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The past six decades have seen major advances in our understanding of
endocytosis, ranging from descriptive studies based on electron microscopy to
biochemical and genetic characterization of factors required for vesicle formation.
Most studies focus on clathrin as the major coat protein; indeed, clathrin-
mediated endocytosis (CME) is the primary pathway for internalization.
Clathrin-independent (CIE) pathways also exist, although mechanistic
understanding of these pathways remains comparatively elusive. Here, we
discuss how early studies of CME shaped our understanding of endocytosis
and describe recent advances in CIE, including pathways in model organisms
that are poised to provide key insights into endocytic regulation.
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1 Introduction

As we approach 2024, we mark 60 years of structural, biochemical, and genetic studies of
endocytosis. While early work reported observations of phagocytosis and macropinocytosis,
Roth and Porter capitalized on advances in electron microscopy to visualize mosquito
oocytes forming pits at the plasma membrane (PM), resulting in intracellular vesicles (Roth
and Porter, 1964). Their 1964 work suggested events leading to internalization: 1) assembly
of a “bristle coat” at the PM, 2) invagination of bristle-coated structures into pits, 3)
conversion of pits into vesicles, and 4) loss of the coat. Roth and Porter proposed mechanical
functions for the coat that were later verified, including in a key 1969 study by Kanaseki and
Kadota describing the coated structure as “The Vesicle in the Basket” (Kanaseki and Kadota,
1969). Here, electron micrographs of bristle-coated vesicles isolated from guinea pig brain
demonstrated a polygonal coat surrounding the vesicle. Coat formation progressed from
shallow, bristle-lined pits on the cytoplasmic face to the completed vesicle. Subsequently,
Barbara Pearse isolated coated vesicles from pig brain in 1975, and described a polygonal
structure consistent with findings from Kanaseki and Kadota (Pearse, 1975). Pearse purified
a 180 kDa protein as the sole component of coats, and named it clathrin. These and other
foundational papers accurately described the process of clathrin-mediated endocytosis
(CME), identified the key coat protein, and formed the basis of our modern
understanding of endocytosis.

CME is the main pathway for PM internalization (Kaksonen and Roux, 2018). It is
currently the best-studied endocytic route, and involves sequential action of protein modules
to recruit cargo, deform the PM, and generate a clathrin-coated vesicle (CCV) (Kaksonen
et al., 2005; Newpher et al., 2005). During initial stages of clathrin-coated pit (CCP)
formation, which may occur stochastically or from initiating cues, early-arriving proteins
such as FCHo1/2 and the clathrin-binding adaptor complex AP-2 associate with endocytic
sites by binding phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2] (Howard et al., 2002; Henne et al., 2010; Cocucci et al., 2012). Adaptors
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serve a dual function in cargo-binding and in providing an anchor
point for clathrin assembly. The clathrin lattice consists of heavy and
light chains that interact to form a triskelion (Unanue et al., 1981).
As the CCP matures, scaffolding proteins recruit later-acting factors
that facilitate invagination of endocytic pits, often through
activation of Arp2/3 (Kübler and Riezman, 1993; Kaksonen et al.,
2003; 2005; Sun et al., 2006; Goode et al., 2015). Finally, Bin/
amphiphysin/Rvs (BAR)-domain proteins such as amphiphysin,
syndapin and SNX9, and F-BAR proteins FBP17 and
CIP4 interact with the GTPase dynamin at the CCP neck to
facilitate scission (Bliek et al., 1993; Damke et al., 1994; Takei
et al., 1995; Qualmann and Kelly, 2000; Kamioka et al., 2004;
Soulet et al., 2005; Shimada et al., 2007; Yu and Yoshimura,
2022). Separated from the PM, the CCV quickly loses its coat
following recruitment of auxilin/DnaJ, Hsp70, and synpatojanins
(Ungewickell et al., 1995). Uncoated vesicles are then free to fuse to
their target compartments. CME is conserved in eukaryotes, and
many endocytic proteins perform similar functions in all species
examined to date (Taylor et al., 2011).

Aside from CME, other pathways perform endocytosis without
the clathrin coat. Collectively termed clathrin-independent
endocytosis (CIE), these pathways offer additional routes for
cargo entry (Figure 1). Indeed, early studies predating discovery
of the bristle coat described phagocytosis and macropinocytosis,
which are inherently clathrin-independent (Tauber, 2003; King and
Kay, 2019). Intriguingly, molecular mechanisms of CIE remain
poorly understood compared to CME. Recent studies advancing

our understanding of CIE are filling gaps in our knowledge, with
model organisms permitting identification of CIE genes that are
likely conserved. In this review, we examine the history of CIE
research, explore recent discoveries, and look toward new questions
in the field.

