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Successful clinical methods for tumor elimination include a combination of
surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the
crucial components of the cancer treatment regimens which allow to extend
patient life expectancy. Current cutting-edge radiotherapy research is focused on
the identification of methods that should increase cancer cell sensitivity to
radiation and activate anti-cancer immunity mechanisms. Radiation treatment
activates various cells of the tumor microenvironment (TME) and impacts tumor
growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to
regulate signaling and anti-cancer functions of various TME immune and
vasculature cell components, including tumor-associated macrophages,
dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural
killers, and other T cell subsets. Dual effects of radiation, including metastasis-
promoting effects and activation of oxidative stress, have been detected,
suggesting that radiotherapy triggers heterogeneous targets. In this review, we
critically discuss the activation of TME and angiogenesis during radiotherapy
which is used to strengthen the effects of novel immunotherapy. Intracellular,
genetic, and epigenetic mechanisms of signaling and clinical manipulations of
immune responses and oxidative stress by radiotherapy are accented. Current
findings indicate that radiotherapy should be considered as a supporting
instrument for immunotherapy to limit the cancer-promoting effects of TME.
To increase cancer-free survival rates, it is recommended to combine
personalized radiation therapy methods with TME-targeting drugs, including
immune checkpoint inhibitors.
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1 Introduction

The tumor microenvironment (TME) is a complex, dynamic,
and cancer-orchestrated system of cells and cell-secreted
components, including heterogeneous tumor cells and cancer
stem cells (CSCs), cancer-associated fibroblasts (CAFs), various
subsets of pro-inflammatory immune effectors, tumor-associated
macrophages (TAM), endothelial components of blood and
lymphatic vasculature, extracellular matrix and numerous
cytokines and chemokines (Figure 1) (Liotta and Kohn, 2001; Lu
et al., 2022; Xie and Su, 2022; Zhang et al., 2023a). TME is often
subdivided into at least two major categories, such as a non-immune
microenvironment (dominated by fibroblasts) and an immune
microenvironment (dominated by immune T cells and TAM).
Tumor cells and TME represent a functionally and highly
dynamic structure, where tumor cells are regarded as “seeds”
submerged in cancer-promoting and supporting TME (“soil”)
modified during cancer immunoediting (Talbot et al., 2012; Cao
et al., 2022; Lu et al., 2022; Xie and Su, 2022). According to the
proposed model, tumor cells mutually interact with components of
TME which is shaped to promote tumorigenesis and metastasis
(Weber and Kuo, 2012).

In 2020, the number of cancer patients worldwide reached
nearly twenty million, of which Asia accounted for nearly half of all
cases (9,503,710 cases; 49.3%). The number of cancer cases also
highly increased in China, reaching 4,568,754, compared to

2018 statistical data (Bray et al., 2018; Sung et al., 2021). The
analysis of cancer therapy worldwide indicated that almost half of
cancer patients received radiation treatment (Bernier, 2016; Zakeri
et al., 2018). Radiotherapy is designed to kill tumor cells using
high-energy ionizing radiation, such as gamma rays and X-rays,
and electron and proton beams. Certain radiation doses are
calculated to deliver the most efficient killing of tumor cells
while sparing the normal surrounding tissues (Bernier et al.,
2004; Glicksman, 2006). In sensitized cancers, radiotherapy
delivers a highly desirable elimination of cancer cells, although
the cancer-free outcome is hard to reach. During radiotherapy
treatment, TME impacts the successful elimination of tumor cells
and may negatively contribute the treatment and patient survival
(Zakeri et al., 2018; Pontoriero et al., 2023). Research data
confirmed that radiotherapy triggers various anti-cancer
changes in TME and affects anti-tumor responses. The
favorable effects of radiotherapy deliver a rationale for the
combined therapeutic strategy. Application of complex
treatment methods, including the use of radiotherapy as an
activator of internal anti-cancer mechanisms in support of
chemotherapy and immunotherapy, is recommended (Zhang
et al., 2023b; Pontoriero et al., 2023; Shannon et al., 2023;
Viswanath et al., 2023). In this study, we discuss the role of
radiotherapy in the regulation of TME-related cancer-
promoting effects. The success of targeted anti-cancer
immunotherapy, combined with radiotherapy, is also discussed.

FIGURE 1
A diagram represents the structure of a solid tumor microenvironment (TME). Cancer cells are mixed with TME cells which include normal tissue
cells, different immune cells, and microvessels. TEM immune cells are represented by dendritic cells (DCs), macrophages, natural killer (NK) and other
T cells, B cells, myeloid-derived suppressor (MDS) cells, and others (depending on the cancer type).
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2 Radiation therapy effects in tumor
vasculature

2.1 An unexpected turn: radiotherapy may
promote angiogenesis and metastasis

High-energy radiation, which is required to initiate cancer cell
death, provokes endothelial cell dysfunction, characterized by
increased permeability, endothelial cell detachment from the
basement membrane, and apoptosis, which often promotes
inflammation and fibrosis during and after radiotherapy (Paris
et al., 2001). Radiation may cause microthrombosis and increased
adhesion of inflammatory immune cells to endothelial cells in the
vasculature which is followed by extravasation of blood cells into the
perivascular space (Wang et al., 2007). Following this, the intimal
layer of the irradiated blood vessel was reported to thicken, leading
to irreversible change in vasculature wall (Gujral et al., 2014;
Mohammadkarim et al., 2022). Accordingly, controversial
findings were reported about the impact of radiation on the
angiogenesis and metastasis. Different studies indicated that
damaged blood vessels may promote angiogenesis, migration of
cancer cells, metastasis, and exacerbate the prognosis outcome
(Girinsky, 2000; Quail and Joyce, 2013; Chaurasia et al., 2016;
Hu et al., 2016; Manier et al., 2016; Viallard and Larrivee, 2017;
Yadav et al., 2018; Yuan et al., 2018; Schulz et al., 2019). Despite this
negative side effects in endothelium, efficient cancer elimination and
better overall survival were observed during radiation treatment in
many different cancers (Chaurasia et al., 2016; Hu et al., 2016; Yuan
et al., 2018), suggesting that the balance towards complete cancer
elimination is under control of specific component(s) in TME.

