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The aberrant function of ATP-dependent chromatin remodeler INO80 has been
implicated in multiple types of cancers by altering chromatin architecture and
gene expression; however, the underlying mechanism of the functional
involvement of INO80 mutation in cancer etiology, especially in breast cancer,
remains unclear. In the present study, we have performed a weighted gene co-
expression network analysis (WCGNA) to investigate links between
INO80 expression and breast cancer sub-classification and progression. Our
analysis revealed that INO80 repression is associated with differential
responsiveness of estrogen receptors (ERs) depending upon breast cancer
subtype, ER networks, and increased risk of breast carcinogenesis. To
determine whether INO80 loss induces breast tumors, a conditional INO80-
knockout (INO80 cKO) mouse model was generated using the Cre-loxP system.
Phenotypic characterization revealed that INO80 cKO led to reduced branching
and length of the mammary ducts at all stages. However, the INO80 cKO mouse
model had unaltered lumen morphology and failed to spontaneously induce
tumorigenesis in mammary gland tissue. Therefore, our study suggests that the
aberrant function of INO80 is potentially associated with breast cancer by
modulating gene expression. INO80 mutation alone is insufficient for breast
tumorigenesis.
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1 Introduction

Breast cancer is a devastating disease caused by genetic and epigenetic aberrations, which
lead to alterations in gene expression and subsequently cellular functions. Numerous genetic
mutations in epigenetic factors have been identified so far, and may play a key role in
breast cancer development and therapy resistance (Wang et al., 2007; Cancer Genome
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Atlas Network, 2012; Stephens et al., 2012; Wang et al., 2014b;
Helming et al., 2014; Kumar et al., 2016; Chu et al., 2017; Nickerson
et al., 2017; Swinstead et al., 2018; Li et al., 2021). Among such
epigenetic factors, ATP-dependent chromatin remodelers have
emerged as potential biomarkers for breast cancer due to their
role in regulating a distinct set of gene expression programs. For
example, approximately 11% of breast cancer is related to
mutations of the SWI/SNF complex, a member of the ATP-
dependent chromatin remodeler family, and their roles are
implicated in breast cancer cell plasticity and therapeutic
response (Kadoch et al., 2013; Helming et al., 2014; Hohmann
and Vakoc, 2014; Chu et al., 2017; Nagarajan et al., 2020; Xu et al.,
2020). Mechanistically, dysregulation of such chromatin
remodelers in breast cancer alter DNA compaction and
accessibility, resulting in changes in 3D epigenomic and
transcriptional profiles, particularly leading to aberrant
expression of oncogenes (Bochar et al., 2000; Guerrero-
Martínez and Reyes, 2018; Nagarajan et al., 2020; Kim et al.,
2021). It is still unclear, however, whether the ATP-dependent
chromatin remodelers are drivers or mere passengers of
tumorigenesis as the factors are also linked to mammary stem
cell function and mammary gland development in mice (Smalley
and Ashworth, 2003; Cohet et al., 2010; Devinoy and Rijnkels,
2010; Macias and Hinck, 2012; Dravis et al., 2018; Holliday et al.,
2018; Hanin and Ferguson-Smith, 2020; Ivanova et al., 2021).

Recent studies have shown that both fetal and adult basal cells
share common epigenetic features and multi-lineage differentiation
potential, and that the transcription factor SOX10 is critical for
lineage determination of mammary epithelial cells and breast cancer
metastasis (Dravis et al., 2015; Dravis et al., 2018). These findings
suggest that breast cancer cells often acquire epigenetic and
transcriptional features similar to those of the developing
mammary gland. Understanding these similarities may provide
insights into the underlying mechanisms of breast cancer
development and help identify potential therapeutic targets.
Studies have shown that the ATP-dependent chromatin
remodeler families are essential for luminal cell identity and
promote cell cycle decisions during mammary gland development
(Cohet et al., 2010; Serber et al., 2012; Skibinski et al., 2014; Frey
et al., 2017). Depletion of these factors results in attenuation of
multiple signaling pathways crucial to regulation of mammary
epithelial cell fate decisions and proliferation (Skibinski et al.,
2014; Frey et al., 2017).

INO80 complex, a member of the ATP-dependent chromatin
remodeler family, is involved in multiple functions related to cancer
stem cells and cancer progression, through both canonical and non-
canonical INO80 complexes that directly modulate chromatin
architecture and gene expression (Min et al., 2013; Wang et al.,
2014a; Lafon et al., 2015; Runge et al., 2018). Aberrant
INO80 function has been associated with progression of multiple
types of cancer through its binding to key enhancer and super-
enhancer elements involved in oncogenic gene expression, including
CXCL5 and MAP3K1 in non-small-cell lung cancer (Zhang et al.,
2017), BMPR1A in live cancer (Wang et al., 2019), and MITF and
SOX9 in melanoma (Zhou et al., 2016a). Furthermore, silencing of
INO80 appears to have a similar effect to dysfunction of KRAS,
MYC, PIK3CA, and ERRB2, inhibiting the migration and metastatic
abilities of cancer cells (Zhang et al., 2017). While the association

between INO80 and breast cancer has been demonstrated elsewhere
(Segala et al., 2016), the specific function of the INO80 subunit and
the underlying molecular mechanism involved in mammary
development and breast cancer have not been fully elucidated.