1.1 Clathrin-independent endocytosis

Although CCV purification permitted identification of CME
machinery proteins, evidence of additional pathways predated the
discovery of coated pits (Keen et al., 1979; Zaremba and Keen, 1983).
For example, phagocytosis and micropinocytosis were first observed
over 100 years ago, while caveolae were described nearly a decade
before the discovery of coated vesicles but were not confirmed as
endocytic structures until later (Tauber, 2003; King and Kay, 2019).
Studies in the 1980s described formation of uncoated endocytic
carriers, suggesting that CIE exists distinct from (and/or parallel to)
CME (Moya et al., 1985). A clathrin-independent pathway was
finally demonstrated in the 1990s with experiments that showed
uptake of ricin persisted upon inhibition of transferrin
internalization via CCVs (Sandvig and Deurs, 1990; Hansen
et al., 1991). Additionally, genetic and biochemical studies
showed that cells expressing dominant-negative mutants of CME
proteins such as dynamin, epsinR, eps15 and AP180 still
internalized fluid-phase and PM components (Damke et al.,
1994; Benmerah et al., 1998; Chen et al., 1998; Ford et al., 2001).

FIGURE 1
Major Forms of Endocytosis. In addition to the well-studied clathrin-mediated endocytic pathway, a variety of clathrin-independent pathways exist
in eukaryotes. Shown here, many of the known CIE pathways share overlapping machinery or classes of proteins with CME or with each other, while also
possessing unique components and internalizing specific cargo proteins.
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Identification of additional, mechanistically-distinct CIE pathways
further demonstrated that endocytosis is far more complex than
originally thought (Figure 1). In addition to phagocytic,
macropinocytic and caveolar routes, these include clathrin-
independent carriers and GPI-enriched endocytic compartments
(CLIC/GEEC), small GTPase-mediated pathways, fast endophilin-
mediated endocytosis (FEME) and ultrafast endocytosis (UFE)
(Lamaze et al., 2001; Kirkham et al., 2005; Lundmark et al., 2008;
Watanabe et al., 2013; Boucrot et al., 2015; Hak et al., 2018; Sathe
et al., 2018; Casamento and Boucrot, 2020; Imoto et al., 2022).

1.1.1 Phagocytosis and macropinocytosis
Phagocytosis and macropinocytosis were amongst the earliest

forms of endocytosis observed; both internalize large volumes in a
single event. Phagocytosis occurs when cells extend the PM around
particles to engulf them. This mechanism is highly conserved from
protists such as Dictyostelium discoideum to immune cells (e.g.,
neutrophils and macrophages), and internalizes nutrients, clears
debris and dead cells, and combats pathogens (Tauber, 2003;
Vorselen et al., 2020). Initiation of a phagocytic cup occurs when
surface receptors such as integrins recognize molecules on the foreign
particle, triggering recruitment and activation of RhoA, Rac1 and
Cdc42 alongwith actinmodulators such asWASP andArp2/3 (Caron
and Hall, 1998; Jaumouillé et al., 2019). This machinery drives
formation of pseudopodia through assembly of actin networks that
provide force to drive PM protrusion. Similarly, macropinocytosis is
actin-dependent, and relies on Rac1, Ras and Arf6 to induce PM
ruffling that internalizes extracellular fluids, nutrients, growth factors
and pathogens (Bar-Sagi and Feramisco, 1986; Fujii et al., 2013). Aside
from bulk internalization, macropinocytosis allows cells to explore
their environment and receive signals from other cells (Veltman et al.,
2016). Closure and scission of phagosomes and macropinosomes
remains poorly understood; however, myosins likely play a role
through interactions with actin (Brzeska et al., 2016).

1.1.2 Caveolar endocytosis
Caveolae are detergent-resistant, flask-shaped invaginations

found in PM regions with high cholesterol and sphingolipid levels
(Parton et al., 2006). The structure of caveolae is determined by the
transmembrane proteins caveolin-1 (CAV1) and caveolin-2 (CAV2),
which form a heterodimer that interacts with cytosolic cavins (Kiss
and Botos, 2009). Caveolae are generally immobile, but binding of
ligands such as simian virus 40, cholera toxin or albumin induces
internalization (Pelkmans et al., 2002). Upon ligand binding,
CAV1 recruits Src-family tyrosine kinases to specialized scaffolding
domains. Src then phosphorylates CAV1/2, leading to endocytosis
through currently-unclear mechanisms that depend on dynamin (Oh
et al., 1998; Shajahan et al., 2004; Sverdlov et al., 2007).

