
The salamander blastema within
the broader context of metazoan
regeneration

Benjamin Tajer†, Aaron M. Savage† and Jessica L. Whited*

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States

Throughout the animal kingdom regenerative ability varies greatly from species to
species, and even tissue to tissue within the same organism. The sheer diversity of
structures and mechanisms renders a thorough comparison of molecular processes
truly daunting. Are “blastemas” found in organisms as distantly related as planarians
and axolotls derived from the same ancestral process, or did they arise convergently
and independently? Is a mouse digit tip blastema orthologous to a salamander limb
blastema? In other fields, the thorough characterization of a reference model has
greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold
organizer has served as an amazingly useful comparative template within the field of
developmental biology, allowing researchers to draw analogies between distantly
related species, and developmental processes which are superficially quite different.
The salamander limb blastema may serve as the best starting point for a comparative
analysis of regeneration, as it has been characterized by over 200 years of research
and is supported by a growing arsenal of molecular tools. The anatomical and
evolutionary closeness of the salamander and human limb also add value from a
translational and therapeutic standpoint. Tracing the evolutionary origins of the
salamander blastema, and its relatedness to other regenerative processes
throughout the animal kingdom, will both enhance our basic biological
understanding of regeneration and inform our selection of regenerative model
systems.
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Introduction

The salamander limb blastema is a transient, multipotent mass of mesenchymal cells
that contributes to most major mesenchymal structures of the regenerated limb De
Robertis. (2009) (Spallanzani, 1768; Bonnet, 1777) Arenas Gómez and Echeverri, 2021.
The basic progression and dependencies of the blastema are well characterized
(Thornton, 1938; Simon and Tanaka, 2013; Currie et al., 2016; Choi et al., 2017;
Flowers et al., 2017; Haas and Whited, 2017; Gerber et al., 2018; Qin et al., 2021).
The first steps of salamander limb regeneration appear quite similar to wound healing in
humans: a blood clot quickly forms at the site of amputation, immune cells are recruited
to the site of injury, and the adjacent epidermis quickly grows to cover the wound (Hay
and Fischman, 1961; Endo et al., 2004; Ferris et al., 2010; Seifert et al., 2012). The next
steps of salamander regeneration, however, diverge dramatically from mammalian
wound healing. In mammals, myofibroblasts and keratinocytes enter the wound site
and deposit fibrotic collagen, generating a scar (Jaźwińska and Sallin, 2016; Durant and
Whited, 2021; Moretti et al., 2022). In salamanders, the epidermis over the wound
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thickens into a specialized wound epidermis. Amputation
triggers cellular proliferation inside stump tissues, but this
proliferation is not restricted to the amputated limb and
occurs within a subset of cells throughout the body (Johnson
et al., 2018; Payzin-Dogru et al., 2023). The relationship between
body-wide activation of prospective progenitor cells and local
limb regeneration is not yet fully understood. Mesenchymal cells
from the adjacent stump migrate to the site of injury, where they
proliferate to form a visible bud. After an initial phase of
outgrowth, blastema cells are specified and patterned to form
structures in the regenerated limb. At this stage we consider the
blastema complete, as the subsequent stages of regeneration
primarily consist of the differentiation and growth of
patterned structures (McCusker et al., 2015). Unsurprisingly,
blastema growth is heavily dependent on cell division and is
blocked by local irradiation (Rose et al., 1955; Thornton, 1958;
Polezhaev, 1966). The formation and growth of the blastema also
requires on innervation from the peripheral nervous system, with
denervated limbs failing to form blastemas (Todd, 1823; Singer,
1946; Singer and Craven, 1948; Singer, 1952; Kumar and Brockes,
2012; Farkas and Monaghan, 2017).