Tumormetastasis and recurrence are the main causes of death in
patients with clinically advanced cancers. Metastasis and recurrence
are ultimately associated with the induction of angiogenesis, which
can be affected by radiation therapy (Viallard and Larrivee, 2017).
Growing tumor cells require a constant supply of nutrients and
oxygen, delivered through the activated growth of vasculature. A
unique tumor-associated vasculature is activated through a variety
of mechanisms, including an increased level of reactive oxygen
spices (ROS) and activation of mechanistic target of rapamycin
(mTOR) pathway (Quail and Joyce, 2013; Chaurasia et al., 2016; Hu
et al., 2016; Manier et al., 2016; Schulz et al., 2019). Therefore,
radiation therapy was found to stimulate not only the autophagy/
apoptosis in cancer cells, but also proliferation of blood vessels near
the treated tumor, increasing the degree of blood supply to tumor
cells and promoting tumor metastasis (Girinsky, 2000; Yadav et al.,
2018; Yuan et al., 2018).

Preliminary studies have confirmed that radiation increases the
expression of vascular endothelial growth factor (VEGF) and
activates pro-angiogenic signal transduction pathways (Song and
Levitt, 1970; Sonveaux et al., 2003). Experimental data confirmed the
association between angiogenesis and levels of VEGF. For instance,
the xenografted squamous cell carcinoma cell line A431, which
survived multiple rounds of irradiation (Pueyo et al., 2010), showed
faster growth compared to controls in vivo (Pueyo et al., 2010).
Significantly increased levels of VEGF, epidermal growth factor
receptor (EGFR), and transforming growth factor-α (TGF-α)
were detected in this study and linked to enhanced angiogenesis
(Pueyo et al., 2010).

Radiation treatment may also promote metastasis in patients
with squamous cell head and neck cancer (SCHNC). Conventional
fractionated radiotherapy is routinely administered to stop the
growth of SCHNC. The reported results showed that the
microvessel density (MVD) in active SCHNC tissues after
radiotherapy was significantly higher than that before
radiotherapy (Zhang et al., 2003; Svagzdys et al., 2009;
Harmankaya et al., 2022). The data indicated abundant
angiogenesis during radiotherapy, an unexpected adverse effect.
A similar finding was reported in patients with stage II/III
colorectal cancers (CRCs), who received preoperative
chemoradiotherapy (Zhang et al., 2017). In these patients
assessed before radiotherapy, high vascular density (VD) values
were found to be associated with poorer local relapse-free survival
(LRFS) (Abramyuk et al., 2015; Zhang et al., 2017; Chen et al.,
2021a). Following radiotherapy treatment, the proliferative index
Ki-67 of the patients increased, and the VD value also exceeded the
level before treatment, leading to a lower LRFS. This finding was
closely related to the failure of radiotherapy in CRC patients
(Koukourakis et al., 2019).

Another study assessed gene expression profiling in the
paracancerous tissues of rectal cancer patients who received
radiotherapy. The study reported that the expression of
angiogenesis-promoting genes and MVD were significantly
increased, indicating activation of angiogenesis by radiation (Gil
Marques et al., 2019). In lung cancer tissues, radiotherapy triggered
the hypoxia-inducible factor 1α (HIF-1α) and VEGF pathway.
Alternatively, inhibition of this pathway reduced radiotherapy-
induced tumor angiogenesis, indicating the importance of the
HIF-1α/VEGF pathway for radiation-related stimulation of
vascular growth (Zhu and Zhang, 2018). Conclusively, the tumor
cells that were not eliminated by radiation, may progress towards a
more advanced malignancy which is supported by abundant blood
vessel formation. Therefore, the undesirable side-effects of
radiotherapy were ultimately linked to tumor recurrence and
metastasis.

Irradiation was also found to activate various cell membrane
tyrosine kinase receptors, such as insulin-like growth factor-1
receptor 1 (IGFR-1) (Husain et al., 2010; Owens et al., 2013;
Kilpatrick and Hill, 2021). The receptor is actively involved into
autocrine signaling processes and was shown to promote cell-to-cell
communication, cell growth, and division (Husain et al., 2010;
Owens et al., 2013; Kilpatrick and Hill, 2021). Activated IGFR-1
transmits signals through multiple downstream effectors, including
transcription factor NF-κB and associated signaling networks, such
as rat sarcoma (Ras) pathway, phosphoinositide 3-kinase (PI3K),
mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase
(JNK), Fas cell surface death receptor (Fas-R), and tumor necrosis
factor-α (TNF-α) signaling network (Sorolla et al., 2020). Many of
radiation-induced mediators directly or indirectly promote the
expression of VEGF/IGFR-1 and angiogenesis (Figure 2). For
instance, radiation was found to activate cyclooxygenase-2 (COX-
2), nitric oxide synthase (NOS), EGFR, and IGFR-1 pathways
(Eldesoky et al., 2011; Banys-Paluchowski et al., 2018). The
pathways are represented by complex networks and can stimulate
angiogenesis via intermediate signaling molecules. Radiation-
activated COX-2 can induce the production of prostaglandin H2
(PGH2). Following this, PGH2 triggers thromboxane A2 (TXA2)
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and promotes vascular growth (Mitryayeva et al., 2019;
Anoopkumar-Dukie et al., 2020). Radiotherapy was also shown
to activate production of prostaglandin E2 (PGE2) which
promotes the expression of HIF-1α and VEGF (Kovacs et al.,
2019). PGE2 can also bind to prostaglandin E2 receptor subtype
2 (EP2) and reinforce VEGF signaling (Figure 2) (Li et al., 2019).

