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Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate
into multiple cell types, making them highly suitable for use as seed cells in tissue
engineering. These can be derived from various sources and have been found to
play crucial roles in several physiological processes, such as tissue repair, immune
regulation, and intercellular communication. However, the limited capacity for cell
proliferation and the secretion of senescence-associated secreted phenotypes
(SASPs) pose challenges for the clinical application of MSCs. In this review, we
provide a comprehensive summary of the senescence characteristics of MSCs and
examine the different features of cellular microenvironments studied thus far.
Additionally, we discuss the mechanisms by which cellular microenvironments
regulate the senescence process of MSCs, offering insights into preserving their
functionality and enhancing their effectiveness.
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1 Introduction

Over the past decade, there has been significant progress in the field of stem cell-based
regenerative therapeutics and ex vivo disease models. This progress has been achieved by
leveraging the pluripotent and immunological features of stem cells. Mesenchymal stem cells
(MSCs), which are adult non-hematopoietic mesodermal stem cells, were first isolated from
bone marrow in 1968. (Friedenstein et al., 1968). MSCs offer numerous advantages over
other types of stem cells in terms of therapy and applications. These versatile cells can be
derived from various sources such as bone marrow, umbilical cord, placenta, fat, cartilage,
skin, lungs, and dental pulp. (Pittenger et al., 2019; Liu Yajun et al., 2022). Previous research
has shown that genetic alteration of MSCs and gene delivery are both feasible and practical
(Damasceno et al., 2020; Zhou et al., 2023). The immunological flexibility of MSCs makes
them highly effective in regulating and improving the inflammatory microenvironment.
(Zhuang et al., 2022). To date, treatments using MSCs and their extracellular vesicles (EVs)
have demonstrated beneficial effects in a variety of diseases, such as osteoarthritis (OA)
(Greif et al., 2020; Kim et al., 2020; Rizzo et al., 2023), diabetic mellitus (DM) (Sun F. et al.,
2022; Yang et al., 2022), Crohn’s disease (CD) (Garcia-Olmo et al., 2022; Huang et al., 2022),
systemic lupus erythematosus (SLE) (Zhang Mingchao et al., 2022), myocardial infarction
(MI) (Czosseck et al., 2022), acute respiratory distress disorder (ARD) (Jackson et al., 2016;
Qiao et al., 2021) and graft-versus-host disease (GVHD) (Harrell et al., 2022). In 2006, the
International Society for Cellular Therapy (ISCT) proposed minimal criteria to defineMSCs.
These criteria include: i. MSCs should adhere to plastic under standard culture conditions; ii.
MSCs should express CD105, CD73, and CD90, while not expressing CD45, CD34, CD14 or
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CD11b, CD79 or CD19, and HLA-DR surface markers; and iii.
MSCs should demonstrate the ability to differentiate into three
different lineages: osteogenic, lipogenic, and chondrogenic.
(Dominici et al., 2006; Mareschi et al., 2006).

However, as MSCs undergo senescence, they also undergo a
transition from an anti-inflammatory to a pro-inflammatory factor
phenotype. This shift can reduce the immunomodulatory potential
of MSCs and significantly limit the effectiveness of stem cell therapy.
Moreover, senescent MSCs alter the cellular microenvironment
surrounding them through the secretion of senescence-associated
secreted phenotypes (SASPs), the generation of reactive oxygen
species (ROS), and the remodeling of the extracellular matrix
(Liu J. et al., 2022; Siraj et al., 2023). These changes induce
senescence in non-senescent MSCs. As a result, stringent criteria
may be necessary for creating high-quality MSCs for therapeutic
applications and obtaining large quantities of high-purity MSCs
from patients can be challenging. (Zhang Y. et al., 2021).

Efforts to enhance the efficiency of cell therapy must address
the negative effects of senescence in MSCs. Multiple factors
contribute to the senescence of MSCs, including cell-intrinsic
regulatory mechanisms related to DNA damage, telomere
shortening, and epigenetic modifications. Additionally, the
cellular microenvironment in which MSCs reside plays a
significant role in influencing their senescence-related
behaviors. The cellular microenvironment refers to the local
region consisting of neighboring cells and non-cellular
components. It provides structural support and signaling that
are crucial for maintaining the homeostasis and functionality of
MSCs(Choi et al., 2014; Papait et al., 2020; Liu J. et al., 2022; Pei
et al., 2023). Creating an appropriate cellular microenvironment
is also essential for advancements in tissue engineering and
regenerative medicine. The state and function of MSCs can be
influenced by changes in the cellular microenvironment during
various physiological and pathological conditions (Papait et al.,
2020; Liu J. et al., 2022; Tan et al., 2022). The current body of
literature does not provide a comprehensive overview of the
impact of the cellular microenvironment on senescence in
MSCs. As a result, the objective of this paper is to compile
and summarize the effects and mechanisms of different
cellular microenvironments on the senescence and behavior of
MSCs. Additionally, this paper will explore potential avenues for
future research in this field.

2 Characteristics of MSCs senescence

Cellular senescence is a physiological state that manifests as a
stable cell cycle stagnation (Herranz and Gil, 2018). The discovery
can be traced back to the 1960s, when Haflick and Moorhead
experimentally cultured and observed human fibroblasts’ inability
to divide indefinitely. This phenomenon is known as the ’Hayflick
limit’. (Hayflick and Moorhead, 1961). Senescent cells are
characterized by heightened intracellular expression of
senescence-related genes, such as p16 and p53 (Hernandez-
Segura et al., 2018), as well as senescence-associated β-
galactosidase (SA-β-gal). Additionally, they further induce the
surrounding cells and microenvironment into senescence through
paracrine effects. (Di Mitri and Alimonti, 2016).

Previous research has demonstrated that the presence and
elimination of senescent cells have a beneficial effect on
maintaining the microenvironment and organ function in the
human body over a short period of time. However, the long-term
accumulation of senescent cells can have the opposite effect and
contribute to the development of age-related diseases (ARDs) (Yin
Yujia et al., 2021). Cellular senescence is also a contributing factor to
individual aging, a gradual decline in physiological function.
Previous studies have demonstrated the effectiveness of Senolytics
in eliminating senescent cells and addressing ARDs such as
cardiovascular diseases, metabolic diseases, and frailty (Zhu et al.,
2015; Chaib et al., 2022). For instance, the application of ABT-263 as
a pretreatment for synovial MSCs has proven to be successful in
eliminating senescent cells and enhancing the outcomes of patients
with OA (Miura et al., 2022). Lopez-Otin et al. (Lopez-Otin et al.,
2013) identified nine hallmarks of aging, including DNA damage,
telomere attrition, epigenetic modification, loss of proteostasis,
mitochondrial failure, cellular senescence, nutrition sensing,
intracellular communication, and stem cell exhaustion. Cellular
senescence and stem cell exhaustion are the main mechanisms of
aging. In this section, we will focus on the characteristics of MSCs’
senescence.

2.1 Cell cycle arrest

Unlike cells in a quiescent state, senescent cells are metabolically
active but arrested in the G1/S phase of the cell cycle. This arrest is
primarily caused by activation of the p53/p21CIP1 signaling pathway
or the p16INK4A/Rb oncogenic pathway (Kamal et al., 2020; Engeland,
2022). p53, a tumor suppressor gene, promotes genomic stability by
inducing cell cycle arrest and apoptosis (Chen, 2016). It also plays a
significant role in cellular senescence and aging (Hafner et al., 2019).
In p53-induced senescent MSCs, the expression of p53-regulated
downstream miRNAs (such as miR-34a/b/c, miR-29, miR-145, and
miR-192) increases, with miR-34a showing the strongest association
with p53. Overexpression of miR-34a in MSCs inhibits osteogenic
differentiation and accelerates senescence (Xia et al., 2021).
Interestingly, the expression of p16INK4A is elevated in P3 MSCs
overexpressing miR-34a, while the expression of p21WAF1/CIP
remains largely unchanged, suggesting different mechanisms for
replicative senescence (Pi et al., 2021). Apart from p53-dependent
miRNAs, other miRNAs also play distinct roles in MSC senescence.
For instance, miR-200c-3p inhibits the p53/p21 axis and enhances the
transcription of stemness-related genes (Nanog, Oct4, and Sox2)
(Anastasiadou et al., 2021).

2.2 Morphological and biological changes

There is a strong correlation between the morphology and
function of MSCs. Previous studies have shown that larger MSCs
have similar ATP levels and SA-β-gal activity as those obtained
from older individuals (Liu J. et al., 2020). On the other hand,
smaller MSCs resemble those obtained from younger
individuals, suggesting that cell size could be used as a
potential indicator to evaluate the level of senescence in
MSCs (Block et al., 2017; Zhai et al., 2021). Senescent MSCs
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undergo a transformation from their typical spindle shape to an
enlarged, irregular, flattened form (Li et al., 2017). As the
number of passages increases, the shape of human adipose-
derived stem cells (ADSCs) changes, with the emergence of
pseudopod structures in the 10th generation and a ’fried egg’
morphology in the 15th generation. Additionally, prolonged
culture significantly reduces cell density in the same
magnification field, while the cell diameter gradually increases
(Truong et al., 2019).

2.3 Senescence-associated-β-galactosidase

Senescence-associated-β-galactosidase (SA-β-gal) was initially
discovered by Dimri et al., in 1995 (Dimri et al., 1995). Since
then, it has emerged as the most extensively utilized biomarker
for identifying senescent cells, both in vitro and in vivo. SA-β-gal
activity is highly correlated with senescent cells and is not detectable
in quiescent or differentiated cells. The level of SA-β-gal is associated
with the amount of lysosomes inside cells (Lozono-Torres et al.,
2019), and the increase in size and volume of lysosomes is primarily
due to the presence of lipofuscin, a marker for senescent cells (Vida
et al., 2017). Aspirin (2-Acetoxybenzoic acid) therapy was found to
effectively reduce the number of SA-β-gal-positive cells in replicative
senescent bone marrow stem cells (BMSCs). Additionally, there was
a significant decrease in the expressions of p16, p53, and p21, and the
blue staining of BMSCs nuclei was also reduced (Liu X. P. et al.,
2022).