The cellular origins and regenerative fate of blastema cells have
been significant areas of research. In the early 20th century,
pioneering analyses established that muscle, connective tissue,
and bone are regenerated via the blastema, while the vasculature,
nervous tissue, and epidermis reinvade or grow over the
regenerating limb from outside the blastema (Towle, 1901; Weiss,
1925; Thornton, 1938; Goss, 1956). The exact nature and potency of
the cells which contribute to the blastema is still debated to this day.
In particular, the relative degree to which dedifferentiated mature
cells and dedicated, resident progenitor/stem cells contribute to this
process is unclear (Thornton, 1938; Lo et al., 1993; Morrison et al.,
2006; 2010; Sandoval-Guzmán et al., 2014; Wang and Simon, 2016;
Choi et al., 2017; Fei et al., 2017; Qin et al., 2021). Historically, it was
assumed the blastema arose from dedifferentiated mature cells, and
some recent studies support this (Thornton, 1938; Lo et al., 1993;
Echeverri et al., 2001; Wang and Simon, 2016; Choi et al., 2017; Qin
et al., 2021). In adult newts, even polynucleated muscle fibers can
revert to a mononucleated state and contribute to the blastema
(Wang et al., 2015; Wang and Simon, 2016). This phenomenon,
however, is far from universal, with both larval newts and adult,
neotenic axolotls repopulating muscle exclusively with progenitor
satellite cells (Morrison et al., 2006; 2010; Sandoval-Guzmán et al.,
2014; Tanaka et al., 2016; Fei et al., 2017). Recent lineage tracing
studies suggest that the blastema is heterogenous, with several
distinct subpopulations with independent origins and limited
multipotency (Kragl et al., 2009; Currie et al., 2016; Choi et al.,
2017; Flowers et al., 2017; Gerber et al., 2018). Some of these
subpopulations may represent dedifferentiated mature cells,
others undifferentiated progenitors, with most blastema cells
deriving from mesenchymal and dermal fibroblasts, or perhaps
fibroblast-like progenitor cells (Gerber et al., 2018; Leigh et al.,
2018; Lin et al., 2021).

The regenerative blastema superficially resembles the
developmental limb bud, and several studies have probed the
function of developmental genes during regeneration. Important
developmental signaling pathways, such as BMP, FGF, and Wnt
appear to recapitulate some of their roles during regeneration:

promoting tissue outgrowth, patterning morphological axes, and
driving cellular differentiation (Ghosh et al., 2008; Guimond
et al., 2010; Shimokawa et al., 2013; Makanae et al., 2014;
Satoh et al., 2016; Wischin et al., 2017; Vieira et al., 2019).
Hox genes, which specify proximal-distal identity in the limb
bud, also recapitulate these roles in the late blastema: the
regenerative expression pattern and tissue dependencies of
proximal markers such as Hoxa11 and Meis1, and distal
markers such as Hoxa13 mirror those in the limb bud
(Gardiner et al., 1995; Fromental-Ramain et al., 1996; Torok
et al., 1998; Post and Innis, 1999; Post et al., 2000; Carlson et al.,
2001; Christen et al., 2003; Mercader et al., 2005; Woltering et al.,
2019; Vincent et al., 2020; Takeuchi et al., 2022).