Radiation was also found to activate NOS (Holotiuk et al., 2019;
Wei et al., 2019), which is responsible for the generation of nitric
oxide (NO), induction of HIF-1α expression (Masoud and Li, 2015),
activation of PI3K/Akt/FRAP or PI3K/Akt/mTOR pathways, and
angiogenesis (Sharifpanah et al., 2019). Similar effects (activation of
angiogenesis and cancer recurrence/metastasis) were achieved when
radiotherapy activated the EGFR network (Alique et al., 2020).
EGFRs are coupled to the induction of VEGF expression via Ras/
MEK/MAPK, Ras/MEK/ERK/MNK, PI3K/Akt/FRAP, PI3K/Akt/
mTOR and other kinase signaling pathways (Zhu et al., 2020).
The signaling pathways, including PI3K/Akt/FRAP, PI3K/Akt/
mTOR, and MEK/ERK/MNK, can be also activated by radiation
and IGFR-1. HIF-1α and VEGF are also triggered by above-
mentioned networks, leading to blood vessel growth (Masoud
and Li, 2015) (Figure 2). Furthermore, in the hypoxic
microenvironment, which is commonly detected within solid
tumor tissues (Alique et al., 2020), low-dose irradiation activates
VEGF receptor 2 (VEGFR2) (Marques et al., 2020). The cell damage,
caused by radiation, increases the degree of hypoxia, and stimulates
the secretion of VEGF-A by tumor cells; thereby, stimulating
angiogenesis via VEGF pathway (Jabbari et al., 2019).

Aside from VEGF, TGF-β also connects multiple signaling
pathways, participates in the promotion of tumor angiogenesis,
stimulates CAF activation, activates HIF-1 signaling, and is also
involved in the activation of T cells and dendritic cells (DCs) in TME
(Barcellos-Hoff, 2022). Radiation was found to upregulate TGF-β
expression in tumor cells. TGF-β indirectly affects angiogenesis
through induced expression of HIF-1α/VEGF (Rodriguez-Ruiz
et al., 2020). In conclusion, radiation may stimulate and promote

angiogenesis, employing HIF-1α/VEGF and other signaling
pathways.

2.2 Combined application of radiotherapy
and targeted anti-tumor vascular therapy

Progressive growth of solid tumors leads to the generation of
hypoxic TME areas due to insufficient vascular distribution. The
hypoxic TME was associated with tumor radioresistance (Chen
et al., 2016). To increase the radiosensitivity of tumor cells,
several effective anti-angiogenic agents (vascular inhibitors) were
generated. These substances can specifically target and inhibit the
growth of new blood vessels, regulate the blood flow and
oxygenation of cancer tissues (Chen and Xu, 2015; Siemann
et al., 2017; Uribesalgo et al., 2019). Vascular inhibitor therapy
can block tumor growth to a certain extent. The therapy was limited
by the development of drug resistance, increased levels of hypoxia,
and various obstructions to effective drug delivery. Unfortunately,
the overall survival after treatment with vascular inhibitors in
clinical practice is relatively poor (Lin et al., 2016). However,
combined treatment with angiogenesis inhibitors and
radiotherapy were found to enhance the radiosensitivity of
endothelial cells (Blomberg et al., 2020), attenuate radiotherapy-
induced angiogenesis, and prevent tumor recurrence. Experimental
and clinical studies have shown that radiotherapy combined with
vascular inhibitors has significantly better anti-cancer effect
(Kanthou and Tozer, 2019).

Several molecular targets have been selected to improve effects
of radiotherapy, including purine/pyrimidine endonuclease 1
(apurinic/apyrimidinic endonuclease 1, APE1), the enzyme with
DNA repair functions (Teicher et al., 1995; Kidoikhammouan et al.,
2012; Gu et al., 2013; Xi et al., 2013). It has been found that X-rays
can induce both the expression of APE1 and VEGF in A549 cells (Gu
et al., 2013; Xi et al., 2013). Inhibition of APE1 expression

FIGURE 2
TME-activated COX-2 and PGE2 signaling pathways mediate cancer progression. The pathway is linked to angiogenesis via a complex molecular
network. Radiation-activated COX-2 and secreted PGH2 cause the production of TXA2 and promote angiogenesis. Released PGE2 activates the
expression of HIF-1α and VEGF which also promote angiogenesis and cancer resistance/metastasis.
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significantly attenuated radiation-induced endothelial cell migration
and greatly reduced the formation of capillary-like structures (Gu
et al., 2013). The sensitivity of the tumor to radiotherapy was
significantly enhanced by co-treatment with another anti-
angiogenic agent TNP-470 (minocycline; methionine
aminopeptidase-2 inhibitor) (Kidoikhammouan et al., 2012).
TNP-470 demonstrated efficient anti-angiogenetic properties in
rat subcutaneous gliosarcoma model in vivo (Teicher et al., 1995).

Bevacizumab, a VEGF inhibitor (a recombinant humanized
monoclonal antibody against VEGF), has been used in clinical
trials for the treatment of head and neck cancer (HNC), where it
has significantly improved radiation therapy (Ahn et al., 2018).
Combined regimens with bevacizumab and erlotinib (EGFR
blocker) were used during chemoradiotherapy (CRT) protocols
to treat patients with advanced HNC. The survival rate of these
HNC patients with complete remission (cure rate, CR) reached
96%, while 3-year locoregional control rate was 85%, distant
metastasis-free survival rate was 93%, and overall survival rate
was 86% (Yoo et al., 2012). Postoperative chemotherapy and pelvic
IMRT plus bevacizumab in patients with high-risk endometrial
cancer were well tolerated and improved 2-year overall survival
(Viswanathan et al., 2015). A similar combined regimen was also
tested in patients with extremity soft tissue sarcomas (ESTS). The
patients were treated with pazopanib (another monoclonal
antibody against VEGF), combined with radiotherapy. The
results showed that pathological complete remission was
achieved in 4 out of 10 patients (Haas et al., 2015). Drug
toxicity and side effects were acceptable when conventional
fractionated radiotherapy was combined with sorafenib (VEGF
pathway inhibitor; small molecule tyrosine kinase inhibitor) (Zhao
et al., 2010; Chen et al., 2014).

Endostatin, an endogenous inhibitor of angiogenesis, is a 20-kD
proteolytic fragment of type XVIII collagen (Digtyar et al., 2007).
Endostatin can bind the integrin α5β1 in the endothelial cell
membranes, leading to the activation of Src-kinase signaling.
Combined with concurrent chemoradiotherapy (CCRT),
endostatin was used for the treatment of patients with
unresectable stage III Non-Small Cell Lung Cancer (NSCLC).
The results showed considerable improvements in survival and
local cancer control rates (Bao et al., 2015). A recent study with
PEGylated recombinant human endostatin indicated the potential of
this anti-angiogenic substance for the treatment of pancreatic and
gastric cancers (Guo L. et al., 2023). Endostatin can not only block
cancer-induced VEGF expression, but also demonstrated a better
safety profile (compared to bevacizumab) in small clinical studies
(Mendez-Valdes et al., 2023), although further testing with
combined radiotherapy is required.

