving state (Albeshri and Greenstein,
2022; Laleman et al., 2022). Periodontal treatment not only involves elimination of
inflammatory and bacterial component from the diseased tooth supporting tissues, but
also comprises of regeneration of deteriorated periodontal structures in amenable cases
which serves as the bedrock to principles of tissue engineering that engages application of
appropriate cells, growth factors and scaffolds Tavelli et al. (2022), Yi et al. (2022), Sopi et
al. (2023).

Dental stem cells owing to their distinct stemness, migration, differentiation and
immunological modulation properties, have been perceived as a potential agent for
regeneration (Nagata et al., 2022; Sun et al., 2023). Stomatognathic stem cells are placed
in different niches and they can be further categorized as dental and periodontal stem cells
based on their location within the oral complex (Ponnaiyan et al., 2022; Alarcón-Apablaza
et al., 2023). Recently, research shows that periodontal ligament stem cells that are
mesenchymal in nature and located within the periodontal ligament, offers substantial
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periodontal regeneration in comparison to the regenerative outputs
offered by other kinds of stem cells (Li et al., 2020; Dubuc et al., 2022;
Mendoza et al., 2023).

The regenerative output of PDLSCs is further enhanced by the
adjuvant application of LASERs as evidenced by literature (Mylona
et al., 2022; L; Wang et al., 2022). Hence, the current review aims to
summarize the additional use of LASERs in regenerative and stem
cell therapy in periodontics.

Periodontal ligament stem
cells (PDLSCs)

PDLSCs are formed from ecto-mesenchymal cells that originate
from the neural crest and are isolated from middle third of the root
surface after extraction of permanent teeth (T. Wang et al., 2022).
Root surface derived PDLSCs (r-PDLSCs) are stem cells isolated
from root surface, while alveolar socket derived PDLSCs
(a-PDLSCs) are stem cells separated from tissue taken from the
bone surface (Rad et al., 2022). In comparison to r-PDLSCs, it has
been found that a-PDLSCs maintain a higher proliferative capability
as well as strong osteogenic and adipogenic potential (Nagata et al.,
2022). PDLSCs can differentiate into peripheral nerves, blood
vessels, alveolar bone, cementum and even periodontal ligament
(Seo et al., 2004). It is interesting to know that PDLSCs
phenotypically express various neural crest, embryonic and
antigenic markers which contribute to its diverse multipotent
differentiation characteristics (Iwayama et al., 2022). They
express standard mesenchymal stem cells markers and are
negative for hematopoietic markers (Song et al., 2023). Amongst
embryonic markers they highly express Nanog, SRY (sex
determining region Y)-box 2, also known as SOX2, SSEA4 (Stage
specific embryonic Antigen) and express October 4 (Octamer) and
Krüppel-like factor 4 (KLF4) in lower levels (Alves et al., 2023;
Takahashi et al., 2023). However, the expression levels of these
markers are highly dependent on the environment in which the
PDLSC is residing as inflammation affects stem cells and those cells
in turn have immune-modulatory effect in an inflammatory milieu
(Zhang et al., 2021; Liu et al., 2022).

The equilibrium between the pro-inflammatory response and
the stemness of PDLSCs is a key factor in determining whether tissue
integrity and homeostasis is maintained or if disease progression
occurs (Zhao et al., 2022). It has been observed that long-term
stimulation of PDLSCs by P. gingivalis lipo-polysaccharide (LPS)
resulted in an increase in cellular cytokine production and LPS also
prevents the development of osteoblasts by impairing ALP activity
and mineral synthesis in PDLSCs (Chen et al., 2021; Xu et al., 2023).