2.4 Colony-forming ability

The ability of a single cell to proliferate ex vivo for more than
six generations and its progeny to form a population of cells is
commonly referred to as a ’colony’ or ’clone.’ The colony
formation rate serves as an indicator of the cell’s ability to
survive independently. Colony-forming ability is considered a
significant characteristic of cell stemness, and MSCs tend to lose
their colony-forming ability as their proliferation decreases and
they enter senescence (Ridzuan et al., 2016). In a study conducted
by Kapetanou et al., proteasomal changes associated with
senescence were observed in late-passaged (p40) human
mesenchymal stem cells (hMSCs). The researchers found a
decrease in the expression of the β5 subunit, which was
closely linked to the poor proliferative potential of hMSCs.
However, when β5 was overexpressed in Wharton’s jelly-
derived mesenchymal stem cells (WJ-MSCs), the senescence-
associated proteasomal alterations were rescued. This
overexpression of β5 not only enhanced the stemness and
proliferative capacity of late-passaged MSCs, but it also
resulted in a decrease in proteasomal oxidative protein
modifications and intracellular ROS levels (Kapetanou
Marianna et al., 2017). Furthermore, it has been demonstrated
that the ability of MSCs to form colonies is also influenced by
telomere length (Guerrero et al., 2021) and the consistent
expression of proto-oncogenes, such as B cell lymphoma 3
(Bcl-3) (Wang Fuxiao et al., 2022).

2.5 Differentiation bias

The ability of MSCs to differentiate into three lineages is a
distinguishing characteristic, and an imbalance in the
differentiation into osteogenic and lipogenic lineages is a
problem associated with MSC senescence. MSCs in the bone
marrow (BM) microenvironment show reduced proliferative
capacity and increased SA-β-gal activity, which are linked to
age-related osteoporosis and fractures. Additionally, there is a
decrease in osteogenic differentiation and an increased tendency
towards lipogenic differentiation (Yi et al., 2021). Bcl-3, an
inhibitor of NF-κB that plays a role in maintaining Wnt/β-
catenin signaling and promoting osteogenic differentiation
while inhibiting lipogenic differentiation in BMSCs, is
considered a crucial target for treating age-related
osteoporosis (Chen Xi et al., 2020; Jing et al., 2022).

In recent years, researchers have postulated that several
miRNAs affect biological characteristics in MSCs through
various signaling pathways (Yang et al., 2021). One such
miRNA, miR-204, has been found to be significantly increased
in senescent cells and has regulatory effects on SASPs factors such
as IL-6 and MMP-3 (Kang et al., 2019). Additionally, it has been
observed to inhibit the osteogenic differentiation of BMSCs by
regulating RUNX2 (Huang et al., 2010). Another important
discovery is the role of the long noncoding RNA zinc finger
antisense 1 (ZFAS1) in governing the osteogenic development of
BMSCs through the ZFAS1-miR-499-EPHA5 axis. This finding
suggests that targeting ZFAS1 could be crucial in the treatment of
osteoporosis in the elderly, as BMSCs with ZFAS1 knockdown
exhibit increased osteogenic differentiation and decreased
lipogenic differentiation (Wu et al., 2022). Shen J. et al. (Shen
et al., 2020)further discovered that miR-483-3p stimulates
lipogenic differentiation in ADSCs and inhibits the
IGF1 pathway, leading to senescence in ADSCs.

2.6 Metabolic alterations

Senescence is closely associated with disturbances in the
maintenance of metabolism. As cells become senescent,
several neutral amino acids such as valine, isoleucine, and
glycine can be utilized as alternative energy sources to
maintain energy homeostasis (Yi et al., 2020). Metabolomic
analysis has revealed changes in glycerophospholipid
metabolism, taurine and hypotaurine metabolism, glycerolipid
metabolism, drug metabolism-cytochrome P450, and drug
metabolism-other enzymes in senescent BMSCs(Chen et al.,
2019; Yu X. et al., 2022). Lipid metabolism was found to be
inhibited. Genes related to lipid metabolism, such as Scd, Scd2,
Dgat2, Fads2, and Lpin1, were downregulated. Scd2, the most
significant differentially expressed gene (DEG), may be involved
in altering the biomembrane of senescent cells. In
Scd2 overexpressing BMSCs, there was a significant reduction
in SA-β-gal activity, and the expression of senescence-associated
genes was suppressed. However, there have been limited reports
on the roles and mechanisms related to Scd2 (Yu Xiao et al.,
2022).
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2.7 Phenotypic changes

During senescence, there are no significant differences in the
expression of certain surface markers such as CD105, CD73, and
CD90. However, other surface markers such as CD106, CD146,
and STRO-1 are linked to senescence in MSCs and their
expressions are downregulated during senescence. For example,
MSCs derived from the BM of multiple sclerosis (MS) patients
showed senescence-related characteristics such as reduced
amplification capability and decreased STRO-1 expression
(Redondo J. et al., 2018). The improved effectiveness of
CD146+ MSCs in treating myocardial infarction (MI) may be
attributed to lower levels of ROS(Zhang et al., 2019). On the other
hand, replicative senescence enhances CD26 expression. MSCs
with high CD26 levels have a decreased capacity for
immunosuppression and proliferation compared to MSCs with
low CD26 levels (Psaroudis et al., 2022).

SASPs were initially discovered and described by Coppe et al. in
senescent fibroblasts and epithelial cells (Coppe et al., 2008). During
senescence, cells produce unique secretions known as SASPs, which
play a role in maintaining the senescent phenotype. SASPs
consist of various components including inflammatory and
immunomodulatory factors (e.g., IL-6, IL-7, and IL-8),
chemokines (e.g., MCP-2 and MIP-3a), growth factors (e.g.,
GRO, HGF, and IGFBPs), cell surface receptors (e.g., ICAMs,
uPAR, and TNF receptors), matrix metalloproteinases, and
survival factors (Acosta et al., 2008; Acosta et al., 2013; Basisty
et al., 2020). In replicative senescent MSCs, there is a significant
increase in the levels of SASPs-associated proteins IL-6, IL-8, and
MCP-1, with IL-6 showing the highest increase. The development of
senescence in MSCs is attributed to enhanced autophagic activity
(Bernard et al., 2020), which is closely linked to the upregulation of
FOX3a levels and subsequent increase in IL-6 and IL-8 expression
(Zheng et al., 2023). However, other SASPs-related proteins such as
MIP-1α, MMP-2, MMP-3, IL-1α, and IL-1β were not found to be
altered in association with senescence based on relevant studies
(Marote et al., 2023).

Researchers have discovered that SASPs promote senescence in
MSCs by suppressing B cell-specific Moloney murine leukemia virus
Integration site 1 (Bmi-1). The expression of Bmi-1 was found to be
downregulated in the senescence environment and reducing Bmi-1
levels decreased the proliferation rate of MSCs. Among the various
standard components of SASPs that were tested and compared, IL-
1α showed the highest impact on downregulating Bmi-1 (Zheng
et al., 2021).

When investigating ways to mitigate senescence in MSCs caused
by SASPs, researchers discovered that WNT/β-catenin signaling
inhibits the paracrine effects of SASPs. Additionally, Wnt3a was
found to have a positive effect on cell proliferation. Furthermore, it
was observed that the combination of SASPs inhibitory factors
FGF2 and Wnt3a may have a more significant anti-senescent
effect (Lehmann et al., 2022). Moreover, in radiation-induced
senescent cells, the levels of SASPs factors such as IL-1α, IL-6,
MMP-3, resistin, lipocalin, and IGFBP-6 were significantly
increased. These factors disrupted the colony-forming ability and
multidirectional differentiation of BMSCs through paracrine effects.
However, the adverse effects were alleviated when JAK1 inhibitors
were used (Xu et al., 2021) (Figure 1).

3 Mechanisms of mesenchymal stem
cell aging

According to Al-Azab M et al. (Al-Azab et al., 2022), the five
main hallmarks of MSC senescence are damage to genetic material,
non-coding RNA and exosomes, loss of protein homeostasis,
intracellular signaling pathways, and mitochondrial dysfunction.
In this section, we will summarize the relevant research progress.

3.1 Damage to genetic material

Damage to genetic material can occur through telomere
shortening, DNA damage, and epigenetic alterations.

3.1.1 Shortened telomere
Telomeres, which are non-coding regions at the ends of

chromosomes, consist of thousands of identical sequence repeats
(Blackburn and Gail, 1978; Moyzis et al., 1988). During lagging
strand synthesis, DNA polymerase is unable to fully replicate the
3′end of double-stranded DNA (Watson, 1972). Telomere depletion
plays a role in regulating the senescence of MSCs through downstream
signaling of the oncogene repressor protein p53 and inhibiting
mitochondrial metabolic activity via the peroxisome proliferator-
activated receptor gamma (PPARγ) coactivator 1α/β (PGC-1α/β)
(Sui et al., 2016). MSCs obtained from telomerase knockout animals
exhibit impaired replicative capacity and may even lose the ability to
differentiate completely, even in early passages (Liu et al., 2004; Pignolo
et al., 2008; Yang Y. K. et al., 2018). The average length of telomeres in
MSCs is dependent on the age of the tissue donor in early-passage
MSCs(Li et al., 2017). Previous research has indicated that the average
length of telomeres in early cultures of MSCs ranges from 11–13 to
9–10 kb (Parsch et al., 2004; Bonab et al., 2006). Other studies have
shown that during in vitro expansion, there is a rapid aging process,
resulting in approximately 100 bp of telomere shortening every two
passages. Senescence in MSCs is typically observed when the telomere
length reaches 10 kb, although a different study reported a length of
6.8 ± 0.6 kb in senescent cells (Oja et al., 2018; Liu J. et al., 2020). The
potential of using telomere length measurement as a biomarker in
assessing the senescence of MSCs holds significant promise. Telomere
shortening stands as one of the best-characterized mechanisms
triggering cell senescence, and it can be expedited by the presence of
oxidative stress (Jiang et al., 2023). The activation of the catalytic subunit
of telomerase (known as hTERT) has been found to effectively impede
the progression of senescence, resulting in a notable decrease in
aneuploidy levels and the preservation of ploidy-controlling genes’
regulation (Estrada et al., 2013). Hence, the close association
between telomere length and MSC senescence implies that telomere-
based examinations possess the potential to serve as valuable tools in
diagnosing and managing cellular senescence (Bernadotte et al., 2016).