In this study, we aimed to explore the functional role of
INO80 in both breast cancer progression and mammary gland
development through analysis of publicly available TCGA
datasets and a conditional knockout (cKO) mouse model. Our
findings demonstrate a significant, albeit heterogeneous,
correlation between INO80 expression and breast cancer
progression. Additionally, our study provides evidence to suggest
that INO80 loss alone is not sufficient to induce the development of
breast cancer in mice.

2 Materials and methods

2.1 Mouse models

All animal experiments in the present study were performed
under the guidelines of the Institute of Animal Care and Use
Committee of Konkuk University (IACUC# KU21020). The
Ino80 cKO allele (Ino802f/2f) and Tg(MMTV-Cre) animals were
obtained from the Institut Clinique de la Souris (ICS; llkirch, France)
and the Jackson laboratory. Female Ino802f/2f mice were bred with
Ino802f/+; MMTV-Cre males to produce littermate control
(Ino802f/2f) and experimental (Ino802f/2f; MMTV-Cre) females.
PCR genotyping for the Ino80 cKO allele was carried out with
the following primers: 5′-AGGCCTTATTTAGCTCAGGTTGGC-
3’ (forward) and 5′- CCACTACACACAGCAGATACACAT -3’
(reverse). The PCR amplicons for wildtype and the conditional
alleles were 224 and 382 bp, respectively.

2.2 Tissue collection and whole-mount
carmine staining

Mammary gland samples were harvested 4, 8, and 16 weeks after
birth. Samples from inguinal mammary glands (#1, #2, and #5) on
the right side were quickly frozen in liquid nitrogen (LN2) and then
kept at −80°C, allowing RNA and protein extraction at later stages.
The inguinal mammary glands (#2 and #4) were harvested and fixed
in 4% paraformaldehyde (PFA)/PBS overnight at 4°C. After fixation,
the glands were preserved in 70% EtOH/PBS for long-term use if
needed. The procedure for whole-mount carmine staining was as
described in a previous study (Seong et al., 2018). Briefly, samples
were fixed in 4% PFA/PBS for 4–6 h, and then lipids were removed
from the fat pad with Clarke’s solution (25% acetic anhydride in 75%
EtOH) for 16–18 h at room temperature (RT). The slides were
washed with 70% EtOH/PBS and PBS, followed by staining in
Carmine Alum (C1022; Sigma-Aldrich, Burlington, MA,
United States) solution overnight at RT. Samples were rinsed
with PBS and 70% EtOH/PBS before incubation in a de-staining
solution (2% HCl in 70% EtOH/PBS) for 3–6 h. Tissues were
dehydrated in a series of EtOH (70%, 95%, and 100%) and
xylene for at least 3 h at each step and mounted on a cover glass.
Images were taken using an Olympus SZX7 microscope (Olympus,
Tokyo, Japan).
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2.3 H&E staining and immunofluorescence

The histology samples were cut into small pieces, placed into
cassettes, and submerged in 4% PFA/PBS overnight at 4°C. Then, the
samples were dehydrated with 70%, 95%, 100%, and 100% EtOH for
1 h at each step, incubated in xylene for 4 times for 30 min each time,
and finally twice in paraffin for 1 h each time. The paraffin blocks
were cut to a 5 μm thickness. For H&E staining, sections were
rehydrated and incubated in hematoxylin (#1051750500; Sigma-
Aldrich) for 5 min, washed in distilled water before being placed in
eosin, and then soaked in EtOH 95% for washing. In addition, slides
were dried and washed with an EtOH-xylene mixture before
mounting with the mounting solution (#25608-33-7; Sigma-
Aldrich). For immunofluorescence (IF) staining, tissue samples
were steamed in antigen retrieval buffer (#E-IR-R104;
Elabscience, Houston, TX, United States) for 40 min to recover
antigen epitopes. Non-specific binding was blocked with blocking
solution (2% donkey serum plus 3% BSA and 0.1% Triton-X 100 in
PBS) for 1 h at RT in advance. Sections were incubated with primary
antibodies [anti-KRT18 (1:250, #ab133263; Abcam, Cambridge,
United Kingdom), anti-SMA (1:250, #ab124964; Abcam), anti-
Ino80 (1:200, #18810-1-AP; Proteintech, Chicago, IL,
United States)] overnight at 4°C, incubated with secondary
antibodies [anti-rabbit Alexa Fluor 568 (1:250, #ab175471;
Abcam) and anti-mouse Alexa Fluor 488 (1:250, #ab150077;
Abcam)] in the dark for 1 h, washed with 1X PBS thrice, and
briefly counter-stained with DAPI (1:1000, #ab228549; Abcam).
The sections were mounted and imaged using a confocal microscope
(LSM800; Carl Zeiss, Oberkochen, Germany).