Conversely PDLSCs also have an immunomodulatory influence
on periodontal regeneration (Andrukhov et al., 2019; Liu et al.,
2022). PDLSCs also affect the innate immune response by increasing
neutrophil proliferation and decreasing their capacity to undergo
apoptosis. PDLSCs also promote CD-136, IL-10, and Arginase 1,
which enhances the anti-inflammatory M2 macrophage phenotypic
polarization in addition to inhibiting T cell proliferation (Shin et al.,
2017; Li et al., 2022). These evidences suggest that, to harness the
maximum regenerative potential of PDLSCs, it is imperative to
maintain the state of controlled inflammation or homeostasis which
favors repair which is possible only through the elimination of the

pro-inflammatory components, bacteria and endotoxins via
mechanical debridement thereby, declaring LASERs to be an
adjunct to the mechanical therapy (Jiang et al., 2022; Lu et al., 2023).

LASERs

The LASER revolution in dentistry and the invention of ruby
LASER by Theodore Maiman in 1960 has seen significant changes
over the past few decades owing to advances and usability of LASERs
in a multitude of dental and periodontal applications (Passanezi et
al., 2015; Theodoro et al., 2021; Corbella et al., 2023). LASERs are
clinically categorized into two types based on their wavelength: 1) a
deeply penetrating type where the LASER light penetrates and
scatters into the tissue deeply, such as the diode LASERs
(810–980 nm) and neodymium-doped yttrium-aluminum-garnet
(Nd:YAG) available for clinical application; and 2) a superficially
absorbed type such are the erbium-doped yttrium-aluminum-garnet
(Er:YAG) (2940 nm), carbon dioxide (CO2) (10,600 nm) and
erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr:
YSGG) (2780 nm) LASERs (Ohsugi et al., 2020; Fu and Wo, 2021).

When LASERs energy penetrates the tissue surface, it may be
absorbed, dispersed, reflected, or transmitted to the cells in the
vicinity and the amount of energy that is absorbed by the cells
influences the therapeutic and photo-biomodulative property
exhibited by the LASER (Glass, 2021; Lopes et al., 2022). Since
the 20th Century, the photobiomodulative property of LASER has
been discovered and this property has been harnessed for specific
effect of LASERs on tissues and cells for achieving desired treatment
outcomes (Arjmand et al., 2021). Photobiomodulation makes use of
nonionizing light sources such as LASERs, light-emitting diodes and
broad-spectrum light to encourage physiological changes and
therapeutic effects which supra-adds to the stimulation of stem
cells involved in the regeneration triad (Firoozi et al., 2022). The
PBM property of LASER encompasses a wide array of properties
such as the photothermal, photodynamic, bio stimulative, photo
ablative, photo vaporolytic and photo plasmolytic properties which
may alter the cellular dynamics of periodontal tissues when applied
at different settings and for varying time periods (Glass, 2021; Parker
et al., 2022).

Alternate and more compliant sources of light such as LASER
and light-emitting diode (LED) sources emit a wide range of visible
and infrared spectrum that are used in photo-biomodulation (PBM),
which can be effectively used in the treatment of a number of
diseases, wounds, and disorders (Dompe et al., 2020; Bunch, 2023).
A well-accepted theory holds that the light energy given to tissues is
absorbed by the cell chromophores, encouraging the generation of
adenosine triphosphate (ATP) (Glass, 2021). Understanding the
processes behind the effects of PBM has been of significant interest.
Nevertheless, some researchers have observed favorable effect of
ATP generation on oxidative stress, survival, and tissue regeneration
(da Silva et al., 2023; Prado et al., 2023).

Effect of LASER on PDLSCs

The effect of LASERs in periodontal regeneration is well
established. Initially, various studies were done in the past to
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TABLE 1 Effect of different types of LASERs on PDLSCs.

LASER type Irradiation protocol Outcome Reference/Author

Gallium-aluminum-arsenide (GaAlAs)
660 nm red LASER

Power—15.17 mW/cm2, Distance 3cm,
Fluences at 0, 1, 2, 4 J/cm2

Proliferation Wu et al. (2013)

Exposure time—66, 132 and 264 s
respectively

3rd day: 2 J/cm2 significantly better

5th day: 1 and 2 J/cm2 significantly better

Osteogenesis: Progressive significant increase
at 7, 10, 14 days for 2 and 4 J/cm2 compared
to control