3.1.2 DNA damage
DNA damage can result in two outcomes. The first outcome

involves the inaccurate repair of DNA damage, which can give rise to
mutations or chromosomal aberrations, ultimately culminating in
the development of cancer. The second outcome is persistent DNA
damage that hinders replication and transcriptional processes,
causing cellular dysfunction, cellular senescence, and apoptosis
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(Ou and Schumacher, 2018; Banimohamad-Shotorbani et al., 2020).
Among these outcomes, the accumulation of endogenous ROS plays
a crucial role in DNA damage (Canli et al., 2017). As the number of
passages increases, the accumulation of ROS and the aggravation of
DNA damage can be observed in MSCs. Conversely, the expression
of DNA repair-related proteins such as Ku70, Ku80, Rad 51, PAR,
and 116 kDa PARP1 decreases with cell passages. The transcription
factor PBX1 can mitigate ROS-mediated DNA damage and inhibit
the senescence and apoptosis of MSCs(Wang Yuan et al., 2021).
Consequently, comprehending the intricate molecular mechanisms
driving MSC senescence is imperative to enhance the curative
impact of MSCs and create viable approaches to impede or
potentially revert the dysfunction of aged MSCs. This, in turn,
holds promise for revitalizing individuals’ holistic welfare and
alleviating age-associated diseases (Weng et al., 2022).

3.1.3 Epigenetic alterations
The cellular senescence of MSCs is orchestrated by various

epigenetic modifications, such as the organization of chromatin,
posttranslational modifications of histones, DNA methylation, and
the involvement of non-coding RNAs(Al Aboud et al., 2023; Sun

et al., 2023). In a related study, it was discovered that 46 differentially
regulated genes were identified in BMSCs from both young and
senescent patients after undergoing ex vivo expansion. Out of these
genes, 23 were found to be associated with selective shearing (Peffers
et al., 2016). Other studies have also reported similar findings,
indicating that selective shearing is a characteristic of aging in
MSCs. Additionally, differences in methylation levels can
influence selective shearing, as senescent MSCs exhibit high levels
of hypomethylation or an overall loss of DNA methylation (Bork
et al., 2010; Cakouros and Gronthos, 2020).

3.2 Non-coding RNA and exosomes

RNA serves as a transmitter of genetic information expression and
plays a crucial role as a regulator. Small non-coding RNAs, which have
diverse functions in cells, are involved in regulating important life
processes such as growth and development, gene expression, genome
stability, and cellular senescence. These small non-coding RNAs
(SncRNAs) include various types, such as microRNAs (miRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),

FIGURE 1
Characteristics of MSCs senescence (A) Cell cycle arrest caused by activation of the p53/p21CIP1 signaling pathway or the p16INK4A/Rb oncogenic
pathway (Kamal et al., 2020); (B)Morphological changes with pseudopod structures appearing in the 10th generation and a "fried egg" morphology in the
15th generation (Truong et al., 2019); (C) Paracrine effects; (D) Loss of colony-forming abilities (Ridzuan et al., 2016); (E) Elevated osteogenic
differentiation and a decreased lipogenic differentiation (Yi et al., 2021); (F) Phenotypic changes; (G)Metabolic alterations (Neutral amino acids such
as valine, isoleucine, and glycine can be used as alternative energy sources tomaintain energy homeostasis (Yi et al., 2020); Inhibited lipid metabolism (Yu
Xiao et al., 2022)) (Created by Biorender. com).
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P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs),
small interfering RNAs (siRNAs), transfer RNAs (tRNAs), and repeat-
associated siRNAs (rasiRNAs). They function as epigenetic regulatory
molecules in the regulation of cellular senescence inMSCs(Musavi et al.,
2019; Wang S. et al., 2021).

BMSCs were amplified ex vivo and exhibited replicative
senescence, as evidenced by increased SIRT1 mRNA expression
and significantly increased SA-β-gal activity. Additionally, there
were observed differences in gene expression of SncRNAs,
including 203 miRNAs, 46 piRNAs, 63 snoRNAs, 12 snRNAs,
and 7 rasiRNAs in p10 generation BMSCs compared to
p1 generation BMSCs(Xiao et al., 2022).

miRNA is a crucial component of exosomes, which are a type of
EVs that plays a dual role in anti-aging and senescence. It induces
senescence when it is a part of SASPs, but resists senescence when
secreted by young and healthy MSCs(Ahmadi and Rezaie, 2021).
The imbalance between mitochondrial fusion and fission is closely
related to cellular senescence. Liangge He et al. proposed that miR-
311 derived from EVs could be an important indicator of senescence
promotion for diagnosing inflammation and acute senescence in
MSCs(He et al., 2023). Dynamin-related protein 1 (Drp1) mediates
mitochondrial fission, resulting in the formation of small, round
mitochondria. On the other hand, miR-155-5p derived from
senescent MSCs induces mitochondrial fusion and drives normal
MSCs into senescence by inhibiting the Cab39/AMPK signaling
pathway. The senescence of MSCs can be alleviated by using miR-
155-5p inhibitors, although this effect can be partially reversed by
the Drp1 inhibitor Mdivi 1 (Hong et al., 2020). Furthermore, Nampt
plays a key role in the regulation of natural and replicative
senescence in MSCs through the inhibition of NAD-SIRT1
signaling (Ma et al., 2017). The expression of miR-34a increases
in senescent MSCs and directly suppresses Nampt, thereby
mediating the induction of MSC senescence (Pi et al., 2021).

3.3 Dysregulation of protein homeostasis

Protein homeostasis, the balance between protein synthesis and
degradation, is regulated by a protein quality control system
comprising molecular chaperones, ubiquitin proteasomes, and
cellular autophagy. Additionally, the regulation of these signaling
pathways involves mTOR pathways, Hippo signaling, and Rank
signaling (Kapetanou Marianna et al., 2017). During aging,
impairment of cellular function is closely associated with the
imbalance of protein homeostasis, with the loss of proteasome
function playing a central role in this process. Late-passing hMSCs
exhibited senescence-associated proteasomal alterations, including
reduced mRNA and protein expression of several characteristic
proteasomal subunits (such as β1, β2, β5, α4, α7, and Rpt6), as well
as decreased 26 S proteasome activity and increased 20 S proteasome
activity (Chondrogianni et al., 2005; Kapetanou M. et al., 2017).

3.4 Mitochondrial dysfunction

Mitochondria in senescent cells undergo various changes,
including altered metabolic function (Seok et al., 2020), increased
production of ROS, higher mitochondrial mass, decreased

membrane potential (Korolchuk et al., 2017), and subsequent
acceleration of telomere shortening and DNA damage (Chapman
et al., 2019).

Mitochondria function as the cell’s energy factory, producing ATP
and metabolic energy sources through oxidative phosphorylation
(OXPHOS). However, the overproduction of ROS by complexes I
and III of the respiratory chain can lead to cellular senescence in cases of
mitochondrial failure (Ray et al., 2012). Mitochondrial autophagy plays
a vital role in eliminating damaged or dysfunctional mitochondria. One
example of its impact is the varying effect of H2O2 on mitochondrial
autophagy, where prolonged exposure inhibits the process and leads to
apoptosis in BMSCs. This inhibition is associated with the suppression
of Jun N-terminal kinase (JNK), a member of the mitogen-activated
protein kinase (MAPK) family (Fan et al., 2019). Another instance is the
protective effect of curcumin (Cur) on cellular autophagy, which is
essential for maintaining cellular homeostasis and controlling the
senescence of MSCs (Deng et al., 2021).

3.5 Intracellular signaling pathways

3.5.1 IGF-1 pathway
Insulin-like growth factor 1 (IGF-1) plays a crucial role in

processes such as growth and lipid metabolism. Previous research
suggests that when IGF-1 binds to its receptor, it can alleviate
senescence in MSCs. This effect is associated with the activation
of the PI3K/Akt pathway (Tian et al., 2020). The phosphorylation of
AKT and the high expression of SFRP2 further activate the Wnt/β-
catenin pathway, which helps maintain the cellular proliferative
capacity and metabolic functions of MSCs(Lin et al., 2020).
Additionally, other studies have demonstrated that IGF-1 inhibits
its downstream effector proteins (p70S6K and S6) through the Akt/
mTOR pathway. This, in turn, increases cellular autophagy to
prevent MSCs from undergoing apoptosis (Yang Ming et al., 2018).

3.5.2 mTOR pathway
Persistent activation of the growth-promoting mammalian target of

rapamycin (mTOR) pathway has been shown to play a central role in
cellular senescence and individual aging (Johnson et al., 2013). Inhibition
of the mTOR pathway facilitates the delay of replicative senescence and
the maintenance of cell stemness in MSCs(Antonioli et al., 2019). The
protective mechanism mainly involves preventing the accumulation of
intracellular ROS and DNA damage, as well as reducing the expression
of senescence-associated inflammatory cytokines and genes (e.g.,
p16INK4A). Increasing the level of cellular autophagy through selective
inhibition of mTORC1 is an effective way to slow down MSC
senescence. The combination of AMPK activator (5-aminoimidazole-
4-carboxamide ribonucleotide, AICAR) and SIRT1 activator
(nicotinamide, NAM) inhibits mTORC1 activity and delays MSC
senescence. AICAR not only enhances the level of autophagy and
maintains the morphological and proliferative capacity of MSCs but
also preserves mitochondrial homeostasis through the activation of
SIRT1 by AMPK, thereby reducing ROS and increasing the level of
the anti-apoptotic gene Bcl-2 (Khorraminejad-Shirazi et al., 2020).

There are three Hedgehog proteins in mammals: sonic
hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog
(Dhh). These proteins are highly conserved across evolution
and species and have significant roles in the development of
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skeletal tissue (Briscoe Therond, 2013). In a separate study
investigating the impact on cell cycle pathways in MSCs, Al-
Azab et al. (Al-Azab et al., 2020) discovered that the Ihh,
hinders the progression of the ROS/PI3K/Akt/NF-B/mTOR/
4EBP1-p70S6K pathway. Furthermore, the study revealed that
when Ihh expression is suppressed, the cell cycle of MSCs is
arrested and then enters a state of senescence.

3.5.3 AMPK pathway
AMP-activated protein kinase (AMPK) is a crucial regulator of

cellular and organismal energymetabolism. Its activation depends on the
energy status and the activity of upstream stimulatory and inhibitory
signaling pathways. However, with aging, AMPK’s reactivity declines,
and its regulatory capacity diminishes (Salminen et al., 2016). FGF21, on
the other hand, can regulate mitochondrial survival by modulating
AMPK activation. This regulation involves increasing protein levels
of p-AMPK and p-Drp1, reducing intracellular ROS levels, and delaying
senescence in BMSCs (Li et al., 2019). Resveratrol also promotes
osteogenic differentiation and delays aging in BMSCs through the
AMPK/ROS signaling pathway (Zhou et al., 2019).