Salamanders have only recently become accessible to modern
genetic analysis; in the last decade, experimental tools such as
transgenesis, genome editing, targeted viral infection, single-cell
RNA-seq, ATAC-seq, alongside genomic resources such as
transcriptomes and full genome sequencing, have been
developed, although many of these tools require significant
optimization (Frahry et al., 2015; Keinath et al., 2015; Haas and
Whited, 2017; Nowoshilow et al., 2018; Lertzman-Lepofsky et al.,
2019; Smith et al., 2019; Schloissnig et al., 2021; Haley and Mueller,
2022). In addition to the aforementioned lineage tracing studies, this
has enabled the large-scale transcriptional and proteomic profiling
of gene expression in the blastema, revealing the upregulation of
several interesting gene classes in blastema cells (Rao et al., 2009;
2014; Stewart et al., 2013; Bryant et al., 2017; Gerber et al., 2018;
Leigh et al., 2018; Nowoshilow et al., 2018; Sibai et al., 2020). These
include several genes associated with pluripotency, oncogenesis, and
mesenchymal identity such as Myc, Atf3, Klf4, Klf2, Jun3, Egr1,
Nr4a2, Fos, Eya1, Scx, Sox2, Foxd3, and Prrx1, suggesting a link
between regeneration and other proliferative processes (Stewart
et al., 2013; Leigh et al., 2018). Genes associated with DNA
damage repair, such as Eya2, Rad51, and Mre11 are also
upregulated in blastemas (Stewart et al., 2013; Sousounis et al.,
2014; 2020; García-Lepe et al., 2021). Relatively few transcription
factors are upregulated in the blastema, but several RNA binding
proteins, such as Cirbp, Fus, Roa1, and Hnrnpd are strongly
enriched, suggesting this may be a dominant mode of gene
regulation during limb regeneration (Stewart et al., 2013; Bryant
et al., 2017). Several metalloproteases (Mmp1, Mmp2, Mmp3,
Mmp8, Mmp9, MMmp10, Mmp12, Mmp13, Mmp12, Mmp19) are
also enriched, and the chemical inhibition of metalloproteases
greatly disrupts regeneration, indicating ECM remodeling is also
important (Yang et al., 1999; Vinarsky et al., 2005; Stevenson et al.,
2006; Satoh et al., 2011; Stewart et al., 2013; Bryant et al., 2017).

In addition to these recognizable genes, many blastema-
enriched transcripts are uncharacterized (Bryant et al., 2017).
Several of these genes may be unique to salamanders, or may
be ancestral to all tetrapods but lost in mammals (Dwaraka and
Voss, 2021). Understanding the importance of these genes is
critical to our understanding of blastema evolution, and the
differential regenerative abilities of salamanders and mammals
(Dwaraka and Voss, 2021). For example, the orphan gene Prod1 is
unique to salamanders, and is involved in proximo-distal
patterning of blastema cells as well as digit outgrowth in newts
(da Silva et al., 2002; Kumar et al., 2007a; 2015). Meanwhile,
transcriptomic studies have revealed the upregulation of genes
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which are distantly related, highly divergent paralogs of
mammalian genes such as Cirbp (also known as Axrnbp) and
Kazald2 in the blastema (Bryant et al., 2017). These data indicate
that, in addition to genes shared with mammals, the salamander
blastema may employ unique machinery either lost in mammals or
gained in salamanders. While recent transcriptomics studies
continue to expand our list of both characterized and
uncharacterized blastema enriched candidates, only handful
have been functionally interrogated (Sugiura et al., 2016; Fei et
al., 2018; Sousounis et al., 2020). As the field examines more of
these genes, our understanding of molecular blastema mechanisms
will greatly improve.

Beyond the salamander limb field, the term “blastema” has
been applied more generally to describe a large variety of
structures, in many species, during the regeneration of several
different organ systems (Reddien and Sánchez Alvarado, 2004;
Bely and Nyberg, 2010; Fernando et al., 2011; Tanaka and Reddien,
2011; Bradshaw et al., 2015; Sallin et al., 2015; Zhao et al., 2016;
Imperadore et al., 2017; 2022; Elchaninov et al., 2021; Bando et al.,
2022; Vonk et al., 2022). These structures are generally
superficially similar in that they consist of a mass of cells which
must proliferate and repattern itself to regenerate large anatomical
structures (Bely and Nyberg, 2010; Tanaka and Reddien, 2011;
Zhao et al., 2016; Elchaninov et al., 2021). While these
phenomenological similarities allow us to draw general
comparisons between a large variety of regenerative processes
throughout the animal kingdom, the era of molecular biology
empowers us to, and indeed demands that, we elucidate which of
these processes are truly orthologous, which may simply meet the
lower criterion of homologous, and which are only defensibly
analogous. Determining which processes have a shared molecular
basis, which processes have a common evolutionary origin, and
which similarities are convergent, will have a profound effect on
model selection, and eventual translation into patient therapies.
How analogous is the regeneration of the mouse digit tip to that of
a salamander limb? Are either of these processes truly related to the
regeneration of the entire planarian body axis? In this review we
position the salamander limb blastema as the archetypical
blastema, owing to its clinically desirable ability to fully restore
tetrapod forelimbs, and we explore how our current understanding
of its molecular basis relates to analogous processes during
development, wound healing, and during regeneration in other
species.