Indium-Gallium-Aluminum-Phosphide
(InGaAIP) diode LASER 660 nm

30 mW,0.5 and 1.0 J/cm2 Proliferation: The group that received a dose
of 1.0 J/cm2 boosted cell proliferation after
48 and 72 h versus the other two groups

Soares et al. (2015)

He-Ne LASER 632.8 nm 20 J/cm2, HF-LPLI for 1 h Proliferation: Improved for cells cultured 6 h
followed by LASER irradiation

Hou et al. (2018)

Osteogenic differentiation: Better for cells
cultured after 6 h followed by LASER
irradiation

LED 600–700 nm Total irradiance 200 mW/cm2, CW mode,
distance 40mm, fluences at 1, 2, 4, 6, 8, or
10 J/cm2

Proliferation: 1st day- 8 J/cm2 significantly
better

Yamauchi et al. (2018)

3rd day—4,6, 8 and 10 J/cm2 significantly
better

But 8 J/cm2 highest

Osteogenesis: Increased at 21st day with
8 J/cm2

Diode LASER 808 nm 100mW, spot area 0.5 cm2, fluences at 1 and
2 J/cm2, 2 sessions (0 and 48 h)

Proliferation: 7,14 and 21 days all groups
better than control

Abdelgawad et al. (2020)

LASER irradiation at 2 J/cm2 and Vit D
increased differentiation and proliferation of
PDLSCs into osteoblasts

Near-infrared low-intensity diode LASER
PBM -940 nm

Energy density of 4 J cm2 in a 100 mW
continuous wave

Proliferation: No significant difference
between LASER and control group on 3rd day

Gholami et al. (2022b)

Osteogenesis: Slight significant increase in
osteogenic gene expression between LASER
and control on 14th and 21st day

low-energy red LED irradiation
(600–700 nm)

CW, 2 cm distance Proliferation: PDLSCs in the irradiation
groups proliferated more than those in
control group

Wu et al. (2021)

66.7 mW/cm2, 1 J/cm2 for 15 s, 3 J/cm2

for 45 s
Osteogenesis

5 J/cm2 for 75 s Increase in ALP seen only for 5 J/cm2 at day
7th, following which irradiation did not
increase osteogenesis

LEDs 3.5 J/cm2, CW, 20 min per day, 52 mm
distance

Proliferation Chaweewannakorn et al.
(2021)

Day 6th and 8th—830 nm significantly better
than other groups

Day 8th—630–680 nm significantly worse
than control

Osteogenesis

3rd day: 680 significantly better

7th day: 630 and 680 significantly better. 10th
day: 630, 680, 830 significantly better. 14th
day: 680 nm significantly better

(Continued on following page)
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TABLE 1 (Continued) Effect of different types of LASERs on PDLSCs.

LASER type Irradiation protocol Outcome Reference/Author

21st and 28th day: both 630nm and 680 nm
significantly better

Diode LASER 808 nm 100 mW, CW, spot area 0.5 cm2, fluences of 1,
2 and 3 J/cm2

Proliferation Mohamed Abdelgawad et al.
(2021)

1st day:LASER at 2 J/cm2, 3 J/cm2, met +1 J/
cm2, met + 2J/cm2, met +3 J/cm2 was
significantly increased. Inflammatory
markers

ROS, TNF-α, IL-10 met +3 J/cm2

significantly better

Diode LASER -660 nm (InGaAIP) 30mW, single dose of 1 J/cm2, CW Greater cell metabolic activity in irradiated
group compared to control in 24 and 48 h.
Higher density of viable cells in the LASER
group

Costa et al. (2021)

High intensity red LED—600–700 nm 400 mW/cm2, 2, 4, 6, 8, and 10 J/cm2 for 5, 10,
15, 20, and 25 s continuous output

High-intensity red LED inhibits production
of pro-inflammatory cytokines in hPDLSCs
induced by TNF-α via encouraging the
synthesis of ATP thereby promoting
regeneration

(Yamauchi et al., 2018)

Near infrared diode LASERs - 810 or 940 nm Energy density of 0.5, 1.5 and 2.5 J/cm2;
100 mW