3.5.4 NF-κB pathway
The NF-kB family consists of five transcription factors (p50, p52,

p65, c-REL, and ReIB) that are closely associated with immune and
inflammatory responses (Kim et al., 2019). Numerous data indicate a
strong correlation between p65, SASPs, and their paracrine effects.
Similar levels of p65, IL-6, and IL-8 were observed in both DNA
damage-induced MSCs senescence (DDIS) and treatment-induced
senescence (TIS), as well as in a pro-inflammatory activation (PA)
model in MSCs using TNF-α. This suggests that p65 pathway
activation occurs during cellular senescence and pro-inflammatory
activation inMSCs. Additionally, p65 can enhance the release of small
extracellular vesicles (sEV) by MSCs, which in turn promotes
peripheral cellular aging through a paracrine pathway
(Banimohamad-Shotorbani et al., 2020; Mato-Basalo et al., 2021).

3.5.5 Sirtuins pathway
Sirtuins, a family of NAD-dependent deacetylases, consist of seven

members known as SIRT1–7. These sirtuins have shown high
conservation throughout evolution (Almeida and Porter, 2019).
They play crucial roles in various cellular activities such as cellular
autophagy,metabolism, DNA repair, apoptosis, and cellular senescence.
Among them, SIRT1 is a significant target for extending lifespan and
delaying senescence as it integrates multiple signaling and
transcriptional pathways. Some of the known pathways involved in
this process include the p65-NF-κB pathway, the p53-DNA damage
pathway, the mTOR-cellular autophagy pathway, the AMPK pathway,
the FOXO-DNAdamage and oxidative stress pathway, and the PGC1α-
mitochondrial autophagy pathway (Chen Cui et al., 2020). SIRT3, a
mitochondrial sirtuin, is involved in various metabolic regulations.
Studies have shown that SIRT3 upregulates the expression and
activity of superoxide dismutase 2 (SOD2), which helps inhibit
premature senescence in MSCs induced by natural and oxidative
stress (Ma et al., 2020). On the other hand, senescent MSCs exhibit
downregulation of the NAD/SIRT3 signaling pathway. To counteract
this, supplementation with nicotinamide mononucleotide (NMN), a
precursor of NAD, can upregulate the NAD/SIRT3 signaling pathway
in replicative senescent MSCs. This supplementation improves

mitochondrial function and rescues MSCs from senescence (Wang
Huan et al., 2022).

4 Effects of different cellular
microenvironments on MSCs’
senescence and functions

4.1 Aging microenvironment

The senescent microenvironment is defined by several key
features: impaired fibroblast function, an accumulation of
senescent fibroblasts, disruption of the extracellular matrix’s
integrity, and the initiation of age-related chronic inflammation
(Fane and Weeraratna, 2020; Wang X. et al., 2022; Ye et al., 2023).

The SASPs play a crucial role in the formation of the senescent
microenvironment.While senescent cells and SASPs can have temporary
beneficial effects, such as improving the regeneration and stemness of
keratin-forming cells through brief exposure to SASPs, they can become
problematic as the body ages. Senescent cells tend to accumulate in the
body tissues and cause harm to the organism (Ritschka et al., 2017).
Research has demonstrated that the existence of SASPs is linked to the
emergence of degenerative diseases and cancer. Furthermore, SASPs
contribute to chronic inflammation and hinder tissue repair functions.
Another detrimental effect of SASPs is their paracrine influence, wherein
neighboring cells are transformed into senescent cells through paracrine
action (Xu et al., 2018; Al Suraih et al., 2020; Kowald et al., 2020).
Eliminating senescent cells can decrease the production of SASPs, leading
to a better prognosis for geriatric syndromes and aging-related diseases,
as well as an enhanced organism repair capacity (Pignolo et al., 2020).

Extracellular vesicles (EVs) are significant components of the
senescence microenvironment (Yin Y. et al., 2021). Mesenchymal
stem cell-derived extracellular vesicles (MSC-EVs) are considered a
promising therapeutic tool for immunomodulation and regeneration.
These vesicles, which are nano-sized and enclosed by a membrane,
contain important biomolecules such asmRNAs,microRNAs, bioactive
lipids, and signaling proteins (Massa et al., 2020). The advantages of
MSC-EVs over MSCs include a higher safety profile, lower
immunogenicity, and the ability to traverse biological barriers
(Varderidou-Minasian et al., 2020). Furthermore, the use of MSC-
EVs helps avoid complications associated with stem cell-induced
ectopic tumor formation, entrapment in lung microvasculature, and
immune rejection. However, there are still challenges and barriers to the
clinical translation of MSC-EVs, such as quality control and efficiency
(Huang et al., 2019b; Weng et al., 2021). Additionally, as part of SASPs,
MSC-EVs play a crucial role in promoting cellular senescence due to
their paracrine effect and messaging function (Sun Zixuan et al., 2022).
It is worth investigating further whether senescent MSC-EVs may have
different effects depending on the tissue, age, or context (such as
inflammation or disease). EVs derived from aged myoblasts have
been discovered to induce senescence in primary BMSCs in an ex
vivo setting (Jiang et al., 2023). Furthermore, studies have demonstrated
that both circulating and tissue-derived aged EVs can induce senescence
in MSCs cultured ex vivo (Weilner et al., 2016; Davis et al., 2017).

MSC therapies have shown promising prospects for applications
in cellular and animal experiments. However, the current clinical
outcomes are not satisfactory. Some scholars speculate that the age
of the patient may contribute to this situation (Figure 2). This is
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because, while most cell and animal experiments involve young
individuals as donors and patients, in clinical practice, the elderly are
the primary recipients of MSCs treatment. (Chen Huan et al., 2022).

With aging, elderly individuals often experience a chronic, low
level of subclinical proinflammatory state (Chung et al., 2011; Lin
et al., 2017). This is characterized by an increase in the expression of
proinflammatory cytokines and chemokines in their serum.
Specifically, the proinflammatory cytokine IL-6 shows a
noticeable increase, while the anti-inflammatory cytokine IL-10
decreases significantly. The elevated levels of IL-6 trigger the
activation of JAK/STAT and MAPK pathways, which further
contribute to the aging of MSCs (Peng et al., 2022). Additionally,
studies have shown that MSCs cultured in the extracellular matrices
(ECM) of elderly individuals also exhibit reduced proliferation
potential of BMSCs. This impairment is closely associated with a
decrease in Cyr61/CCN1. However, the exogenous addition of
Cyr61 has been found to help restore the ECM’s response to
IGF-1 signal (Marinkovic et al., 2022).

In addition to the aging of the treated patients themselves, the
extraction of MSCs from aged individuals with premature aging

properties significantly reduces the efficacy of the treatment.
(Yamaguchi et al., 2018).

MSCs derived from aged individuals typically display the
following characteristics: an elevated number of senescent cells,
heightened expression of senescent genes and proteins (such as
p21 and γH2AX), increased SA-β-gal activity, and reduced capacity
for osteogenic, lipogenic, and angiogenic differentiation (Liu et al.,
2017; Chen Xihang et al., 2021). The senescent microenvironment
promotes premature aging and impairs the differentiation ability of
MSCs through several mechanisms. These include upregulation of
CD137 expression, inhibition of Bcl-3 expression (Wang F. X. et al.,
2022), and disruption of Wnt/β-catenin signaling pathway
transmission (Han et al., 2022).

BMSCs derived from aged individuals displayed impaired cell
migration function and downregulation of genes involved in cell
motility, such as DPP4, Egf, Actn3, Rho, Cav1, etc. Additionally, the
reduced number of CD90+ BMSCs was associated with impaired
wound healing ability (Amini-Nik et al., 2022).

Metabolic dysfunction of BMSCs was found to be positively
correlated with senescence. In BMSCs from senescent mice, the

FIGURE 2
Mechanisms of MSCs’ aging. (A) Shortened telomere; (B) DNA damage; (C): Epigenetic alterations (High levels of hypomethylation or an overall loss
of DNAmethylation (Cakouros et al., 2020; Bork et al., 2010)); (D): Non-coding RNA and exosomes (UpregulatedmiR-155-5p (Hong et al., 2020)) (E) Loss
of protein homeostasis (reduced proteasomal subunits; decreased 26 S proteasome activity; increased 20 S proteasome activity (Chondrogianni et al.,
2005; Kapetanou M. et al., 2017)); (F):Mitochondrial dysfunction (overproduction of ROS by complexes I and III of the respiratory chain (Ray et al.,
2012));(G): Intracellular signaling pathways (pathways alleviating senescence: IGF-1,AMPK&SIRT;pathways promoting senescence: mTOR&NF-κB).
(Created by Biorender. com).
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expression levels of critical enzymes for mitochondrial genesis and
glycolysis were reduced, resulting in impaired oxidative
phosphorylation and glycolytic function. Consequently, this
affected the stemness and differentiation potential of BMSCs(Li
et al., 2022).

The adverse effects of MSCs from aged individuals during
treatment are linked to their impaired macrophage recruitment.
This impairment is attributed to altered expression of miRNAs that
regulate this process. Specifically, miR-223-5p expression is
downregulated, while miR-127-3p and miR-125b-5p expression
are increased (Huang et al., 2019a).

The presence of a senescent microenvironment leads to chronic
inflammation, which in turn significantly reduces the number and
function of MSCs (Brunet et al., 2023). In the field of regenerative
medicine, senotherapy research is currently focused on interventions
that target the MSCs microenvironment and senescent stem cells
during in vitro expansion. This research includes studying senolytics
and senomorphic mechanisms and targets, exploring optimal
therapeutic doses and routes of administration, as well as selecting
and applying specific drugs (Wong et al., 2023) (Figure 3).

4.2 Hypoxic/ischemic microenvironment

In vivo, MSCs are commonly exposed to physiological conditions,
encompassing oxygen concentrations that span from 2% to 8%.The
oxygen levels typically observed in culture, around 18.4% O2, can be
deemed as severely hyperoxia forMSCswhen compared to their original
niches (Phelps et al., 2023). Previous studies have examined the impact of
hypoxic microenvironments on the senescence of MSCs, categorizing
them into two groups: ’physiological hypoxia’, which supports MSC
survival (Buravkova et al., 2014), and ’pathological hypoxia’, which
accelerates senescence and apoptosis of MSCs. It is worth noting that
the pathological hypoxic microenvironment is often accompanied by a
lack of blood perfusion, further compromising cell survival.