Erlotinib (also known as OSI-774 or Tarceva), is an anti-EGFR
antibody that was approved as an anticancer drug by the US-FDA
and tested as a treatment for NSCLC and pancreatic cancer (Feng
et al., 2014). For patients with esophageal squamous cell carcinoma
who cannot tolerate chemoradiotherapy, the administration of
erlotinib combined with radiotherapy was more tolerable and
effective (Zhai et al., 2013). The targeted search for improved
inhibition of angiogenesis continues and resulted in the design of
more efficient inhibitors of EGFR signaling (Shah et al., 2023),
although clinical testing is required before those drugs can be
implemented. Conclusively, the previous studies showed that

local control rate and overall survival rate of patients who were
treated with angiogenesis inhibitor combined with radiotherapy are
significantly improved compared with radiotherapy alone. The
application of vascular inhibitors also reduced radiation-induced
damage to normal tissues and improved patients’ treatment
tolerance. Moreover, the combined treatment protocol
significantly reduced tumor recurrence, although further testing
is warranted. It is foreseeable that combined radiotherapy and
adjuvant therapy with anti-angiogenic substances will play an
increasingly important role in tumor therapy.

3 Effects of radiation therapy on
cancer-associated fibroblasts (CAF)

3.1 Radiotherapy affects CAF-regulated
network

CAFs are represented by highly heterogeneous cell populations
which account for about 50% of the total number of all TME cells
(Butti et al., 2023; Wieder, 2023). Therefore, CAFs are often defined
as stromal TME cells (De et al., 2021; Kochetkova and Samuel, 2021;
Mor et al., 2022). It has been suggested that quiescent fibroblasts can
be transformed into CAFs in tumor tissue. Undergoing epithelial/
endothelial-mesenchymal transition (EMT), bone marrow-derived
differentiated mesenchymal stem cells, and epithelial or endothelial
cells were also linked to the generation of CAFs (Kamali Zonouzi
et al., 2021; Kochetkova and Samuel, 2021; Loh andMa, 2021; Simon
and Salhia, 2021). CAFs were shown to play an important regulatory
role in the TME, where these cells promoted cancer occurrence,
metastasis, and recurrence (Barbazán and Matic Vignjevic, 2019;
Kashima et al., 2019). CAFs can express and secrete a variety of
cytokines that promote tumor cell proliferation, invasion, and
metastasis (Peng et al., 2021; Chen et al., 2022; Li et al., 2023;
Morgan et al., 2023). For instance, isolated from tumor-stromal
junctions CAFs were able to activate EMT in tumor cells, leading to
increases in cancer cell migration (Asif et al., 2021; Majidpoor and
Mortezaee, 2021; Stuelten and Zhang, 2021; Taeb et al., 2022; Pei
et al., 2023). Numerous pro-angiogenic factors and matrix
metalloproteinases (MMPs), which activate angiogenesis and
lymphangiogenesis, can be secreted by CAFs (Wei et al., 2017;
Cadamuro et al., 2019; Chen et al., 2021b; Ambrosetti et al.,
2022; Chiavarina et al., 2022; Watanabe et al., 2022). Notably,
CAFs can also secrete anti-inflammatory chemokines and
modulate immune anti-cancer responses, thus, promoting
carcinogenesis (Zheng et al., 2021a; Zheng et al., 2021b;
Kobayashi et al., 2021). The presence of CAFs in TME was
linked to the poor prognosis and development of drug resistance
(Chen et al., 2021b; Dong et al., 2021; Kamali Zonouzi et al., 2021;
Ambrosetti et al., 2022).

A very limited number of studies addressed the impact of
radiotherapy on the level of CAFs in TME. It has been
demonstrated that CAFs, which were isolated and cultured
from lung cancer tissue, can survive radiation exposure, but
their invasive ability may be lost (Hellevik et al., 2012). The
CAF-based analysis suggested that radiation activates the
overexpression of integrins α2 and β1, thereby attenuating the
migratory ability of CAFs (Park et al., 2008; Nam et al., 2013).
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Subsequent clinical studies confirmed the important role of
β1 integrin expression in tumor cells surviving after
radiotherapy (Park et al., 2008). Further studies have shown
that tumor stroma mediates the development of radioresistance
in cancers, and β1 integrin is a key link involved in this process
(Carracedo et al., 2010; Eke et al., 2012; Ahmed et al., 2013;
Broustas and Lieberman, 2014; Wu et al., 2015; Zhang et al.,
2018; Yokosaki and Nishimichi, 2021; Park et al., 2023).

Radiation was suggested to enhance the secretion of growth-
promoting growth factors and ECM regulators (TGF-β and MMPs)
from CAFs (Figure 3).

TGF-β can be secreted by CAFs and directly stimulate tumor
immune evasion and activate the HIF-1 signaling pathway. MMPs
were also shown to promote angiogenesis and tumor cell invasion
and metastasis (Dancea et al., 2009; Hneino et al., 2012; Neuzillet
et al., 2015). Considering that radiotherapy was shown to promote
EMT, tumor invasion, and migration, it is logical to suggest that
CAFs may be induced by radiation. For instance, radiotherapy
promoted the expression of MMP-2 (via activated EGFR/Akt
pathway) and enhanced the invasive ability of glioma cells
(Park et al., 2006). Increased MMP-9 expression by was also
associated with higher invasive ability of hepatocellular
carcinoma cells (Cheng et al., 2006). However, it remains to
confirm whether CAFs are involved in this process and
activated by radiotherapy.

3.2 Combined effects of radiotherapy and
CAF-targeting therapy

According to the mutation analysis, CAFs are genetically more
stable than tumor cells, making them a better target for therapy. CAF
genes, which are responsible for the secretion of TGF-β, MMPs,
hepatocyte growth factor (HGF), and tenascin-C (Tn-C), were
identified as promising therapeutic targets (Guo S. et al., 2023;
Greimelmaier et al., 2023; Li and Mu, 2023; Yang et al., 2023). The
combined treatment protocol with radiotherapy and TGF-β
inhibitors chemotherapy was found to be effective for attenuation
of tumor cell proliferation and spreading (Bouquet et al., 2011). It
was also found that MET (mesenchymal epithelial transition factor)
inhibitors enhanced the efficacy of radiotherapy and attenuated the
invasive activity of tumor cells. This additive effect was mediated by
HGF secretion (De Bacco et al., 2011). However, there have been no
clinical trials that tested the use of HGF and MET inhibitors
combined with radiotherapy. Therefore, it is warranted to verify
this novel approach in cancer therapy.