Increase in viability was observed only with
940 nm LASER irradiation at energy density
of 2.5 J/cm2. Cell proliferation significantly
increased with 940 nm LASER irradiation
energy density of 2.5 J/cm2 at all the time
points compared to other groups

Rigi-Ladez et al. (2022)

LASERs and LEDs used within the
630–1064 nm wavelength range

245 studies assessed out of which 11 met the
inclusion criteria

No agreement among scientists on PBM
methods. Wavelengths between 630 and
830 nm produced beneficial results, the use of
a near-infrared (NIR) wavelength at 940 nm
may not

Mylona et al. (2022)

940 nm Diode LASER 100mW, CW, 4 J/cm2, 3 sessions at every 48 h Proliferation: No significant differences
between test and control

Gholami et al. (2022a)

Osteogenesis: after 14th and 21st day, test
groups showed greater mineralised tissue
formation in comparison to test group

LASER 250mW, 20 s, 2, 4, 6 and 8 J/cm2 vs. control
0 J/cm2, perpendicular, scanning mode, every
other day

Proliferation Wang et al. (2022)

Nd:YAG 1064 nm 7th day - 4, 6, 8 J/cm2 significantly better with
highest activity at 6 J/cm2 Osteogenesis

2–6 J/cm2 - ideal

8 J/cm2—osteogenesis is supressed

LASER at 635, 660, 808 and 980 nm LASER light with energies of 1, 1.5, 2.5,
and 4 J

Proliferation Etemadi et al. (2022)

PDLSCs stimulated by PBM of 635, 660,
808 and 980 nm. Highest cell survival was
seen after being exposed to a 980 nm LASER
with an energy density of 4 J cm2 on day 3

940 nm 940 nm (NIR) Proliferation: No significant differences
between LASER and control group on 3rd day

Gholami et al. (2022a)

And 660 nm (red) LASERs 100mW, CW Osteogenesis: No significant differences
between LASER

400 µm tip, 4 and control group on 14th and 21st day

J/cm 2, pulsed mode compared to 660 nm
(red) irradiations at 3 J/cm 2

Compared to 660 nm (red) irradiation, this
impact was stronger at 940 nm (NIR)

FOOTNOTE—RUN, X2- Runt-related transcription factor 2; OCN, Osteoclacin; ALP-Alkaline Phosphatase; NIR-near-infra-red; HPDLSC- human periodontal ligament stem cell; CW-

continuous wave; LED- light emitting diode; HFLPLI- High-fluence low-power LASER, irradiation.
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identify the effects of LASERs on native PDL cells. Studies have
showed that stretched periodontal ligament cells during orthodontic
treatment demonstrated marked reduction in the level of pro-
inflammatory mediators on the application of diode LASERs
(Ozawa et al., 1997; Yamauchi et al., 2018).

With advances in orthodontic research, it is understood that
tooth movement was a PDL phenomenon which occurred as a
result of coupled resorptive and regenerative activities of the
periodontium (Li et al., 2021). With the advent of stem cell
isolation techniques, it was later seen that not only fully
differentiated PDL cells but also these stem cells residing in
the periodontal ligament, took part in regeneration (Costela-
Ruiz et al., 2022). As it is known that regeneration involves the
Melcher’s triad, the cells and in particular, the stem cells become
an indispensable tool to achieve optimal regeneration (Ward,
2022; Yi et al., 2022). To expedite the regenerative potential of
these stem cells, various light sources including LASERs and
LEDs have been proven to be beneficial in the stimulation of the
PDLSCs as mentioned in Table 1. It is interesting to know that the
maximal beneficial role of PDLSCs can be achieved only at
certain irradiation settings, thereby making the wavelength,
irradiation time interval and the energy setting to be the key
regulating factors in optimal stimulation of PDLSCs by light
sources (Oyebode and Houreld, 2022; da Silva et al., 2023).
LASER application causes the release of a photoreceptor called
cyctochrome-c oxidase (CCO), which is found in the
mitochondrial respiratory chain at unit IV. This raises the
potential of the mitochondrial membrane and produces more
ATP, which in turn causes cell division (Signaling in
Photobiomodulation, 2018; Pan et al., 2022) (Figure 1).