1.1.3 Small GTPase-Dependent CIE
To date, several CIE pathways involving Rho- and Arf-family

GTPases have been identified but remain understudied. RhoA-
dependent CIE internalizes the interleukin-2 receptor (IL2R); this
pathway is dynamin-dependent, and requires Rac1 and its effector
Pak1 (Lamaze et al., 2001). RhoA-dependent CIE is also responsible
for compensatory endocytosis in bladder umbrella cells, which
rapidly expand during bladder filling and contract during
voiding. RhoA-dependent CIE allows for rapid PM

internalization after voiding, likely in response to loss of
membrane tension (Khandelwal et al., 2010). CIE in umbrella
cells requires integrins but not Rac1, suggesting mechanistic
distinctions from IL2R internalization.

Arf6 defines a dynamin-independent CIE route, that internalizes
MHC1 as its major cargo, wherein the GTPase contributes to actin
polymerization, activation of phosphatidylinositol-4-phosphate 5-
kinase (PIP5K) and phospholipase D (PLD) (Naslavsky et al., 2004).
PIP5K then generates PI(4,5)P2, which is required for vesicle
formation (Grant and Donaldson, 2009). Subsequently,
Arf6 inactivation promotes sorting to early endosomes or
recycling pathways. Other CIE pathways, including FEME, UFE
and CLIC/GEEC also utilize small GTPases, but are described
separately due to the larger number of additional proteins involved.

1.1.4 CLIC/GEEC
Several CIE mechanisms operate independent of clathrin and

dynamin, including CLIC/GEEC, which internalizes bulk fluid-phase
material and glycosylphosphatidylinositol-anchored proteins (GPI-
APs) in tubular carriers (Sabharanjak et al., 2002; Kirkham et al.,
2005). At cholesterol-enriched PMmicrodomains, recruitment of the
Arf1 guanine nucleotide exchange factor (GEF) GBF1 leads to
Arf1 activation (Römer et al., 2010). Arf1-GTP subsequently
recruits the Cdc42 GTPase-activating protein (GAP)
ARGHGAP10/21, which regulates formation of endocytic carriers
(Gupta et al., 2009). The Cdc42 effector GRAF1, which contains
RhoGAP, SH3 and BAR-domains, also aids in membrane
deformation while regulating Cdc42 activity (Lundmark et al.,
2008). Additionally, CLIC/GEEC internalizes Shiga and cholera
toxins, and may be activated to compensate for loss of membrane
tension (Ferreira and Boucrot, 2018; Thottacherry et al., 2019).

1.1.5 Fast endophilin-mediated and ultrafast
endocytosis

FEME is a CIE pathway that relies on the BAR protein Endophilin
to internalize cargos including G protein-coupled receptors (GPCRs),
receptor tyrosine kinases (RTKs) and cytokine receptors (Boucrot et al.,
2015). Upon ligand-receptor binding, Cdc42 initiates a signaling
cascade via FBP17 and CIP4, which recruit the lipid phosphatases
SHIP1/2; RhoA and Rac1 may also participate. Dephosphorylation of
PI(3,4,5)P3 into PI(3,4)P2 permits anchoring of Lamellipodin, which
binds to Endophilins A1 and A2 to facilitate membrane deformation
(Hak et al., 2018). Finally, microtubules and microtubule-based motors
are required for membrane tubule extension, while dynamin completes
scission (Renard et al., 2015). Related to FEME is UFE, which involves
endophilin-A3, synaptojanin-1, dynamin, and formin to mediate rapid
recycling of synaptic membranes in neurons (Watanabe et al., 2013;
2018; Soykan et al., 2017; Imoto et al., 2022). FEME and UFE share
some, but not all components, suggesting distinctions between the two
pathways (Figure 1).