Hypoxic preconditioning typically involves incubation at (1%–5%)
O2 for 48 h or 72 h, as compared to physiological conditions (21% O2).
Existing studies collectively indicate that hypoxic preconditioning
effectively reverses the senescent state of MSCs primarily by
modulating the cellular autophagy axis and enhancing intracellular
ROS levels. Hypoxia preconditioning increased the expression level of
HIF-1α in BMSCs, thereby enhancing cell viability and reducing the

FIGURE 3
Effects andmechanisms of the agingmicroenvironment onMSCs. (A): Chronic inflammation in the agingmicroenvironment results in an increase in
pro-inflammatory factors, primarily IL-6, and a decrease in anti-inflammatory factors, primarily IL-10. The elevated IL-6 activates the JAK/STAT andMAPK
signaling pathways, ultimately leading to the senescence of MSCs (Peng et al., 2022). (B): Reduction of Cyr61 in ECM decreases the sensitivity of MSCs to
IGF-1 signalling, thereby increasing their vulnerability to senescence (Marinkovic et al., 2022). (C):MSCs derived from senescent individuals exhibit
impaired differentiation capacity in culture. This is primarily attributed to increased CD137 expression, decreased Bcl-3 expression, and inhibition of the
Wnt/β-catenin pathway (Wang F. X. et al., 2022) (Han et al., 2022). (D): The reduction in expression of DPP4, Actn3, Rho, Cav1, and other related genes is
associated with impaired cell migration (Amini-Nik et al., 2022). (E): The impaired therapeutic efficacy of MSCs is linked to the increased expression of
CD90 and miR-223-5p, as well as the impaired recruitment of macrophages due to the decreased expression of miR-127-3p and miR-125b-5p (Huang
et al., 2019a). (F): Inhibition of themTOR and AMPK signaling pathways results in impaired cellular metabolic function, ultimately leading to senescence in
MSCs(Li et al., 2022). (Created by Biorender. com).
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expression of the apoptotic protein caspase3, which leads to an increase
in the transplantation viability of BMSCs under oxidative stress
conditions (Luo et al., 2019). The improved survival rate of BMSCs
after hypoxic pretreatment was attributed to the upregulation of
survival-related genes LPL, PKM, and MAP3K13(Peck et al., 2021).
According to Kim et al. (Kim et al., 2019) their study revealed that
AIMP3 plays a crucial role in delaying the senescence of MSCs under
hypoxic conditions. They also found that overexpression of
AIMP3 inhibits cellular autophagy, which leads to senescence and
dysfunction of MSCs. Additionally, the hypoxic microenvironment
enhances the angiogenic capacity of BMSCs by increasing the
expression of VEGF, a factor downstream of HIF-1α. Furthermore,
BMSCs exhibit increased expression of osteogenic-related genes
(RUNX2 and OCN) and enhanced potential for osteogenic
differentiation (Zhang et al., 2018). Liu et al. (Liu Wei et al., 2020)
discovered that culturing BMSCs under hypoxic conditions resulted in
the increased release and secretion of exosomes and exosome-related
proteins (TSG101, CD9, CD63, and CD81). Furthermore, they found
that MSC-EVs under hypoxic conditions could effectively deliver miR-
216a-5p to microglia. This delivery triggered a cascade reaction
involving TLR4/NF-κB/PI3K/AKT, leading to the conversion of
microglia from M1 to M2 type and subsequently reducing the
associated inflammatory damage.

In contrast to the appropriate physiological hypoxic
microenvironment described above, a pathological hypoxic (and
ischaemic) microenvironment would undoubtedly lead to
premature senescence and apoptosis of MSCs.

Systemic chronic hypoxia is a pathological state characterized by
insufficient systemic oxygen supply. It is closely linked to conditions
such as cyanotic congenital heart disease (CCHD), chronic obstructive
pulmonary disease, chronic mountainous disease, and the development
of pulmonary fibrosis. (Xing et al., 2018). Rehman SU et al. (Rehman
et al., 2017) utilized patients with CCHD as a human disease model of
chronic systemic hypoxia to investigate the conditions and the role of
BM in association with gut microbes, and its effect on BMSCs aging.
The study revealed an association between this phenomenon and an
imbalance in intestinal ecology and the metabolism of d-galactose by
the intestinal microbiota. Cellular senescence could be induced by
d-galactose through the production of large amounts of ROS.
Additionally, a negative correlation was observed between the
concentration of d-galactose and the number of lactobacilli in the
intestine. Upon administering appropriate amounts of Lactobacillus, the
accumulation of d-galactose in rats was reduced, and the deficiency of
BMSCs was significantly restored.

While stem cell transplantation has been shown to aid in
cardiomyocyte repair following acute myocardial infarction (AMI)
(Miao et al., 2017), it is important to note that the survival and
differentiation of MSCs can be influenced by the local
microenvironment. In particular, the ischemic and hypoxic
microenvironment resulting from AMI can lead to a low survival rate
of MSCs post-transplantation (Khodayari et al., 2019). Qi Y et al. (Qi
et al., 2021) investigated the impact of hypoxic and serumdeprivation (H/
SD) conditions on the microenvironment of acute myocardial infarction
(AMI). They observed that under H/SD conditions, the viability and
migration of BMSCs were reduced compared to the normal control
group. They also found an increase in apoptotic cells and the expression
of apoptosis-related proteins Bax and cleaved-caspase3. This effect was
attributed to the increased presence of M1-type macrophages and the

upregulation of M1-type macrophage factors TNF-α and IL-1 in the
H/SD condition. The secretion of TNF-α and IL-1 further increased, and
M1-typemacrophage exosomes inhibited the expression of Bcl-2 protein
and induced apoptosis in BMSCs through miR-222. Moreover, BMSCs
cultured in hypoxic ischemic (HI) environments exhibited reduced cell
migration capacity compared to the normal controls. These cells also
showed impaired cell proliferation, possibly due to the inhibition of the
PI3K/AKT pathway (Chen Xuxiang et al., 2022).

Ischemia/reperfusion (I/R) injury is a significant contributor to
tissue dysfunction, which often leads to organ transplant failure.
When blood flow is interrupted, the kidney experiences hypoxia,
increased oxidative stress, and microvascular dysfunction (Soares
et al., 2019). Additionally, I/R kidney tissue shows elevated levels of
ROS and reduced expression of VEGF in MSCs(Bai et al., 2018;
Najafi et al., 2022).

In the context of the pathological hypoxic and/or ischaemic
microenvironment, there are two primary mechanisms through
which it negatively affects MSCs. Firstly, it regulates the cellular
metabolic capacity. Secondly, it exposes the cells to pro-
inflammatory factors such as TNF-α, IL-1β, and IL-6 for an
extended period. This prolonged exposure to pro-inflammatory
factors leads to apoptosis, necrosis, and autophagic cascades
(Venkatachalam et al., 2009; Oka et al., 2012). Future research could
focus on exploring the targets of hypoxic preconditioning to enhance
the survival of MSCs. Additionally, investigating the effects of
combining hypoxic preconditioning with other drugs could be a
potential direction for further study (Figure 4).

4.3 Microenvironment of immune diseases

Due to their immunomodulatory and tissue repair effects,MSCs are
considered valuable tools for treating immune diseases (Yang et al.,
2023). However, various studies have revealed that MSCs in the
microenvironment of immune diseases undergo senescence-related
alterations. These alterations include reduced cell proliferation
capacity, increased expression of p53 and p16, elevated levels of
ROS and DNA-damage-response (DDR), and impaired
differentiation capacity. These changes are likely associated with the
persistent pro-inflammatory microenvironment created by immune
diseases. In the subsequent discussion, we will explore the effects and
underlying mechanisms of different immunological diseases on MSC
senescence and function.

4.3.1 Systemic lupus erythematosus (SLE)
SLE is a chronic autoimmune disease characterized by an imbalance

in T cell ratios (Wieliczko andMatuszkiewicz, 2017). The progression of
SLE is exacerbated by an imbalance between Follicular helper T cells
(Tfh) and regulatory T cells (Treg) (Lee, 2018). Additionally, the
pathogenesis of SLE involves a deficiency of the cytokine IL-2, which
is a crucial growth and survival factor for Treg cells that play a vital role
in controlling autoimmunity in SLE (Humrich and Tiemekasten, 2016).
Chen X et al. (Chen Xinpeng et al., 2021)discovered increased levels of
LncRNA H19 in the serum and BMSCs of SLE patients. This increased
level inhibited the proliferation and migration of BMSCs and promoted
their apoptosis. Furthermore, lncRNA H19 impaired the immune
properties of BMSCs by reducing the expression level of IL-2, thus
inhibiting the differentiation of Treg cells, and disrupting the balance
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between Treg cells and Tfh cells. Immunomodulatory dysfunction in
SLE-derived BMSCs is linked to the decrease in let-7f expressions.
Research has shown that reduced expression of Let-7f leads to a
decrease in the number of Th17 cells, an increase in the number of
Treg cells, and an elevated rate of apoptosis in BMSCs. This effect is
achieved through the activation of the STAT3 pathway by IL-6. (Geng
et al., 2020).

In addition to altered immunomodulatory functions, hBMSCs
derived from patients with SLE exhibited increased expression of
genes related to SASP and pro-inflammatory cytokines. This
upregulation was mediated by the MAVS-IFNβ axis and resulted
in cellular senescence. The activation of the JAK-STAT signaling
pathway in SLE-derived BMSCs was also found to be closely
associated with premature cellular senescence (Gao and Bird,
2017; Ji et al., 2017). Furthermore, studies have demonstrated
that the inflammatory factor HMGB1 in the SLE bone marrow
microenvironment can induce senescence in MSCs through the
TLR4/NF-κB signaling pathway. However, the HMGB1 inhibitor
ethyl pyruvate (EP) can inhibit HMGB1 and improve lupus
nephritis, leading to a reversal of senescence inMSCs (Ji et al., 2019).

4.3.2 Ankylosing spondylitis (AS)
AS is a common rheumatic disease that affects approximately

0.1%–0.5% of the global population (Ward et al., 2019). MSCs

derived from AS patients exhibit an abnormally increased
capacity for osteogenesis, leading to pathological osteogenesis and
subsequent bone formation (Liu et al., 2019; Ye et al., 2019). The
downregulation of Dickkopf-1 (DKK-1) expression, a crucial
regulator of bone remodeling in spondyloarthropathies, is
observed in MSCs from AS patients. This downregulation is
believed to be caused by IL-17-mediated DKK-1 downregulation,
resulting in the activation of the Wnt pathway and upregulation of
osteogenesis-related genes (RUNX2, OSX, and ALP) (Daoussis et al.,
2022).