Other CAF-linked molecular targets were also identified,
although not completely tested in clinics. For instance, during the
activation of CAF, the high expression of Tn-C in the cell matrix
may allow the iodine-131-labeled anti-Tn-C antibody to enter the
matrix precisely into cancer cells. It was suggested that this cell-
targeted approach should be tested in clinical settings. (Reardon

FIGURE 3
The effects of radiotherapy on TME. After irradiation, TME undergoes a series of changes. The hypoxic environment of irradiated solid tumors
triggers the HIF-1 signaling pathway. The secreted VEGF and TGF-β promote tumor growth and angiogenesis. CAFs in the tumor extracellular matrix are
activated upon irradiation and lead to changes in the secretion of various growth factors. After irradiation, NKG2D signaling is also enhanced, resulting in
improved (anti-cancer) cytotoxic effects of NK and CD8+ T cells. Increased proinflammatory factors, DAMP-related TLRs may activate DCs, which
further activate the anti-cancer effect of T cells in TME.
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et al., 2002). Treatment effects of monotherapy clinical trials were
found to be suboptimal, possibly due to the broad-spectrum activity
of MMP inhibitors. Relevant preclinical studies have found that
MMP inhibitors with higher specificity can improve the efficacy of
radiotherapy (Waas et al., 2005; Heath et al., 2006; Olivares-Urbano
et al., 2020; Waller and Pruschy, 2021), but further research is
needed.

4 Radiation therapy and cancer-
associated exosomes

4.1 Effects of radiotherapy on the secretion
and composition of exosomes

Tumor cells maintain the development and stability of their
TME by secreting various growth-promoting factors and
extracellular matrix filaments. Vesicle-encapsulated structures
(exosomes) with a diameter of up to 50–150 nm are often
released by cancer cells (Gyorgy et al., 2011). The exosomes were
found to contain various microRNAs, proteins, and lipids (Malla
et al., 2017). The released structures are generated by the initiation
membrane, undergo endocytosis to form polycystic bodies, and are
secreted to the extracellular liquids after maturation. The released
exosome may be absorbed by recipient cells (phagocytosis or
membrane fusion), leading to the activation of various
physiological processes in the targeted cells and tissues.
Accordingly, cancer-released exosomes were shown to direct
intercellular signal transmission (Bang and Thum, 2012), and
immune response (Robbins and Morelli, 2014), and facilitate the
cancer escape from apoptosis (Miksa et al., 2009).

The two significant factors, which affected the release of
exosomes, were linked to radiation-induced DNA damage and
activation of p53-related pathways (Tarasov et al., 2021; Tan
et al., 2023). Radiotherapy is designed to cause DNA damage in
cancer tissues. Moreover, it also activates many related pathways,
including the p53 network. The tumor suppressor protein
p53 regulates the transcription of many genes, including the
genes responsible for the communication between adjacent cells.
The activation of p53 pathway was found associated with the
regulation of endocytic trafficking and the exosome secretion
during apoptosis (Yu et al., 2006; Lakoduk et al., 2021). Increased
cancer cell invasion and resistance were observed in cells with
mutant p53 which influenced expression and function of genes
responsible for vesicle trafficking and recycling of growth factor
receptors. Formation and secretion of exosomes are also regulated
by p53 in the TME (Yu et al., 2006; Lakoduk et al., 2021).

The composition of exosomes is defined by the cell type and is
strongly affected by radiation. Several experimental studies
confirmed that tumor cells treated with ionizing radiation
generate exosomes with various and complex content. For
instance, human brain astrocytoma cell U-87MG, irradiated with
4 Gy for 48 h, released exosomes with connective tissue growth
factor and IGF-binding proteins (Arscott et al., 2013). Prostate
cancer cells 22Rv1, exposed to 4 Gy radiation (for 96 h), released
a higher amount of B7-H3 proteins (Lehmann et al., 2008). In
samples from prostate cancer patients, the content of heat shock
protein 72 was found to increase after radiotherapy (Hurwitz et al.,

2010). After irradiation of human head and neck squamous cell
carcinoma cells using the Feature Aggregate Depth Utility (FaDu)
(2 Gy, 18 h) approach, it was registered that levels of proteins
involved in the regulation of translation and transcription (cell
cycle regulators) were increased (Chung et al., 2021).
Alternatively, the expression levels of apolipoproteins and
immunoglobulins decreased (Jelonek et al., 2015). These findings
indicated that the effects of ionizing radiation can be reflected in
changes in the exosome content, which may be used in the post-
treatment diagnostics.

4.2 Exosome functions and radiotherapy

Exosomes are functional elements of normal physiology and can
be released by normal cells. Moreover, exosomes mediate the
activation of immune responses. For instance, the major
histocompatibility complex (MHC)-peptide complexes carried by
exosomes can bind to cognate T cell receptors and activate CD4+/
CD8+ T lymphocytes (Nolte-’t Hoen et al., 2009; Xie et al., 2010;
Admyre et al., 2006). This is the common mechanism of antigen
presentation which initiates the body’s immune response. Exosomes
may also interfere with the body’s immune system and promote
tumor growth. Several recent studies have shown that cancer-
released exosomes can slow down the proliferation of NK cells
(Liu et al., 2006) or CD4+/CD8+ T cells (Clayton et al., 2007), promote
the mutation of myeloid cells (Valenti et al., 2006) and regulatory
T cells (Szajnik et al., 2010).