2.4 TCGA and METABRIC analysis

The analysis of breast cancer patient survival was conducted
using the Kaplan-Meier Plotter (https://kmplot.com/analysis/index.
php?p=service), as described in Nagy et al. (2018). In this analysis,
the expression levels of INO80 were utilized to investigate their
relevance to patient survival. The mean expression value of all
INO80 probes was calculated, and patients were categorized
based on the auto cut-off of INO80 expression, with default
parameters applied for the analysis, including the ER subtype,
overall survival (OS), distant metastasis-free survival (DMFS),
and recurrence-free survival (RFS).

Data on invasive breast carcinoma (BRCA) legacy level 3 was
obtained from The Cancer Genome Atlas (TCGA) cohort, and raw
RNA-seq counts and clinical data (1108 primary tumors and
114 normal samples) were retrieved using the TCGAbiolinks R
package. The data was filtered and normalized using the
TCGAanalyze_Normalization function to adjust the GC-content
effect on read counts. Normalized transcriptomics and clinical data
of METABRIC dataset (1966 tumor and 133 normal samples) were
retrieved from MetaGxData package and cBioportal, respectively.
Patients with INO80 expression were classified into molecular
subtypes, such as normal, basal-like, HER2-enriched, luminal A,
luminal B, and normal-like, and by tumor stage in each database.
Samples without standards were excluded from the analysis. The
INO80 expression sample also groups based on the ER_IHC, PR_
IHC, or HER2_IHC subgroups. After statistical analysis with

unpaired t-tests, plots were generated using the ggpubr and
ggplot2 packages to visualize the relative INO80 expression
between breast cancer subtypes, IHC groups, and cancer stage
classification.

2.5 Weighted gene co-expression
correlation network analysis (WGCNA)

Clinical features, gene copy number variation (CNV) data, and gene
expression profiles of patients with breast cancer were obtained from
TCGA and METABRIC, and analyzed using cBioportal. Only patients
with estrogen immunohistochemistry (IHC) staining and gene
expression data were included in the analysis. Weighted gene co-
expression network analysis (WGCNA, ver.1.70) was performed on
mRNA data to identify modules of co-expressed genes based on
GISTIC and IHC traits. Poorly expressed genes and outliers were
removed, and data was normalized using the limma package, with
the top 5,000 genes selected. A β = 4 threshold power was chosen based
on co-expression similarity to the scale-free topology fit index curve
(h = 0.9), and the tree cut parameters were set at 0.15 with a minimum
module size of 30 genes. The highest correlated module was selected for
downstream analysis. Specific gene networks were identified using
unsupervised clustering, and heatmaps were generated using the
pheatmap package (ver. 1.0.12). Gene ontology analysis was
performed using DAVID (ver. 6.8) (Huang et al., 2009a; Huang
et al., 2009b), and gene–trait correlations were illustrated using gene
significance (GS) scores and VisANT network analysis (Hu et al., 2004).

2.6 Quantification and image analyses

ImageJ (ver. 1.52, https://imagej.nih.gov/ij/) was utilized for the
analyses of whole-mount carmine staining, immunofluorescence,
and H&E staining in our study. The software enabled the
measurement of various parameters, including the length of the
mammary gland ductal tree in millimeters from the nipple to the last
branch, the number of branching points, and the relative area of the
fat pad in the mammary gland.

2.7 Statistical analyses

SigmaPlot (ver. 14; Systat Software, Chicago, IL, United States)
and GraphPad Prism (ver. 5; GraphPad Software, La Jolla, CA,
United States) were used for statistical analysis and producing
graphs. Data are presented as mean and standard error of the
mean (±SEM). Student’s t-test and one-way ANOVA with
Bonferroni post hoc tests were used to determine statistical
significance.

3 Results

3.1 INO80 expression in breast cancer

To investigate the contribution of the INO80 complex to breast
cancer, we first examined the frequency of alteration in the
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expression of INO80 complex subunits in various cancer types using
the cBioportal platform. To that end, a large amount of sequencing
data from patients with cancer was retrieved from TCGA and
METABRIC to investigate the impact of INO80 on breast cancer
progression and outcome. As shown in Supplementary Figure S1A,
INO80 complex subunits exhibit a high frequency of alteration in
multiple cancer types. For instance, alterations in the
INO80 complex were found in approximately 80% of non-small-
cell lung carcinomas (PanCancer Atlas), and in approximately 60%
of breast, lung, and colorectal cancers (PanCancer Atlas).
Interestingly, INO80 showed an alteration frequency of 1%–8%
in most cancer types and approximately 5% in all patients with
breast cancer (Supplementary Figure S1B).