1.2 CIE in model organisms

Genetically-tractable model organisms provide important
opportunities to further our understanding of endocytosis and its
regulation. Notably, budding and fission yeast (Saccharomyces
cerevisiae and Schizosaccharomyces pombe, respectively) were
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extensively used to uncover conserved CME proteins and to identify
the sequence of events required for CCV formation (Engqvist-
Goldstein and Drubin, 2003; Kaksonen et al., 2005; Yarar et al.,
2005; Basu and Chang, 2011). Metazoan models such as Drosophila
melanogaster and Caenorhabditis elegans are valuable for
characterizing roles for endocytosis during development and in
the context of tissue and organ function.

While model organisms aid in understanding CME, their use in
studying CIE pathways remains limited by comparison. For
example, CIE in budding yeast was first described in 2011; all
yeast were previously thought to utilize only CME, even though
residual endocytosis still occurs in clathrin-null cells (Payne et al.,
1988; Prosser et al., 2011). In the following section, we describe
recent breakthroughs in CIE from the standpoint of model
organisms and how they provide insight into mammalian pathways.

1.2.1 CIE in fungi
Similar to the mammalian RhoA-dependent pathway, CIE in

budding yeast requires its homolog Rho1, as first described in CME-
defective cells lacking functional adaptor proteins (Prosser et al.,
2011). In numerous CME-deficient mutants, including clathrin-
null cells, high-copy expression of RHO1, its GEF ROM1, and the
integrin-like cell wall stress sensor MID2 improve cargo
internalization, but do not correct aberrant dynamics of CME
sites. Yeast CIE additionally requires the formin Bni1 (a
Rho1 effector), polarisome proteins involved in Bni1 localization,
and actin-stabilizing tropomyosins. Subsequent studies demonstrated
CIE roles for select proteins involved in CME, including α-arrestins
and Syp1, although their function in CME versus CIE may be
mechanistically distinct (Prosser et al., 2015; Apel et al., 2017).
Recent work demonstrated roles for the myosin Myo2, Myo2-
dependent transport of cytoplasmic microtubules, microtubule-
based motors (dynein/dynactin), and proteins involved in cortical
microtubule capture (Num1) (Woodard et al., 2023). These findings
suggest parallels between yeast CIE and mammalian pathways,
including UFE (formin-dependent), FEME and uptake of cholera
and Shiga toxins (microtubule and dynein/dynactin-dependent) (Day
et al., 2015; Renard et al., 2015; Soykan et al., 2017).

Growing evidence suggests that CIE occurs in other fungi,
although pathways remain poorly characterized. Fission yeast
utilizes CME for endocytosis at cell tips, while formin (For3)-
dependent actin polymerization facilitates internalization at the
sides of cells (Gachet and Hyams, 2005); roles for clathrin in For3-
dependent endocytosis have not yet been assessed. In Candida
albicans, endocytosis persists in cells lacking Arp2/3, suggesting a
likely CIE mechanism (Epp et al., 2013). RHO1 overexpression does
not restore endocytosis in arp2/3 mutant Candida, suggesting
differences from budding yeast CIE. Finally, in the filamentous
fungus Aspergillus nidulans, an AP-2 and clathrin-independent
endocytic pathway contributes to apical growth. Unlike budding
yeast, α-arrestins are not involved in Aspergillus CIE, further
suggesting mechanistic differences amongst fungi (Martzoukou
et al., 2017).

1.2.2 CIE in invertebrates
Drosophila is widely used for understanding the genetic basis of

metazoan development, which requires coordination of signaling
events dependent on receptor internalization. One example is Delta-

Notch signaling, wherein Notch is endocytosed and induces cell
proliferation and differentiation. Some Notch and Delta internalize
in clathrin mutant flies in a dynamin-dependent manner, suggesting
a CIE pathway of unknown mechanism (Windler and Bilder, 2010;
Hemalatha et al., 2016). Moreover, Drosophila utilizes phagocytic,
macropinocytic and CLIC/GEEC pathways for internalization
(Gupta et al., 2009).

Several CIE pathways exist in C. elegans, including an Arf6-
mediated pathway similar to the mammalian mechanism described
above. This pathway contributes to sorting and recycling using
Rab10, Rab22, Rab35, Hook1, ALX1 and RME-1/EHD-1 (Chen
et al., 2006; Glodowski et al., 2007; Shi et al., 2007). In addition, C.
elegans is useful for studying UFE, which was first described in
worms. Upon light stimulation of motor neurons expressing
channelrhodopsin, endocytic events begin 50 ms after stimulation
and are completed within one second, faster than occurs during
CME (Watanabe et al., 2013). Further study of this pathway showed
that dynamin, endophilin, and synaptojanin are required, while
clathrin is not.