The ability of exosomes to activate immune responses relies on
the expression of membrane antigens they carry and the
physiological state of the target cells (Segura et al., 2005;
Bhatnagar et al., 2007). Exosomes secreted by tumor cells may
also carry immunosuppressive peptide complexes. Accordingly,
tumor-released exosomes have also been implicated in tumor
spreading. Irradiation-induced exosome-specific changes were
found to trigger nerve growth factor (NGF)-tyrosine protein
kinase (Trk) A and focal adhesion kinase (FAK) signaling
pathways in brain cancer patients (Wang H. et al., 2021).
Activation of Trk ultimately promotes brain glial plasma cell
migration and metastasis (Arscott et al., 2013). Trk is also
involved in the regulation of intracellular trafficking (Scott-
Solomon et al., 2018), required for the establishment of cell-to-
cell communications in TME (Okimoto and Bivona, 2016).

Exosomes regulate the information exchange between tumor cells
and TME by transmitting unique signals related to apoptosis, division,
and growth to target cells (Ludw et al., 2012). Ionizing radiation can
significantly affect the exchange of information between cells through
the conformation of different signal transduction systems. The release
of specific exosomes with pro-survival cargo affects the biological
behavior and therapeutic effects in tumors and TME. Radiation-
related changes in cell-to-cell communications have been shown to
regulate radiotherapy responses in the directly irradiated cells and
surrounding unirradiated cells via the employment of exosomes and
their cargo (Moore et al., 2005; Facoetti et al., 2006; Burr et al., 2010).
Experimental data demonstrated the increased gene instability which
is translated into changed content of exosomes (modified RNAs,
microRNAs, and protein cargo) in irradiated breast cancer (Al-Mayah
et al., 2012; Al-Mayah et al., 2015) and other cells (Malla et al., 2017).
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Furthermore, radiation may promote the release of exosomes with
specific cargo (microRNAs) which facilitate the development of
radioresistance and radiation-induced bystander effects (RIBEs)
(Yang et al., 2022). Additionally, the uptake of exosomes by
irradiated cells was found to be also affected by radiation. It has
been shown (Hazawa et al., 2014) that human bone marrow-derived
cells exposed to ionizing radiation increased exosome uptake through
CD29/CD81 complex formation and p38 mitogen-activated protein
kinase-dependent endocytosis and pinocytosis. In conclusion,
considering the role of exosomes and their cargo in the regulation
of cancer cell growth and survival, it has been suggested to employ
exosomes as a target for anti-cancer treatment (Ni et al., 2019).

5 Radiotherapy effects on cellular
components of TME

5.1 Radiotherapy enhances the anti-cancer
immune responses in TME

Tumor immunity is designed to deliver anti-tumor effects via
mobilization of the host’s natural defense mechanism and secretion
of endogenous anti-cancer substances (Wattenberg et al., 2014).
Accordingly, tumor immunotherapy, which was introduced in the
1980s, has become the fourth tumor treatment method following
surgery, radiotherapy, and chemotherapy. In 2013, it was indicated
as the leading technological breakthrough achievement in cancer
therapy (Couzin-Frankel, 2013). Currently, a large number of drugs
have been developed and tested in clinics (Table 1), although only some
of them have been tested in combination with radiotherapy. Notably,
radiotherapy can promote the body’s natural anti-tumor immunity.
Irradiation causes DNA damage and apoptosis in malignant cells
(Golden et al., 2012). The triggering of apoptosis and necrosis can
induce the innate immune response in the TME, causing the release of
cytokines and chemokines. The released products can recruit
macrophages, NK T cells, regulatory T cells, and myeloid suppressor
cells (MDSC) (Er et al., 2007; Gallo and Gallucci, 2013). The reported

TABLE 1 Overview of drugs targeting TME for radiotherapy.

Targeting mechanism Drug Target protein/gene

Angiogenesis/Hypoxia

Nimorazole HIF-1

Albumin-MnO2 HIF-1

Acriflavine HIF-1

Aflibercept VEGF, PIGF

AMG386 ANG1, ANG2

Endostatin VEGF, TGF-β, HIF-1

AMD3100 CXCL12, CXCR4

Cilengitide Integrins

Vitaxin Integrins

Volociximab Integrins

Bevacizumab VEGF

Erlotinib VEGF

Pazopanib VEGFR, PDGFR

Apatinib VEGFR

Axitinib VEGFR

Linifanib VEGFR, PDGFR

Vandetanib VEGFR, EGFR

Cabozantinib VEGFR

Regorafenib VEGFR, PDGFR

Sunitinib VEGFR, PDGFR

Lenvatinib VEGFR, PDGFR

Sorafenib VEGFR, PDGFR

Brivanib VEGFR, FGFR

Nintedanib VEGFR, PDGFR

Motesanib VEGFR, PDGFR

Cediranib VEGFR

CAF/Fibrosis

Nintedanib PDGF, VEGF,

Imatinib TGF-β, PDGF

Nilotinib TGF-β, PDGF

Dasatinib TGF-β, PDGF

Vismodegib Smoothened receptor

Saredigb Smoothened receptor

Sonedegib Smoothened receptor

Suramin PDGF, EGF, TGF-β, FGF

SD-208 TGF-βRI

Simtuzumab LOXL2

81C6 TN-C

F16SIP TN-C

(Continued in next column)

TABLE 1 (Continued) Overview of drugs targeting TME for radiotherapy.

Targeting mechanism Drug Target protein/gene

Immune Response

Ipilimumab PD-1, CTLA4

Imiquimod PD-1,TLR7

Nivolumab PD-1

Durvalumab PD-1

Pembrolizumab PD-1

Pidilizumab PD-1

AMP-224 PD-1

REGN2810 PD-1

Atezolizumab PD-L1

Avelumab PD-L1

Durvalumab PD-L1
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anti-tumor effect in the remote non-radiation area induced by radiation
(abscopal radiation effect) indicated that radiotherapy promoted
immune anti-cancer responses (Lhuillier et al., 2021). Accordingly,
radiation treatment of immunodeficient tumor-bearing nude mice did
not activate the abscopal radiation effect, indicating the need for robust
immune effectors to trigger the response (Demaria et al., 2004;
Lumniczky and Safrany, 2015).