Next, we aimed to determine the expression levels of INO80 in
normal tissue and different breast cancer PAM50 subtypes,
including basal, luminal A, luminal B, HER2, and normal-like.

The PAM50 approach is closely associated with pathological
classification and provides a means to identify or characterize
cancer subtypes using RNA analysis rather than traditional
histological staining methods. PAM50 intrinsic breast cancer
subtypes, along with the associated proliferation score and risk of
recurrence score (ROR-PT), are independent prognostic factors that
enhance the classification of breast cancer patients into prognostic
groups (Nielsen et al., 2010; Liu et al., 2016; Ohnstad et al., 2017). A
remarkably lower expression of INO80 was found in all breast
cancer subtypes, with significantly downregulated INO80 in the
basal type compared with that in the normal sample (Figure 1A;
Supplementary Figure S1C). Meanwhile, a relatively higher level of
mean INO80 expression was found in patients with luminal breast
cancer classified as ER and/or progesterone receptor (PR) IHC-
positive (Figures 1A, B; Supplementary Figures S1C, D).
Furthermore, there was no significant correlation between

FIGURE 1
Expression and survival analysis of INO80 in breast cancer. (A) The level of INO80 expression in normal tissue and breast cancer subtypes. RNA-seq
FPKMs values were retrieved from TCGA and analyzed based on clinical classification. Statistical analysis was performed using unequal t-tests, with
significance set at p ≤ 0.05. (B)Comparison of INO80 expression between ER-positive and ER-negative cohorts in TCGA (left) and METABRIC data (right).
Two cohorts were classified by immunohistochemistry (IHC) clinical data on ER and INO80 FPKMs between groups and statistically analyzed using
the t-test with unequal sample sizes. (C) Kaplan–Meier survival analysis of patients with breast cancer and INO80mutation andwild-type (WT) groups was
conducted using the DriverDBv3 tool. The analysis used default parameters with gene symbols and means on the survival function, with overall survival
(OS—top), disease-specific survival (DSS—center), and progression-free survival (PFI—bottom). BRCA, Breast Cancer LumA; Luminal subtype A; LumB,
Luminal subtype B; HER2, Human epidermal growth factor receptor 2 subtype; PAM50, Prediction Analysis of Microarray 50; RPKM, reads per kilobase of
transcript per million reads mapped.
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FIGURE 2
The correlation between INO80 expression level and breast cancer. (A)Weighted gene co-expression network analysis (WGCNA) was performed to
identify the correlation between INO80 copy number variation (CNV) and gene set modules. The MEblue module was found most associated with
INO80 CNV Genomic Identification of Significant Targets in Cancer (GISTIC) among the 13 modules, where red indicates co-expression and green
indicates negative co-regulation. (B) The correlation between INO80 copy number variation (CNV) and the significant module, MEblue (793 genes,
correlation value 0.76, p = 5.6e-177). (C) A heatmap showing unsupervised clustering of subset genes in the MEblue module of TCGA. The relation
between INO80 traits (IHC and CNV) and expression (z-score) of genes is classified into three clusters, with each cluster associated with a certain subtype
of breast cancer. (D) The top 15 gene ontology biological processes (GOBPs) fromDAVID analysis of gene set data overlapped genes between theMEblue
module of TCGA and theMEbluemodule ofMETABRIC. GOBPs related tomammary gland development are highlighted in red. ER, estrogen receptor; PR,
progesterone receptor; MG, mammary gland; HER2, Human epidermal growth factor receptor 2; CNV, Copy Number Variation.
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INO80 expression and tumor stage or HER2 IHC classification
(Supplementary Figures S1E, F). On the other hand, lower
expression of INO80 affects overall survival (OS) rate, Distant
Metastasis-free survival (DMFS), and Recurrence-free survival
(RFS) endpoints in breast cancer. The Kaplan-Meier survival
analysis of the TCGA dataset revealed that breast cancer patients
with lower INO80 expression had reduced survival probabilities
over a 150-month follow-up period (Figure 1C).