1.2.3 CIE in plants
Characterization of endocytosis in plants is limited, but studies in

Arabidopsis thaliana demonstrate that CIE functions during
environmental stress and seedling development. Arabidopsis CIE
relies on Flotillin1 (Flot1) at sterol- and sphingolipid-enriched
membrane microdomains distinct from clathrin-containing PM
regions (Li et al., 2012). Additionally, Latrunculin B-mediated actin
depolymerization in root tip cells inhibits formation of Flot1-positive
compartments, suggesting actin involvement. Knockdown of
Flot1 impairs seedling development and growth, implying roles for
Flot1 and CIE in these processes (Li et al., 2012). Arabidopsis offers a
unique tool for studying endocytosis in a whole tissue context due to
high levels of organization in root cells and ease of visualization by
light microscopy. Analysis of root tips demonstrates that GPI-APs
and FM4-64 are constitutively internalized through CME and CIE in
epidermal cells, while inner cells only require CME. However, under
high salinity, CIE is upregulated across all root cells to internalize GPI-
APs, transmembrane proteins, and FM4-64. This pathway is distinct
from constitutive CIE, and requires the Rab5 GEF Vps9a, and sterols
(Baral et al., 2015).

2 Discussion: Future directions in CIE

In recent years, our understanding of CIE has expanded to reveal
diverse pathways; this increased knowledge opens new questions
and avenues for future exploration. First, what is the degree of
overlap between pathways? While some proteins clearly participate
in both CME and CIE, or in multiple CIE pathways, contributions to
different pathways may be mechanistically distinct. Often, different
pathways share several major components, but recruit unique
proteins to work with the core machinery. For example, the
CLIC/GEEC pathway, FEME and UFE all involve Cdc42 during
early events to activate proteins that modulate phosphoinositides,
which bind BAR-domain proteins. BAR proteins differ between
pathways, with CLIC/GEEC relying on GRAF1, FEME on
endophilin-A1/A2 and UFE on endophilin-A3 (Lundmark et al.,
2008; Sathe et al., 2018; Casamento and Boucrot, 2020). Among
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these, only CLIC/GEEC is dynamin-independent, suggesting
distinct scission mechanisms. This mosaic pattern of components
is common in CIE, and provides targets to dissect mechanistic
commonalities and differences.

The lack of defined coat in CIE raises questions about how forces
are generated for membrane bending. BAR-domain proteins sense and
induce membrane curvature and may thus contribute to deformation,
although how these proteins function in CIE remains unclear. Newly-
described roles for myosins, microtubules and other cytoskeletal
components in budding yeast CIE could similarly contribute to
membrane deformation. In CME, the type I myosins Myo3/
5 generate force during endocytosis through interactions with actin
(Sun et al., 2006). Myo2 may play a similar role in CIE; alternatively,
Myo2-dependent transport of microtubules to the cell cortex may
suggest involvement of dynein/dynactin (Woodard et al., 2023).

Sorting and selection mechanisms are also unresolved questions,
in large part because of the lack of CIE cargos. While cargos are
known for RhoA-mediated endocytosis (IL2R) and CLIC/GEEC
(GPI-APs), they remain less defined for other routes such as FEME
and UFE. In yeast, the pheromone receptor Ste3 was used to
characterize CIE, but prefers CME as its primary route (Prosser
et al., 2011). Ptr2 is another yeast cargo that prefers CME at low
osmolarity, but is partially redirected into a CIE path under high
osmolarity conditions (Apel et al., 2017). Aside from these, new
studies continue to reveal additional cargos that will likely allow us
to better understand selection mechanisms during CME and CIE.
For example, amyloid precursor protein (APP) and low-density
lipoprotein internalize when clathrin and dynamin are inhibited,
suggesting roles for an as-yet undetermined CIE route (Aow et al.,
2022). Similarly, uptake of L1CAM and CD166 through Endophilin-
A3-mediated CIE may facilitate studies of pathways such as FEME
or UFE (Renard et al., 2019; Lemaigre et al., 2022).

As our knowledge of CIE expands, we are only beginning to
understand these unique and exciting pathways. Much work
remains in characterizing the proteins involved, elucidating
physiological roles for CIE in health and disease, and assessing
relationships between distinct CIE routes or between CME and CIE.
Addressing these knowledge gaps is critical to expanding our
understanding of CIE, and will provide important insights into
the multiple mechanisms that contribute to PM regulation.
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