There is increasing evidence that radiotherapy can re-activate
cancer surveillance and enhance innate and adaptive immune
responses against tumors. A common hypothetical theory is that
local radiotherapy induces immunogenic cell death, resulting in the
activation of pro-inflammatory TME. The pro-inflammatory
condition is characterized by the release of tumor antigens and
damage-associated pattern molecules (DAMPs) from the dead cells
(Ahmed et al., 2014; Weichselbaum et al., 2017). Radiation therapy
can also induce the expression of various chemokines, leading to the
enrichment of T cells in the TME. These factors promote the
activation of antigen-presenting cells (Oh et al., 2020). Several
in vitro and in vivo experiments indicated that radiation-induced
the production of pro-inflammatory cytokines IL-1β and tumor
necrosis factor (TNF-α). The secretion of these cytokines promoted
dendritic cell (DC) maturation (Shi et al., 2003). DCs are bone
marrow-derived cells that are greatly affected by radiation-induced
alterations in the TME (Kim et al., 2004). Radiation has been shown
to increase the amount of tumor-associated DCs, enhance the
homing of these cells to lymph nodes, and induce the maturation
of DCs and their ability to present antigens (Cummings et al., 2009).

Preclinical studies have demonstrated that radiation-induced
tumor antigen release promote antigen-presenting cells (APCs) to
migrate to lymph nodes, where T cells are primed to initiate systemic
responses (Aggarwal, 2023). The National Cancer Institute (NCI)
report shows that radiation can alter the phenotype of tumor cells,
leading to upregulation of cell surface molecules, thereby broadening
the antigens available for presentation and making tumors more
susceptible to T cell-mediated anti-tumor effect (anti-cancer
surveillance) (Roses et al., 2014). Aside from T lymphocytes, NK
cells are also an important part of tumor surveillance. Involvement of
the NK Group 2 member D (NKG2D) receptor was reported
(Figure 3). Radiation increases the expression of NKG2D ligands
in several human tumor cell lines, suggesting that NK cell-based
therapies should be developed and explored in clinical trials (Sayitoglu
et al., 2020; Wang J. et al., 2021; Khan et al., 2021).

However, some factors may impede the radiotherapy effects and
promote resistance. For instance, changes in the level of TGF-β in
patients with esophageal cancer after radiotherapy were associated
with the development of resistance and were suggested to be
explored as a predictor of pulmonary fibrosis after radiotherapy.
Accordingly, the inhibition of TGF-β is crucial to improve the
efficacy of radiotherapy (Biswas et al., 2007; Biswas et al., 2017).
The dual role of radiotherapy and the development of resistance will
be described below.

5.2 Undesirable effects of radiotherapy:
immunosuppression

A variety of inhibitory immune cells has been found in TME and
are associated with the development of resistance and cancer

progression. The inhibitory cells are often represented by the
regulatory T cells (Treg), macrophages, and MDSCs (Fridman
et al., 2012). The Treg cells group includes T cells with
significant immunosuppressive effects, characterized by the
expression of Foxp3, CD25, and CD4 (Hariyanto et al., 2022).
Those Tregs can suppress the immune response of other immune
cells and are the main mediators of self-tolerance (Sakaguchi et al.,
2020). Under normal conditions, the low levels, or dysfunctions in
Tregs result in the development of autoimmune diseases. The
majority of immune cells, such as T cells, B cells, and NK cells,
can recognize and protect the body from the “non-self” agents,
generate an immune response, and remove harmful substances. Treg
cells are destined to regulate immune responses, stop the
propagation of exaggerated immune signals, regulate immune
homeostasis, and prevent autoimmune diseases (Collison et al.,
2007; Haddadi and Negahdari, 2022). Specifically, Treg cells can
secrete anti-inflammatory cytokines TGF-β and IL-10 in the TME.
Those cytokines inhibit the activities of effector T cells and activate
other suppressor cells, including MDSCs (Facciabene et al., 2012; Bu
et al., 2013). Therefore, Treg cells may serve as immune system
suppressors.

It has been observed that the number of Treg cells in tumor
tissues and immune organs is often significantly increased in
patients receiving clinical radiation therapy (Kachikwu et al.,
2011). Experiments showed that the expression of the cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) in Treg cells increased
within 72 h after whole-body irradiation. Simultaneously, the
production of TGF-β (Moreau et al., 2022) and IL-10 by Treg
cells was also increased (Balogh et al., 2013). This data suggested
that Treg cells may enhance immunosuppressive TME after
irradiation (Persa et al., 2015). Therefore, to improve anti-cancer
therapy, it was suggested to target Treg cells and the associated
immunosuppressive molecules (TGF-β and CTLA-4) (Whiteside,
2012; Sanjabi et al., 2017). Aside from Tregs, MDSCs and tumor-
associated macrophages (TAMs) play an important role in
promoting tumor angiogenesis which provides substantial pro-
survival support to the irradiated cancer tissues (Figure 3) (Sica
et al., 2008). MDSCs may also promote the development of
radiotherapy resistance (Persa et al., 2015). After irradiation, the
accumulation of MDSCs in the tumor stroma was found to be
elevated (Lehmann et al., 2008). Furthermore, radiation altered the
expression levels of TAM-produced chemokines, thereby altering
the regulation of T-cell infiltration in cancer tissues (Inoue et al.,
2004; Beach et al., 2022). However, it is warranted to clarify how the
TME is involved in the regulation of radiation-induced TAM
recruitment and which MDSC and TAM cell populations should
be targeted to improve the anti-cancer treatment.

5.3 Radiotherapy and immune checkpoint
inhibitors: a combined approach

The immune system has multiple checkpoints that can be
engaged to stimulate or inhibit certain T-cell functions. Immune
checkpoint inhibitors (ICIs) were shown to play an important role in
overcoming tumor immune tolerance, providing a new treatment
method in cancer therapy (Bagchi et al., 2021). The application and
development of ICIs represent an attractive method in the current
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cancer immunotherapy (Galluzzi et al., 2020). During the last
decade, ICI-based drug research has made fruitful progress
(Gubin et al., 2014; Powles et al., 2014). The immune system is a
key component of the abscopal radiation effect of radiotherapy
(Postow et al., 2012). Local radiotherapy is tightly linked to the
activation of various immune system responses, including T cell
priming and activation, immunogenic cell death, T cell trafficking,
and tissue infiltration, and cancer recognition and elimination
(Figure 4).