3.2 INO80 mutations are commonly
detected in human breast cancer and
correlated with breast cancer subtype

Given the significant increase in the risk of breast cancer and
decreased survival rate observed in patients with INO80 complex
dysfunction (Figure 1C), as well as the need for further investigation
into the association between INO80 deregulation and breast cancer,
WGCNA was performed to investigate gene expression, CNV, and
clinical IHC annotations of INO80 in patients with breast cancer
(Cancer Genome Atlas Network, 2012; Ciriello et al., 2015) followed
the workflow in Supplementary Figure S2A. Our analysis primarily
focused on the effect of INO80 mutation on breast cancer subtype
and changes in gene cohorts associated with breast cancer. The gene
expression profile was divided into 13 co-expression modules, each
containing 34–687 genes (Figure 2A). Notably, the MEblue module
was strongly correlated with INO80 CNV (cor = 0.76), with a
significant p-value of 1.3e-128 (Figure 2B). This cohort contained
a subset of genes that could be considered potential biomarkers for
breast cancer progression, including FOXA1, MLPH, ESR1, AR,
GATA3, TFF1, THSD4, and TBC1D9 (Supplementary Figure S2B).
Moreover, analysis of the ER-associated co-expressed network
uncovered several key genes involved in ER signaling, such as
ESR1, AR, GATA3, and TFF1, and showed a strong correlation
between differential gene expression in the MEblue cohort and
INO80 CNV. Based on gene expression and clinical patient data,
our analysis classified three clusters and showed that
INO80 deletion, including both shallow and deep deletion, was
associated with IHC status (Figures 2A, C).

Based on INO80 CNV and IHC status, the unsupervised
clustering identified three clusters: the primary luminal (cluster
1), mainly composed of patients with ER+/PR+/HER2-status; the
primary HER2+ (cluster 2), mainly composed of patients with ER-/
PR-/HER2+ status; and the primary triple-negative breast cancer
(TNBC) (cluster 3), mainly composed of patients with ER-/PR-/
HER2-status (Figure 2C). The odds ratio (OR) suggests that the risk
of breast cancer is 6.5724 times higher in patients with
INO80 deletion in the TNBC cluster than in those with other
mutations, which is statistically significant [CI (4.55–9.49) and
p < 0.0001]. Similarly, the OR shows that the risk of breast
cancer is 5.1429 times higher in cluster 3 than in cluster 2
(HER2+ subtype) [CI (2.75–9.63) and p < 0.0001]. Additionally,
the analysis of the METABRIC dataset showed consistency with our
TCGA data analysis, demonstrating a significant correlation
between INO80 CNV and luminal signatures, as well as an
association with the TNBC cluster compared to other breast
cancer subtypes (Supplementary Figures S2D, E). The OR for the
primary TNBC cluster was 4.1385 times higher than that for the

primary HER2 cluster [CI (2.8158–6.0825), p < 0.0001] and
7.1482 times higher than that for the primary luminal cluster [CI
(5.3870–9.4853), p < 0.0001]. Therefore, loss of INO80 likely
increases the risk of breast carcinogenesis, especially in the
TNBC subtype.

Up to 189 genes overlapped between 2 cohorts (MEblue from
TCGA analysis and MEblue fromMETABRIC analysis), accounting
for 25%–30% of the total genes in each cohort (Supplementary
Figure S2F). Gene ontology (GO) term analysis showed that the
MEblue genes were associated with mammary gland epithelial cell
differentiation and mammary gland duct branching morphogenesis
(Supplementary Figure S2G). The top list of gene ontology biological
processes (GOBP) was obtained by overlapping two modules
associated with INO80 CNV, including terms related to
mammary gland development and estrogen regulation
(Figure 2D). Therefore, the findings suggest an underlying
mechanism by which INO80 function is involved in mammary
gland development and breast cancer.

3.3 INO80mutation impairs mammary gland
development

INO80 is highly expressed in the lungs, colon, breasts, and
several parts of the brain, such as the nerves, cerebellar hemisphere,
and cerebellum (Figure 3A). To investigate whether INO80 plays a
role in tumorigenesis, a mouse model was generated in which the
INO80 gene was explicitly deleted in the mammary gland. Complete
elimination of the INO80 gene in mice results in embryonic lethality
(Min et al., 2013; Wang et al., 2014a; Qiu et al., 2016); therefore, we
utilized a Cre-loxP system with Tg(MMTV-Cre) mice (line D)
(Wagner et al., 1997; Wagner et al., 2001) to generate control
(INO80f/f) and cKO [Tg(MMTV-Cre); INO80f/f] females
(Supplementary Figure S3A). Genotyping analysis confirmed that
the INO80 cKO mice were viable (Supplementary Figure S3B), and
their live offspring displayed an expected Mendelian ratio (Table 1).
Immunofluorescence confirmed suppression of the
INO80 expression in the ductal lumen of the knockout mouse
model (Supplementary Figure S3C).