The serum microenvironment of patients with AS exhibits
abnormal levels of inflammatory factors (such as TNF-α and IL-17)
and oxidative stress (Zeng et al., 2011). Among these factors,
Advanced Oxidative Protein Products (AOPPs), which are
markers of oxidative stress, are associated with disease activity
and show a positive correlation. AOPPs can induce the
production of ROS and lead to cell cycle arrest. Therefore, it
is hypothesized that targeting AOPPs could be a key approach for
treating AS-induced aging of MSCs(Karakoc et al., 2007; Sun
et al., 2018; Ye et al., 2020).

4.3.3 Inflammatory bowel disease (IBD)
IBD is characterized by Crohn disease (CD) and ulcerative

colitis (UC) (Chang, 2020). MSCs derived from CD are more

FIGURE 4
Effect and mechanisms of physiological and pathological hypoxic microenvironment on MSCs. (A–C) are the effects of normal physiological
hypoxia on MSCs, mostly positive. Hypoxic preconditioning has been shown to impact the function of HIF-α in MSCs. (A) It increases cell survival by up-
regulating the expression of LPL, PKM, MAP3K13, and VEGF(Peck et al., 2021) (Zhang et al., 2018). (B) It inhibits apoptosis by suppressing the expression of
Caspase3(Luo et al., 2019). (C): It inhibits the expression of AIMP3, which helps maintain cellular autophagy and consequently slows down cellular
senescence (Zhang et al., 2018). D-G in the figure illustrate the impact of pathological hypoxic/ischemic microenvironment on MSCs. (D) Patients with
CCHD undergo a reduction in Intestinal microbiota, leading to an increase in D-galactose. This increase in D-galactose can elevate the level of ROS in
MSCs, contributing to cellular senescence (Rehman et al., 2017). (E) The H/SD microenvironment induces the increase of M1-type macrophage and the
related regulatory factor TNF-α and IL-1, while decreasing the secretion of miR-222 from MSCs. This downregulates Bcl-2 and promotes apoptosis (Qi
et al., 2021). (F) The H/I microenvironment hinders the PI3K/AKT pathway in MSCs, thereby suppressing cell proliferation (Chen Xuxiang et al., 2022). (G)
MSCs in I/R encounter elevated ROS levels and downregulation of VEGF, resulting in decreased survival (Bai et al., 2018; Najafi et al., 2022) (Created by
Biorender.com).
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severely impaired in their ability to differentiate and cannot form
cell colonies compared toMSCs derived fromUC(Grim et al., 2021).

The senescence of MSCs is associated with the onset of
inflammation in the lesion area. The presence of pro-inflammatory
cytokines (such as INF-α, TNF-α, and IL-6) and paracrine effects lead to
premature senescence of MSCs and hinder their differentiation into
enterocytes. (Onyiah and Colgan, 2016; Wang et al., 2020). Currently,
the low survival rate of stem cells is a pressing issue that needs to be
addressed. Several approaches have shown promise in improving the
success rate of treatment, including combining stem cell therapy with
surgical treatment, orally delivering stem-cell-loaded hydrogel
microcapsules (SC-HM), and utilizing EVs(Panés et al., 2018;
Alpdundar Bulut et al., 2020; Kim et al., 2022).

4.3.4 Multiple sclerosis (MS)
MSCs derived from patients with multiple sclerosis (MS) exhibit

impaired expansion in vitro culture, as well as accelerated rates of
senescence and telomere loss. These changes are linked to a
reduction in antioxidant capacity, as MS patient-derived MSCs
demonstrate decreased secretion of the antioxidants superoxide
dismutase 1 (SOD1) and glutathione S-transferase p (GSTP).
Additionally, there is a decrease in the expression levels of
Nrf2 and PGC1α, which regulate the secretion of SOD1 and
GSTP. (Redondo et al., 2018b; Redondo et al., 2018c).

4.3.5 Neuromyelitis optica (NMO)
MSCs derived from NMO exhibit impaired proliferative

capacity and increased susceptibility to senescence. This is
accompanied by a significant upregulation of the pro-apoptosis-
related gene Fas and a significant downregulation of the pro-survival
gene Bcl-xl. Platelet-derived growth factor (PDGF) plays a crucial
role in stimulating the proliferation of MSCs and has shown
potential as a cytokine for treating demyelinating diseases.
Specifically, PDGF-BB, the primary growth factor found in bone
matrix (Chen et al., 2015), has been found to effectively enhance
MSC proliferation and counteract premature senescence (Yang
et al., 2019). Further research should investigate the specific
target and conditions of PDGF-BB’s action for potential
therapeutic applications in MSC treatment.

4.3.6 Pulmonary fibrosis
BMSCs obtained from patients with idiopathic pulmonary

fibrosis exhibit senescence characteristics, including reduced
proliferation, trilineage differentiation, and migration capacity.
These characteristics have been linked to the activation of the
NADH-AMPK-p53 regulatory pathway, which results in
mitochondrial dysfunction in BMSCs. Additionally, the paracrine
effects of these cells induce premature senescence in lung fibroblasts.
(Cardenes et al., 2018). The aforementioned study indicates that
enhancing the secretory function of MSCs is a crucial aspect in the
treatment of Pulmonary fibrosis conditions.

4.4 Hyperglycemic microenvironment

Hyperglycemia, oxidative stress, and altered immune responses
are prominent features of the diabetic microenvironment. Previous
studies have shown that these factors contribute to the senescence of

MSCs. (Yin Min et al., 2021). hWJSCs obtained from pregnant
women with gestational diabetes mellitus (GDM) exhibit impaired
osteogenic and chondrogenic differentiation capacity. Additionally,
these hWJSCs show downregulated levels of stemness markers,
telomerase, antioxidant enzymes, and mitochondrial functional
gene expression (ND2, TFAM, PGC1α, and NDUFB9).
Moreover, there is an increase in cell cycle arrest-related factors
(p16, p21, p27) and senescence-related gene p53 in these MSCs. It is
worth noting that their lipogenic capacity remains unaffected (Kong
et al., 2019).

The mechanism of hyperglycemia induced MSCs aging
primarily involves a shift in the metabolic pattern of MSCs from
glycolysis to oxidative phosphorylation. This shift leads to the
excessive accumulation of ROS and DNA damage, activating the
p53-p21-pRB axis (Wu, 2021). Consequently, telomerase is
inactivated, and mitochondrial function is impaired. Additionally,
the inhibition of mitochondrial biogenesis and related genes (PGC-
1, SIRT-1, and NRF) occurs. Simultaneously, senescent MSCs in
diabetic conditions can further enhance the senescence state by
secreting SASPs, which convert normal cells in the surrounding
environment into senescent cells. (Prattichizzo et al., 2018; Berlanga-
Acosta et al., 2020).

Insulin application may contribute to the senescence of MSCs.
Research has shown that insulin can induce senescence in BMSCs by
inhibiting autophagy and upregulating the TGF-β1 pathway-related
receptor II (TβRII). Furthermore, insulin also impairs the osteogenic
differentiation capacity of BMSCs. (Zhang et al., 2020).

4.5 The obesity microenvironment

Obesity is a chronic, low-grade inflammatory state that
contributes to bone loss and accelerates cellular aging. It is
frequently linked to the onset of cardiovascular disease and other
metabolic disorders (Li et al., 2020). In the obese microenvironment,
MSCs exhibit various signs of early aging. The specific variations in
aging-related manifestations of MSCs depend on intra-tissue
signaling and the tissue source.

Alessio et al. conducted a study where they isolated MSCs from
the body tissues of obese mice and compared them to MSCs derived
from normal mice. The findings revealed several differences between
the two groups. Firstly, the proliferation rate of MSCs from obese
mice was reduced, as indicated by a lower percentage of S-phase
cells. Additionally, there was an increased percentage of senescent
cells in the obese mice. The expression of senescence-related genes
RB21, p21, and p16 was found to be upregulated in MSCs from
obese mice. Furthermore, the intracellular ROS levels were increased
in these cells. Lastly, the DNA repair capacity of MSCs from obese
mice was impaired (Alessio et al., 2020).

The senescence expression wasmore pronounced inwhite ADSCs
than BMSCs, which could be attributed to the endocrine dysfunction
associated with inflammation in white adipose tissue. Li Y et al.
(Li et al., 2020) investigated the mechanism behind the altered
senescence and differentiation ability of BMSCs caused by obesity.
They discovered that by knocking down IL-6, the restoration of
osteogenic function was facilitated, the lipogenic tendency of
BMSCs was inhibited, and the senescence tendency caused by
obesity was suppressed. These effects were potentially linked to the
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TABLE 1 Effects of different microenvironments on the senescence of MSCs.

Microenvironment Effect Mechanism Ref

Aging microenvironment Cell senescence↑ JAK/STAT &MAPK↑ Peng et al. (2022)

Cell senescence↑ SASPs; EVs Ritschka et al., 2017; Sun
et al., 2022b

p21↑ Liu et al., 2017; Chen et al.,
2021a

γH2AX↑

Proliferative capacity↓ Cyr61in ECM↓ Marinkovic et al. (2022)

Differentiation capacity↓ CD137↑ Han et al. (2022)

Migration ability↓ DPP4, Egf, Actn3, Rho, Cav1↓ Amini-Nik et al. (2022)

Hypoxic/ischaemic
microenvironment

Physiological hypoxic Cell senescence↓ AIMP3↑ Buravkova et al., 2014; Kim
et al., 2019

Cell viability↑ HIF-1α↑ Luo et al. (2019)

LPL, PKM, & MAP3K13↑ Peck et al. (2021)

Angiogenic capacity↑ VEGF↑ Kim et al. (2019)

Osteogenic differentiation↑ RUNX2 & OCN↑ Zhang et al. (2018)

Pathological ischemic
and hypoxic

Cell senescence↑ ROS↑ Rehman et al. (2017)

Cell viability↓ Baxandcleaved-caspase3↑ Qi et al. (2021)

Proliferative capacity↓ PI3K/AKT↓ Chen et al. (2022b)

Microenvironment of Immune
diseases

SLE Proliferative capacity↓ LncRNA H19↑ Chen et al. (2021b)

Immunomodulatory dysfunction let-7f↓ (Geng et al., 2020)

Cell apoptosis↑ IL-6↑

Cell senescence↑ SASPs↑; JAK-STAT↑; HMGB1↑ Gao and Bird, 2017; Ji et al.,
2017

AS Osteogenic differentiation↑ Dkk-1↓; RUNX2, OSX,& ALP↑ Daoussis et al. (2022)