Radiation induces immunogenic cell death of tumor cells, which
activates the immune system by presenting tumor antigens to
cytotoxic T lymphocytes (Krysko et al., 2012). For instance,
radiotherapy can promote the migration of effector CD8+ T cells
and enhance the function of effector T cells by inducing the TME-
linked production of pro-inflammatory chemokines and cytokines
(Burnette et al., 2011). Antigen expression and presentation, and
enhanced effector T cell function provide a plausible underlying
rationale for immune-mediated radiation abscission effects (Lee
et al., 2020). Therefore, the combined application of radiotherapy

and ICIs may produce a better outcome, although it remains to be
confirmed in clinical trials.

At present, ICI drugs were approved and are being clinically
tested as a treatment for solid tumors, including melanoma and
non-small cell lung cancer (Borghaei et al., 2015; Larkin et al., 2015).
ICIs for CTLA-4 and programmed death (PD) ligand-1 (PD-1/PD-
L1) targets are the most studied substances which indicated
promising results. For instance, the CTLA-4 pathway is an
immunosuppressor for CD8+ T cells. Combined with radiation
therapy, CTLA-4 inhibitor drugs, such as ipilimumab, were
found to be highly effective (Demaria et al., 2013). Experimental
studies have shown that combined radiation and CTLA-4 inhibitor
treatment effectively inhibited lung metastasis of primary breast
cancer in mice (Demaria et al., 2005). Notably, radiotherapy
combined with CTLA-4 mAb was more effective than either
modality used alone (Dewan et al., 2009). It has been suggested
that combination therapy is more effective in preclinical model
studies because radiation can increase the expression level of the
NKG2D protein in tumor cells, making the cancer cells more

FIGURE 4
Activation of anti-cancer immune responses in TME by radiotherapy. Radiotherapy induces cancer cell apoptosis and necrosis which are followed by
the release of cancer cell antigens. Apoptosis leads to the increased expression of the damage-related molecular pattern (DAMPs) proteins and
interferon-1 (INF-1), which can activate various immune cells (DC, NK, and T cells). Tumor-derived antigens trigger NK/T cell recognition and elimination
of tumor cells. Expression of inhibitory effectors (PD-1 and CTLA-4) can prevent tumor elimination and should be targeted by ICIs. Angiogenesis
(marked by the expression of VCAM) may slow down cancer eradication. Radiotherapy stimulates immune surveillance and triggers the expression of
MHC, Fas ligands/receptors, andNKG2D ligands. Abbreviations: CD - cluster of differentiation; ICAM1—intracellular adhesionmolecule 1; L-ligand; LFA1 -
leukocyte function-associated antigen-1; TAA-tumor-associated antigens; TCR - T cell receptor; VCAM1 - vascular adhesion molecule 1; VLA1-vascular
integrin alpha 1.
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vulnerable to NK cell attack (Demaria et al., 2013). Recently, several
studies have explored and summarized the progress and challenges
of ICI drug application during immunotherapy. Novel
immunosuppressive pathways were targeted by various
therapeutic molecules, such as LAG-3, TIM-3, TIGIT, VISTA,
and B7-H3 (Franzin et al., 2020; Marin-Acevedo et al., 2021).
Application of novel substances and/or use of novel methods
have both specific benefits and challenges, including increased
toxicity, which should not be neglected (Marin-Acevedo et al.,
2021). For instance, the serious renal side effects of ICI drug
application, such as acute kidney injury (AKI) and acute
tubulointerstitial nephritis (ATIN), were reported. Several
strategies for prevention and management of these complications
were proposed (Franzin et al., 2020) and requires future assessment.

PD-L1, whose expression is undetectable in most normal
tissues, can be induced in various cell types by inflammatory
cytokines (Minn, 2015). PD-L1 is expressed in various solid
tumors, and its presence is an important indicator of whether a
patient responds to PD-1/PD-L1 inhibitors (Ribas, 2012; Topalian
et al., 2012; Postow et al., 2015; National Library of Medicine,
2018). Using tumor-bearing mice as a model, combined treatment
with radiotherapy and a PD-L1 inhibitor led to significant tumor
regression (Lan et al., 2021). It was further observed that the
infiltration of CD8+ T cells resulted in a significant decrease in the
number of MDSCs in the tumor tissues treated with the combined
therapy method (Raskov et al., 2021; Reina-Campos et al., 2021). It
has been noted that the level of CD8+ T cells in the host decreases
when the level of MDSCs increases. PD-L1 inhibitors can restore
anti-cancer T-cell function and increase sensitivity to apoptosis in
tumors (Gabrilovich et al., 2012; Kumar et al., 2016). Stereotactic
radiotherapy combined with a PD-1 inhibitor significantly
improved survival compared with monotherapy in a mouse
model of brain tumors (Zeng et al., 2013; Stessin et al., 2020).
A higher level of CD8+ T cells and a lower degree of Treg cell
infiltration were also detected in the tumors treated with
combination therapy (Zeng et al., 2013). Research data
indicated that radiotherapy combined with PD-1 inhibitors
significantly increased the number of memory CD8+ T cells
(Sharabi et al., 2015). In conclusion, radiotherapy can activate
local and systemic immune responses required for tumor
elimination. Therefore, the combination of radiotherapy and
immunotherapy can enhance the body’s innate and adaptive
anti-cancer immunity essential for patient survival. However, it
remains to understand how to minimize the side effects of
combination therapy and design the best optimal protocol for
clinical applications.

6 Conclusion and future perspectives

Anti-tumor combined therapies are the current focus in the
development of effective cancer treatment for advanced
malignancies. This study provides insights into the mechanisms
of radiotherapy effects on TME and the effectiveness of radiation
therapy in the regulation of tumor-related immune responses,
angiogenesis, activation of CAFs in the tumor stroma, generation,
and composition of tumor-secreted exosomes. The substantial
amount of data indicates that radiotherapy impacts major

components of TME, resulting in the activation of dual pro- and
anti-inflammatory effects.

To improve overall survival and tumor eradication,
radiotherapy may need to be combined with ICIs to target
TME in some cancer patients. A combined approach may also
prevent the development of radiotherapy resistance caused by the
anti-inflammatory TME components. The strategy to use
complex treatment protocols (radiotherapy combined with
targeted anti-tumor drugs, including ICIs) has been
successfully implemented in clinical research, although not all
promising drugs have been tested using the combined protocol
(Table 1). Recently obtained clinical trial data shows that
combined therapies have substantial treatment advantages,
although further testing is required.
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