Next, to determine whether the loss of INO80 causes phenotypic
changes in mammary tissue, whole-mount carmine staining was
performed on mammary glands harvested from 4-week-, 8-week-,
and 16-week-old INO80 cKO and littermate control females
(Figure 3B). The staining was used to examine the ductal growth
within the mammary glands in juvenile and adult virgin mice.
Quantification analysis of the whole-mount carmine staining
revealed that the number of measurable branching points was
reduced, and mammary duct length was significantly decreased
in the INO80 cKO mice compared to values in control mice
(Figures 3C–E). The data suggest that INO80 deficiency resulted
in hypoplasia in developing mouse mammary glands. Next, to
investigate whether the loss of INO80 is sufficient to induce
mammary tumorigenesis, we examined the lifespan and
mammary gland morphology of cKO mice up to 2 years of age.
Our analysis showed no incidence of spontaneous mammary
tumorigenesis in the INO80 cKO mice. Although there were no
significant lifespan differences between the INO80 cKO and control
mice for up to 2 years, morphometric analysis showed consistent
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reductions in the length and branching points of mammary glands
in the INO80 cKO mice (Figures 3F, G). Notably, histological
examination of the mammary glands using CK18(+)/α-SMA(+)
ratio and H&E staining revealed the presence of morphologically
normal-like ductal structures in the INO80 cKO mammary glands

(Supplementary Figures S3D, E). Furthermore, the degree of
mammary gland hypoplasia was alleviated in pregnant and
lactating INO80 cKO mice (Supplementary Figure S3E), which
may account for the comparable weight of newborn pups
between the two groups (Supplementary Figure S3F). Therefore,

FIGURE 3
INO80 loss impairs mouse mammary gland development. (A) INO80 expression in bulk RNA sequencing of GTEx data. (B) Whole-mount carmine
staining of mammary glands from 4-, 8-, and 16-week-old mice. (C–E) Quantification of branching points and length of mammary glands from
INO80 cKOmice versus those fromwild-typemice at 4-weeks old [in (C)], 8-weeks old [in (D)], and 16 weeks old [in (E)]. (F,G) Themammary gland of 52-
week-old mice stained with whole carmine [in (F)] and the length quantification of mammary gland ductal analysis with 5 mice per group. Ductal
length was significantly decreased in INO80-cKO compared with that in WT mice, which was consistent with the data on development stages [in (B)].
Significant statistic: *p-value =< 0.05, **p-value =< 0.005; GTEx, Genotype-Tissue Expression; WT, wide type; cKO, Conditional knockout.
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our findings suggest that INO80 loss alone is insufficient to induce
mammary tumor formation in mice.

4 Discussion

Understanding the intricate molecular mechanisms underlying
normal mammary gland development is crucial for developing
effective treatment strategies for breast cancer, which is the most
prevalent cancer in women worldwide, accounting for 24.5% of all
cancer cases, and is the fifth leading cause of cancer-related death
among women, responsible for 15% of all cancer deaths (Sung et al.,
2021; Siegel et al., 2022). The mammary gland undergoes numerous
phases of development and differentiation, including ductal tree
expansion and invasion into the fat pad, pregnancy, lactation, and
involution stages (Macias and Hinck, 2012; Biswas et al., 2022), all of
which are tightly regulated by a complex interplay between genetic
and epigenetic factors (Bae and Hennighausen, 2014; Holliday et al.,
2018).

Driver epi-mutations can disrupt normal mammary
development and promote breast cancer progression, while
passenger epi-mutations are typically neutral and do not provide
a growth advantage to cancer cells, but may be associated with
functionally altered signaling pathways (McFarland et al., 2017;
Fernandez-Moya et al., 2020; Ying and Beronja, 2020). For
instance, the absence of certain ATP-dependent chromatin
remodeling factors of the SWI/SNF complex affects mammary
gland development (Cohet et al., 2010; Skibinski et al., 2014),
which has helped clarify the specific roles of these factors in
breast cancer development and resistance to therapy (García-
Pedrero et al., 2006; Nagarajan et al., 2020; Xu et al., 2020).

INO80 is essential for cell reprogramming, blastocyst
development (Wang et al., 2014a; Zhou et al., 2016b), and organ
development, including in spermatogenesis (Serber et al., 2016;
Chakraborty and Magnuson, 2022), ventricular compaction, and
coronary vascularization during heart development (Rhee et al.,
2018, 2021). Recent studies have shown that complete abolition of
INO80 causes embryonic lethality in mice (Min et al., 2013; Wang
et al., 2014a; Lee et al., 2014; Lafon et al., 2015; Qiu et al., 2016) by
altering compaction, accessibility of DNA within chromatin, and
various molecular processes, including DNA replication,
transcription, and DNA damage response (Shen et al., 2000;
Gospodinov et al., 2011; Lange et al., 2011; Volokh et al., 2016).
Furthermore, this complex has been implicated in both maintenance
of stem cell and progression of cancer cell by functioning as a critical
regulator of super-enhancers in both contexts (Wang et al., 2014a;
Zhou et al., 2016a; Serber et al., 2016; Zhang et al., 2017).

Additionally, INO80 is required for H2A.Z dynamics in ER
signaling, and silencing of INO80 reduces stimulation of
endogenous GREB1 and TFF1 enhancers in breast cancer
(García-Pedrero et al., 2006; Papamichos-Chronakis et al., 2011;
Segala et al., 2016). Therefore, these findings, along with our
INO80 cKO study, suggest that INO80 plays a key role in
mammary gland development and breast cancer progression.