Cell senescence↑ AOPPs↑; ROS↑; p53, p21, & p16↑ Karakoc et al., 2007; Sun et al.,
2018

IBD Cell senescence↑ p16↑; Paracrine effects Onyiah and Colgan (2016),
Wang et al., 2020

MS Cell senescence↑ Telomere loss; SOD1&GSTP↓ Redondo et al., 2018b;
Redondo et al., 2018c

NMO Proliferative capacity↓
Cell senescence↑

Fas↑; Bcl-xl↓ Yang et al. (2019)

Pulmonary fibrosis Proliferative capacity↓
Differentiation capacity↓
Cell senescence↑

NADH-AMPK-p53↑ Cardenes et al. (2018)

Hyperglycemic microenvironment Cell senescence↑ p16, p21, &p27↑; p53↑
Metabolic alteration (Oxidative
phosphorylation↑; ROS↑; DNA
damage↑

Kong et al., 2019; Yin et al.,
2021a; Wu, 2021

Osteogenic and chondrogenic
differentiation ↓

Kong et al. (2019)

Obesity microenvironment Proliferative capacity↓ RB21, p21, & p16↑; ROS↑;
DNAdamage↑

Alessio et al. (2020)

Cell senescence↑

Differentiation capacity↓ p53↑; Glucose metabolism↓ Chen et al. (2016)

Lipogenic differentiation↑ PARG, FASN, IRS1↑ Tencerova et al. (2019)

(Continued on following page)
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inhibition of the IL-6/STAT3 pathway. In a separate study, Xiang
QY’s team (Xiang et al., 2020) explored the impact of postprandial
triglyceride-rich lipoproteins (postprandial TRL) on the aging of
ADSCs. They observed that the dose size and duration of
application of postprandial TRL regulated the aging process
of ADSCs. Furthermore, they identified the SIRT1/p53/Ac-p53/
p21 pathway as the regulatory pathway for postprandial TRL-
induced ADSCs.

However, the effects of obesity on MSCs metabolism and
lipogenic differentiation have not been unanimously agreed upon
by researchers. Differences in these results may be attributed to the
origins of the MSCs. Chen JR et al. (Chen et al., 2016) isolated
umbilical cord MSCs from obese pregnant women and found that
these cells exhibited impaired lipogenic differentiation and
osteogenesis, overexpression of p53, and lower levels of glucose
metabolism (glycolysis and oxidative phosphorylation). Tencerova
M et al. (Tencerova et al., 2019) discovered that BMSCs from obese
patients showed increased expression of lipogenic differentiation
genes (PPARG, FASN, IRS1). They also confirmed that activating
insulin signaling reduced BMSCs’ glycolytic efficiency, increased
oxidative phosphorylation, and raised intracellular ROS levels, thus
making the cells more prone to senescence.

4.6 Microenvironment of hematologic
malignancies

The development of leukemic cells in the bone marrow (BM) can
negatively impact the survival of MSCs in humans. Studies have shown
that BMSCs derived from both acute myeloid leukemia (AML) and
chronic myeloid leukemia (CML) sources exhibit senescence-related
changes. (Kim et al., 2015; Kumar et al., 2018). Co-culturingMSCs with
AML cells leads to a higher preference for oxidative phosphorylation
over glycolysis in energy production. Additionally, the alteredmetabolic
patterns observed in the leukemic disease are also linked to the
worsening of the disease (Zhang Leisheng et al., 2021; Zhang Luwen
et al., 2022). Bonilla X, VanegasNP, et al. (Bonilla et al., 2019) developed
an in vitromodel called the leukemic ecotone (LN) model. They found
that when induced with leukemic cells, MSCs exhibited senescence-
related characteristics, such as increased SA-β-gal activity, elevated
p53 expression, higher levels of intracellular ROS, and cell cycle
arrest. Additionally, these MSCs showed increased secretion of pro-

inflammatory factors IL-6, IL-8, and CCL2(Vernot et al., 2017). The
researchers then compared LN-MSCs withMSCs derived from patients
with B-lymphoblastic acute leukemia (B-ALL). They observed a similar
tendency towards senescence, but these changes were reversible. Upon
early removal of the leukemia cell effects, B-ALL-derivedMSCs reversed
senescence and re-entered the cell cycle (Vanegas et al., 2021). The
differentiation ability of leukemic MSCs is still a subject of debate, with
some researchers suggesting a tendency towards lipogenesis (Le et al.,
2016; Azadniv et al., 2020). Furthermore, leukemic MSCs have been
found to exhibit increased osteogenic capacity (Battula et al., 2017). The
variations in these findings may be attributed to the specific type of
leukemia and leukemic cell types involved.

Multiple myeloma (MM) is the secondmost commonmalignant
hematological disorder, accounting for 13% of all malignant
hematological disorders (Kumar et al., 2017). It is characterized
by increased osteoclast activity and decreased osteoblast activity.
The osteogenic differentiation capacity of bone BMSCs from MM
patients is severely impaired in developing the lesion (Arnulf et al.,
2007; Corre et al., 2007). The same is true for MM-derived ADSCs:
while morphology, proliferation, and lipogenic differentiation
capacity are similar to normal ADSCs, the osteogenic
differentiation capacity is severely impaired, and SA-β-gal activity
is increased. These functional changes may be related to DKK-1
expression (Bereziat et al., 2019).

Kutyna MM’s team (Kutyna et al., 2022)investigated therapy-
related myeloid neoplasm (tMN) patient-derived BMSCs and
observed aging-related manifestations, including morphological
changes, increased expression of aging genes, impaired DNA repair,
and reduced lipogenic capacity. Interestingly, the osteogenic
differentiation potential of these BMSCs was enhanced, and their
energy metabolism tended to shift towards a glycolytic mode
compared to normal BMSCs. In normal BMSCs, the mitochondrial
OXPHOS: glycolytic ATP production rate was 64%:36%, whereas in
tMN-derived BMSCs, it was only 31%:69%. Furthermore, tMN patient-
derived BMSCs exhibited amore pronounced trend towards senescence
compared to untreated myeloma patient-derived BMSCs, which could
be attributed to DNA damage caused by cytotoxic treatment.

When MSCs derived from patients with myelodysplastic
syndromes (MDS) are cultured in a laboratory setting, they show
signs of senescence. This includes changes in cell shape, with cells
becoming enlarged and flattened, as well as a decrease in their ability
to divide. Additionally, there is an increase in the levels of a protein

TABLE 1 (Continued) Effects of different microenvironments on the senescence of MSCs.

Microenvironment Effect Mechanism Ref

Microenvironment of hematologic
malignancies

AML&CML Cell viability↓
Cell senescence↑

Oxidative Phosphorylation↑ Kim et al., 2015; Kumar et al.,
2018

LN Cell senescence↑ p53↑; ROS↑; IL-6, IL-8, && CCL2↑ Vernot et al. (2017)

MM Osteogenic differentiation↓ DKK-1↑ Bereziat et al. (2019)

tMN Cell senescence↑
Lipogenic differentiation↓
Osteogenic differentiation↑
Metabolic alteration

Kutyna et al. (2022)

MDS Cell senescence↑
Proliferation capacity↓

S100A9↑; TLR4-NLRP3-IL-1β↑ Kim et al., 2012; Shi et al.,
2019
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TABLE 2 Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Healthy NCT04313647 A Tolerance Clinical Study on Aerosol
Inhalation of Mesenchymal Stem Cells
Exosomes In Healthy Volunteers

Phase 1 Ruijin Hospital

NCT01087996 The Percutaneous Stem Cell Injection Delivery
Effects on Neomyogenesis Pilot Study (The
POSEIDON-Pilot Study)

Phase1 University of Miami

Phase 2

Aging Frailty NCT02065245 AllogeneiC Human Mesenchymal Stem Cells
(hMSC) in Patients With Aging FRAilTy Via
IntravenoUS Delivery

Phase1 Longeveron Inc

Phase 2

COVID-19 NCT04349631 A Clinical Trial to Determine the Safety and
Efficacy of HB-adMSCs to Provide Protection
Against COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04362189 Efficacy and Safety Study of Allogeneic HB-
adMSCs for the Treatment of COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04348435 A Randomized, Double-Blind, Single Center,
Efficacy and Safety Study of Allogeneic HB-
adMSCs Against COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04399889 hCT-MSCs for COVID-19 ARDS Phase1 Joanne Kurtzberg, MD

Phase 2

NCT04493242 Extracellular Vesicle Infusion Treatment for
COVID-19 Associated ARDS

Phase 2 Direct Biologics, LLC

Acute Respiratory Distress Syndrome NCT01775774 Human Mesenchymal Stem Cells For Acute
Respiratory Distress Syndrome

Phase 1 Michael A. Matthay

NCT04355728 Use of UC-MSCs for COVID-19 Patients Phase1 Camillo Ricordi

Phase 2

Idiopathic Pulmonary Fibrosis NCT01385644 A Study to Evaluate the Potential Role of
Mesenchymal Stem Cells in the Treatment of
Idiopathic Pulmonary Fibrosis

Phase 1 The Prince Charles Hospital

Bronchopulmonary Dysplasia NCT03857841 A Safety Study of IV Stem Cell-derived
Extracellular Vesicles (UNEX-42) in Preterm
Neonates at High Risk for BPD

Phase 1 United Therapeutics

Ischemic Heart Failure NCT02501811 Combination of Mesenchymal and C-kit +
Cardiac Stem Cells as Regenerative Therapy for
Heart Failure

Phase 2 The University of Texas Health Science
Center, Houston

NCT03925324 Serial Infusions of Allogeneic Mesenchymal
Stem Cells in Cardiomyopathy Patients With
Left Ventricular Assist Device

Phase 2 Medstar Health Research Institute

NCT00768066 The Transendocardial Autologous Cells
(hMSC or hBMC) in Ischemic Heart Failure
Trial (TAC-HFT)

Phase1 University of Miami

Phase 2

NCT00587990 Prospective Randomized Study of
Mesenchymal Stem Cell Therapy in Patients
Undergoing Cardiac Surgery (PROMETHEUS)

Phase1 Joshua M Hare

Phase 2

NCT02013674 The Transendocardial Stem Cell Injection
Delivery Effects on Neomyogenesis STudy (The
TRIDENT Study)

Phase 2 Joshua M Hare

NCT01781390 Safety Study of Allogeneic Mesenchymal
Precursor Cell Infusion in Myocardial
Infarction