Literature evidence shows that LASER PBM on PDLSCs
significantly increases proliferation and osteogenesis. However,
majority of studies show wide variation in the wavelength and
energy settings for bio stimulation, and this difference in the
amount of power and time settings makes the stem cell
proliferation vary (Felician et al., 2023). Initially Soares et al. and
Wu et al. have shown there is significant increase in proliferation
when the power of 660 nm red diode LASER is increased from 1 to
5 J/cm2 and also when duration of exposure is increased. However, it
has been noted that increasing the energy setting or duration of
exposure doesn’t change the rate of proliferation or osteogenic gene
expression (Gholami et al., 2022a; Gholami et al., 2022b). This
signifies that energy settings, time of irradiation and follow up with
subsequent irradiations makes difference when the optimal energy
setting is applied. Still, there is no standardized protocol to stimulate
PDSLCs to the maximum.

It was observed that using 600–700 nm LED in the power of 8 J/
cm2 had the highest rate of proliferation and osteogenic
differentiation of PDLSCs and increasing the duration to 3 weeks
also proved to be optimal in maintaining regeneration capability
(Yamauchi et al., 2018). This suggests that lower the wavelength of
light source higher is the photo bio modulatory property.

Further, Gholami et al. compared 940 nm diode and 660 nm (red
LASER) and showed that group receiving 940 nm irradiation showed
better cell proliferation and differentiation on day 3 and also 3 weeks
of LASER application. Similarly, Chaweewannakorn et al. showed that
by using three different wavelengths of LEDs, there is a decline in
proliferation on day 8th of irradiated groups and stated that
inadequate wavelength can cause damage to cell viability of
PDLSCs thereby emphasizing the importance of optimal

FIGURE 1
Effects of LASER at the cellular level on the stimulation of PDLSCs.
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wavelength. Rigi Ladez et al. stated that using a wavelength of diode
LASER of 940 nm instead of 810 nm showed a better proliferation of
PDLSCs which is in concurrence of Gholami et al. Wang et al. and
Etemadi et al. who observed positive effects of LASER irradiation on
PDLSCs on day 21 and day 5 respectively.

LASER PBM is a beneficial technique for tissue regeneration even
in inflammatory regions and has a substantial anti-inflammatory
impact by lowering pro-inflammatory cytokines (Yamauchi et al.,
2018). In a systematic review on the effect of LASERs and LEDs on
PDLSC proliferation by Mylona et al., it was observed that the
stemness and differentiation abilities of periodontal ligament stem
cells can be improved by photo biomodulation. On PBM techniques,
such as duration, wavelength and energy settings, there is currently
no consensus among experts. The usage of a near-infrared (NIR)
wavelength at 940 nm may not have the same positive effects as
wavelengths between 630 nm and 810 nm. It was said that the fluence
shouldn’t be greater than 8 J/cm2when utilizing LED therapy devices
and that it shouldn’t be greater than 4 J/cm2 while using LASERs.

Conclusion

Photo-biomodulation, a property which stimulates PDLSCs and
other stem cells in general, is a property specially owned by cold
LASERs. With the above-mentioned evidences, it can be noted that
by decreasing the wavelength of the LASER, better PBM can be
achieved; however, there are various other factors such the spot size,
time and mode of irradiation which decides optimal stimulation of
PDLSCs. In the future, it can be seen that post periodontal
treatments with Erbium group of LASERs which operate at a
higher wavelength may still require a LASER of lower wavelength
for bio-modulation, thereby giving rise to a dual LASER therapy.
The above-mentioned studies in the table hold a lot of ambiguity as
different types of LASERs are used with different wavelengths and
power settings as studies are mostly done by individual research

scholars often funded by commercial LASER companies. Hence, it is
necessary for the governing bodies around the globe to come up with
a consensus and a protocol to make the most of the stimulation
of PDLSCs.
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