The INO80 complex comprises highly conserved principal
subunits in humans, mice, flies, and yeast (Shen et al., 2000,
2003; Jin et al., 2005). The canonical INO80 complex comprises
several subunits, including INO80, RUVBL1, RUVBL2,MCRS1, and
YY1, and is involved in active transcription regulation by physically
interacting with P300 and MED1. This complex is also associated
with active histone modifications, including H3K4me1, H3K4me3,
and H3K27ac (Zhou et al., 2016a; Zhang et al., 2017; Runge et al.,
2018). RUVBL1 and YY1 promote tumor growth (Wang et al., 2015;
Fan et al., 2017), and inhibiting RUVBL1 expression in metastatic
breast cancer cells can reduce both cell proliferation and invasion
(Fan et al., 2017). Additionally, YY1 promotes tumor growth by
suppressing the expression of p27 and interacting with it (Wang
et al., 2015). Conversely, the noncanonical class of the
INO80 complex is linked to a repressive histone modification,
H3K27me3, suggesting that the INO80 complex can act as a
tumor suppressor (Runge et al., 2018; Chakraborty and
Magnuson, 2022). INO80 occupancy affects replication forks, and
its silencing can activate the replication stress-induced ATR-CHK1
signaling pathway in colon cancer (Lee et al., 2017).

In breast cancer, INO80 expression is generally lower, although
it correlates with the ER-positive breast cancer subtype (Figures 1A,
B). Higher median INO80 expression was found in ER-positive than
in ER-negative breast cancer. Furthermore, the results from our
WGCNA analysis indicated the existence of unknown networks
between INO80 and a subset of luminal breast cancer biomarkers,
including FOXA1, ESR1, GATA3, TFF1, and AR (Supplementary
Figure S2B). The FOXA1 transcription factor is a key regulator of
breast cancer identity, as it controls ER activity (Hurtado et al.,
2011). Furthermore, FOXA1 and MLPH upregulate the expression
of luminal-like genes, and both have emerged as prognostic
indicators for breast cancer (Thorat et al., 2008; Hurtado et al.,
2011; Bernardo et al., 2013; Thakkar et al., 2015). Some genes in ER-
associated co-expressed networks alter the gene expression profile of
luminal breast cancer cells and are predictive of patient response to
breast cancer therapy (Tozlu et al., 2006; Chen et al., 2011; Zhu et al.,
2020). THSD4 and TBC1D9 are two factors that drive TNBC, and
their expression is also linked to the epithelial–mesenchymal
transition (EMT), metastatic dissemination, and the plasticity of
breast cancer cells (Cohen et al., 2014; Kothari et al., 2020; Miao

TABLE 1 Mouse (female only) genotyping result.

Parent INO802f/-;MMTV-Cre (_) X INO802f/2f (\)

INO802f/2f or INO802f/+ INO802f/+;MMTV-Cre INO802f/2f;MMTV-Cre Total

Observation 101 (48.6%) 60 (28.8%) 47 (22.6%) 208

Expectation 104 (50%) 52 (25%) 52 (25%) 208

Chi-square: 1.798, Degrees of freedom: 2, p-value: 0.40696078, Yates’ chi-square: 1.531, Yates’ p-value: 0.46510132. By conventional criteria, this difference is considered to be not statistically

significant.
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et al., 2020; Kothari et al., 2021). Previous studies have also revealed
the opposing effects of GATA3 function on the tumor suppressor
gene THSD4 (Cohen et al., 2014). These findings suggest a potential
role for INO80 in ER signaling, where the presence of INO80 is
required for ER activity by forming a physical interaction with the
ER-INO80 complex in breast cancer, as reported in previous studies
(Segala et al., 2016). Moreover, our analysis suggests that there is an
increasing risk of breast cancer and reduced survival rates in patients
harboring the INO80mutation. In addition, unsupervised clustering
from the WGCNA analysis revealed an association between patients
with INO80 mutation and breast cancer biomarkers (ER/PR/
HER2 IHC data). INO80 copy number status is associated with
breast cancer subtype, whereas patients with primary breast cancer
and TNBC subtypes harbored higher odd ratios than did those with
luminal or HER2 subtypes (Figure 2C; Supplementary Figure S2C).