Phase 2 Mesoblast, Inc

NCT01270139 Plasmonic Nanophotothermal Therapy of
Atherosclerosis

Not
Applicable

Ural State Medical University

NCT00927784 Effect of Intramyocardial Injection of
Mesenchymal Precursor Cells on Heart
Function in People Receiving an LVAD

Phase 2 Icahn School of Medicine at Mount Sinai

(Continued on following page)
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TABLE 2 (Continued) Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Non-ischemic Heart Failure NCT01392625 PercutaneOus StEm Cell Injection Delivery
Effects On Neomyogenesis in Dilated
CardioMyopathy (The POSEIDON-DCM
Study)

Phase1 Joshua M Hare

Phase 2

NCT02467387 A Study to Assess the Effect of Intravenous
Dose of (aMBMC) to Subjects With Non-
ischemic Heart Failure

Phase 2 CardioCell LLC

Cairdiomyopathy Due to
Anthracyclines

NCT02509156 Stem Cell Injection in Cancer Survivors Phase1 The University of Texas Health Science
Center, Houston

Tendon Injury NCT02298023 Treatment of Tendon Injury Using Allogenic
Adipose-derived Mesenchymal Stem Cells
(Rotator Cuff Tear)

Phase 2 Seoul National University Hospital

Focal articular cartilage lesions of the
knee

NCT02037204 IMPACT: Safety and Feasibility of a Single-
stage Procedure for Focal Cartilage Lesions of
the Knee

Phase1 UMC Utrecht

Phase 2

Spinal Cord Injury NCT02481440 Repeated Subarachnoid Administrations of
hUC-MSCs in Treating SCI

Phase1 Limin Rong

Phase 2

NCT01909154 Safety Study of Local Administration of
Autologous Bone Marrow Stromal Cells in
Chronic Paraplegia

Phase 1 Puerta de Hierro University Hospital

Osteoarthritis NCT01586312 Treatment of Knee Osteoarthritis With
Allogenic Mesenchymal Stem Cells

Phase1 Red de Terapia Celular

Phase 2

NCT02958267 Investigation of Mesenchymal Stem Cell
Therapy for the Treatment of Osteoarthritis of
the Knee

Phase 2 OhioHealth

NCT01183728 Treatment of Knee Osteoarthritis With
Autologous Mesenchymal Stem Cells

Phase1 Red de Terapia Celular

Phase 2

NCT02674399 A Phase 2 Study to Evaluate the Efficacy and
Safety of JointStem in Treatment of
Osteoarthritis

Phase 2 Nature Cell Co. Ltd

Rheumatoid Arthritis NCT03691909 Phase 1/2a Clinical Trial to Assess the Safety of
HB-adMSCs for the Treatment of Rheumatoid
Arthritis

Phase1 Hope Biosciences

Phase 2

Degeneration Articular Cartilage Knee NCT01733186 Evaluation of Safety and Exploratory Efficacy of
CARTISTEM? a Cell Therapy Product for
Articular Cartilage Defects

Phase1 Medipost Co. Ltd

Phase 2

Multiple Sclerosis, Chronic Progressive NCT03799718 Safety and Efficacy of Repeated Administration
of NurOwn (MSC-NTF Cells) in Participants
With Progressive MS

Phase 2 Brainstorm-Cell Therapeutics

Xerostomia NCT02513238 Mesenchymal Stemcells for Radiation Induced
Xerostomia

Phase 2 Rigshospitalet, Denmark

Cystic Fibrosis NCT02866721 Safety and Tolerability Study of Allogeneic
Mesenchymal Stem Cell Infusion in Adults
With Cystic Fibrosis

Phase1 University Hospitals Cleveland Medical
Center

Acute Graft Versus Host Disease NCT02379442 Early Treatment of Acute Graft Versus Host
Disease With Bone Marrow-Derived
Mesenchymal Stem Cells and Corticosteroids

Phase1 National Heart, Lung, and Blood Institute
(NHLBI)

Phase 2

Diabetes Mellitus NCT02886884 Allogeneic Mesenchymal Human Stem Cells
Infusion Therapy for Endothelial DySfunctiOn
in Diabetic Subjects

Phase1 Joshua M Hare

Phase 2

NCT02387749 Effect Of Mesenchymal Stem Cells Transfusion
on the Diabetic Peripheral Neuropathy Patients

Not
Applicable

Cairo University

(Continued on following page)
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called SA-β-gal (Mattiucci et al., 2018), which is associated with high
expression of S100A9 in MDS patients. This protein can induce
senescence in MSCs through a signaling pathway involving TLR4,
NLRP3, and IL-1β secretion (Kim et al., 2012; Shi et al., 2019).

4.7 Microenvironment of inborn errors of
metabolism

Inborn errors of metabolism are caused by mutations in
chromosomal genes, leading to the deletion or abnormality of
enzymes. This disruption in the catalytic process of specific
enzymes hinders normal metabolic processes. As a result, there is
an accumulation of abnormal metabolic substrates and a deficiency
of normal products, which affects the organism’s normal
development (Agana et al., 2018). Inborn metabolic disorders
encompass various types with complex metabolic defects, and a
perfect classification method has yet to be established. Previous
research has primarily focused on experimental studies of stem cell
therapy for inborn metabolic disorders related to the connective
tissue, musculoskeletal, neurological, and hematopoietic systems
(Ricci and Cacialli, 2021; Specchio et al., 2021). For instance,
MSCs and their EVs have shown potential in treating corneal
diseases caused by Mucopolysaccharidoses by delivering the
enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS) to
defective cells (Flanagan et al., 2021). Moreover, MSCs and EVs
can secrete endogenous coagulation factors FVIII and FIX, making
them a promising therapeutic strategy for treating hemophilia
(Sokal et al., 2015).

However, senescence-related changes in MSCs derived from the
microenvironment of inborn errors of metabolism may have a
detrimental impact on their efficacy. For instance, in glycogen
storage disease type Ib (GSD-Ib), the ability of MSCs to
differentiate into bone and fat cells is hindered due to the absence
of glucose-6-phosphate transport protein (G6PT) and the suppression
of the OHPOXS response (Sim et al., 2020). The differentially
expressed genes (DEGs) in MSCs derived from premature aging
syndromes (PAS) compared to MSCs derived from individuals
without these syndromes primarily revolve around DNA double-
strand damage, telomere damage, and DNA methylation. These
genetic changes are associated with the impaired differentiation of
MSCs(Trani et al., 2022). In response to these alterations inMSCs, the
application of MSC-based cell therapies combined with genetic
engineering can provide a safe and effective method for individuals
to produce factors that are needed by cells in recipient organs with
enzymatic or other defects (Meyerrose et al., 2010) (Tables 1 and 2).

5 Conclusion

MSCs have gained significant attention in the fields of organ
repair, new drug development, anti-aging, and rare disease treatment
due to their ability to differentiate in multiple directions and their
immunological properties. However, along with these promising
possibilities, there are also emerging challenges. These include
establishing quality standards for MSCs, ensuring their activity
during in vitro culture, guaranteeing the survival and functionality
of MSCs at the site of the disease to achieve therapeutic effects,

TABLE 2 (Continued) Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Metabolic Syndrome NCT03059355 Infusion of Umbilical Cord Versus Bone
Marrow Derived Mesenchymal Stem Cells to
Evaluate Cytokine Suppression

Phase1 Joshua M Hare

Phase 2

Breast Reconstruction NCT01771913 Immunophenotyping of Fresh Stromal
Vascular Fraction From Adipose Derived Stem
Cells (ADSC) Enriched Fat Grafts

Phase 2 University of Sao Paulo

Alzheimer Disease NCT03117738 A Study to Evaluate the Safety and Efficacy of
AstroStem in Treatment of Alzheimer’s Disease

Phase1 Nature Cell Co. Ltd

Phase 2

Cerebral Palsy NCT03473301 A Study of UCB and MSCs in Children With
CP: ACCeNT-CP

Phase1 Joanne Kurtzberg, MD

Phase 2

Cleft Lip and Palate NCT01932164 Use of Mesenchymal Stem Cells for Alveolar
Bone Tissue Engineering for Cleft Lip and
Palate Patients

Not
Applicable

Hospital Sirio-Libanes

Dental Pulp Regeneration NCT03102879 Encapsulated Mesenchymal Stem Cells for
Dental Pulp Regeneration

Not
Applicable

Universidad de los Andes, Chile

Retinal Degeneration NCT02330978 Intravitreal Mesenchymal Stem Cell
Transplantation in Advanced Glaucoma

Phase 1 University of Sao Paulo

Malignant Melanoma NCT02331134 Tissue and Hematopoietic/Mesenchymal Stem
Cell for Humanized Xenograft Studies in
Melanoma and Squamous Head and Neck
Cancer

Not
Applicable

University of Colorado, Denver
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understanding the potential negative effects of drugs used to treat the
primary pathology on MSCs, and investigating the role of MSCs in
tumorigenesis (Nowak et al., 2021). In this review, we provide a
summary of the effects and mechanisms of different
microenvironments on the senescence and function of MSCs. We
also discuss possible ways to improve and explore further research
directions. These include: 1. Pre-treating MSCs with specific media
before transplantation or culture to enhance their survival rate post-
transplantation. 2. Selecting the most suitable MSC donors to ensure
efficient utilization of MSCs. 3. Exploring the combination of drugs,
bioactive signals, natural and synthetic materials (such as Hydrogels
and scaffolds) with MSCs. 4. Investigating the utilization of EVs as an
alternative to MSCs and modifying them to address ethical concerns
and potential carcinogenic effects. Understanding the interaction
between MSCs and the cellular microenvironment is crucial for
advancing MSC therapeutics and fostering realistic possibilities for
their clinical application. Up to now, MSCs have been the subject of
more than 1,599 clinical trials investigating their potential for
treatment, with most of these trials still in the early stages.
Although the preliminary data from these trials are promising,
only two of them involve pretreatment (NCT03105284 and
NCT01962233), indicating a lack of rigorous and uniform effective
means of establishing a culture system related to pretreatment.
Furthermore, MSC therapy still lacks long-term safety assessment,
and large-scale and controlled trials are needed to make more
conclusive judgments about MSC-based therapies, which are
important for clinical translation. It is worth noting that clinical
patients often suffer from multiple diseases, not a single disease, and
most animal experiments with MSCs have focused on only a single
disease model. Therefore, exploring the efficacy of MSCs under
multiple diseases in future clinical translation is one of the future
research priorities.
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