The gene cohort from the WGCNA analysis suggests that
INO80 may be involved in mammary gland development
(Figure 2D; Supplementary Figure S2F), which is consistent with
our in vivomodel showing that INO80 affects ductal morphogenesis
in the mammary gland (Figures 3C–E, G). Several factors, including
steroid hormone, BMP, Wnt, cell cycle, and peptide hormone
signaling pathways, are known to play roles in mammary gland
development (Bocchinfuso et al., 2000; Feng et al., 2007; Hens et al.,
2007; Timmermans-Sprang et al., 2019). Previous studies have
demonstrated the involvement of INO80 in stem cell
differentiation and mammary tumors via the Wnt pathway
(Wang et al., 2014a; Zhou et al., 2016b; Zhang et al., 2017;
Timmermans-Sprang et al., 2019) and its regulation of BMP
signaling in embryonic and liver cancer stem cells (Hens et al.,
2007; Qiu et al., 2016; Wang et al., 2019). Another study
demonstrated that the overexpression of INO80 and NANOG
could promote cervical cancer cell proliferation and
tumorigenesis (Hu et al., 2016). It is possible that the
downregulation of these signaling pathways by INO80 KO led to
changes in the mammary gland phenotype in our model. INO80 loss
in our mouse model failed to cause tumor formation (Figure 3F).We
cannot rule out the possibility of insufficient or unexpected CRE
activity in the Tg(MMTV-cre) line (De Vos et al., 2008; Diegel et al.,
2010). However, based on our breast cancer data analysis and the
observed mammary gland phenotype, it is reasonable to hypothesize
that INO80 may play a role in enhancing signaling abnormalities
associated with breast cancer oncogenesis. Nevertheless, further
investigation is required to determine the exact nature of
INO80’s involvement in breast cancer development and
progression.
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SUPPLEMENTARY FIGURE S1
Expression of INO80 components in breast cancer. (A) Copy number
variation analysis of subunits in the INO80 complex obtained from TCGA.
The cBioportal tool was used for the analysis. Note that up to 60% of
INO80 complex alterations are associated with breast cancer. (B) Histogram
showing that the alteration frequencies of INO80 in Pan-Cancer Atlas
patients differ between cancer types. The average INO80 alteration
frequency in breast cancer datasets can be as much as 5%. (C, D) Violin plots
showing INO80 FPKMs expression based on PR (C) and HER2 IHC clinical
data (D) generated from TCGA (top) and METABRIC (bottom) datasets. A
statistical significance between the groups was found only in the PR
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group. (E) Boxplot assessed the expression of INO80 in each breast cancer
subtype using the MetaGxBreast R package. The statistics were analyzed
using unpaired t-tests, comparing each breast cancer subtype with the
corresponding normal subset. (F) Correlation between INO80 expression
and tumor stage (I, II, III, and IV) in TCGA (left) and METABRIC (right)
databases. An unpaired t-test was used for statistical analysis, with
significance set at p ≤ 0.05. CNV, Copy Number Variation; CNA, Copy
Number Alteration; IHC, immunohistochemistry; RPKM, reads per kilobase
of transcript per million reads mapped.

SUPPLEMENTARY FIGURE S2
The correlation between INO80 and breast cancer. (A) The workflow of
WGCNA analysis using TCGA and METABRIC breast cancer data. (B)
Network of MEblue (TCGA) genes identified in theWGCNA analysis. Each
node represents a gene, and lines show the known connections. (C) A
correlation plot between INO80 CNV and genes of the MEblue
(METABRIC) module. (D) Relationship between modules (subsets of
genes) and INO80 traits (IHC status and CNV). Red indicates co-
expression, and green presents no correlation in expression. (E)
Unsupervised clustering of METABRIC data analyzed by the WGCNA.
Heatmap showing the correlation between gene expression and
INO80 traits (IHC status and CNV) of the MEblue module. (F) A venn

diagram showing overlapping genes between the two most co-
expressing modules based on INO80 CNV and METABRIC data. (G) Top
15 GOBPs in the MEblue module of the WGCNA analysis using TCGA data.
ER, estrogen receptor; PR, progesterone receptor; MG, mammary gland;
HER2, Human epidermal growth factor receptor 2; CNV, Copy Number
Variation.

SUPPLEMENTARY FIGURE S3
Characterization of INO80 cKO mice. (A) A breeding scheme to produce
the INO80 conditional knockout (cKO) mouse model. Exon 6 of the
INO80 gene is flanked by loxP sites and deleted by the Tg(MMTV-Cre)
line. (B) PCR results of offspring genotyping where WT (224 bp band),
hemizygous (242 and 382 bp bands), and homozygous (382 bp band) of
INO80 gene. (C) Confirmation of INO80 depletion by
immunofluorescence with INO80 antibody (red), CK18 antibody (luminal
cell—turquoise) or alpha-SMA antibody (basal cell—turquoise), and DAPI
(blue). (D) GraphPad Prism illustrates the ratio between luminal cells and
basal cells, and an unpaired t-test showed that the difference was
insignificant. (E) H&E staining of postnatal (4, 8, and 16 weeks after
delivery), pregnant (18 days post coitus), and lactating (lactation day 2, L2)
mammary glands. (F) Measurement of body weight of pups delivered from
WT or cKO females.
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