Though many of the mechanistic details of salamander limb
blastema formation, maintenance, and function remain
undetermined, we can already identify enough key mechanistic
and molecular features of the blastema to refine its definition
beyond that of a simple proliferative outgrowth. As we further
refine the interactions and circuitry of these elements, we will
enhance our ability to make interspecies comparisons. As
discussed later, regeneration likely originated alongside
development at the very root of metazoan multicellularity (Bely
and Nyberg, 2010); therefore, we should reasonably expect that the
evolution of regenerative mechanisms will have much in common
with the evolution of embryonic development where we see both
conserved themes that span large segments of the animal kingdom,
as well as lineage-specific derived modifications to this core
program.

An overview of metazoan regeneration:
from salamander limbs to ctenophores

Salamanders and other amphibians diverged from other
tetrapods around 330 million years ago, and they are notably the
only members of this group which can fully regenerate their
appendages as adults (Hedges et al., 1990; Zardoya and Meyer,
2001; Ruta et al., 2003; McCusker et al., 2015). Salamanders not only
possess exceptional limb regeneration abilities, but can also
regenerate several visceral organs such as the liver, heart, and
gonad, and even brain structures (Detwiler, 1946; Erler et al.,
2017; Dittrich et al., 2020; Lu et al., 2020; Ohashi et al., 2021;
Lust et al., 2022; Wei et al., 2022). These abilities are not only lost or
diminished in amniotes, but also in frogs, which share a more recent
common ancestor with salamanders (Anderson et al., 2008). Frog
tadpoles can regenerate limbs but gradually lose this ability over the
course of metamorphosis (Suzuki et al., 2006; Simon and Tanaka,
2013; Mahapatra et al., 2023). Given this observation, it is tempting
to assume that axolotl regenerative abilities arise from their neotenic
lifestyle, but extensive regenerative capacities are found in all studied
post-metamorphic salamanders, including both closely related
ambystomids, as well as the most basal salamander groups
Cryptobranchidae and Hynobiidae (Young et al., 1983; Griffin,
1995; Shen et al., 2013; Geng et al., 2015). Moreover, axolotls
with induced metamorphosis can still regenerate, albeit at a
slower pace and with reduced fidelity (Monaghan et al., 2014).
Caecilians, the third extant group of amphibians, are poorly studied
and do not have limbs, preventing a simple comparison with
salamanders (Singarete et al., 2015).

While we typically consider amniotes to be poor regenerators,
they can functionally recover from dramatic injuries to specific
tissues, such as bone, and muscle, as well as specific visceral organs
like the liver (Carlson, 2003; Ciciliot and Schiaffino, 2010; Abe et al.,
2020; Delgado-Coello, 2021; Serowoky et al., 2022). Because humans
possess these abilities, and because they are diminished in
comparison to salamanders and fish, we tend not to classify them
as “regeneration,” but many non-vertebrate animals lack these
abilities (Bely and Nyberg, 2010; Elchaninov et al., 2021).
Whether these regeneration events constitute a blastema is
doubtful, however. Conversely, while most amniotes are unable
to regenerate lost appendages as adults (Daponte et al., 2021),
several mammals, including juvenile humans (and potentially
older), and rodents throughout life, can regenerate digit tips,
provided that the amputation leaves some of the most distal
bone tissue, which goes through a blastema state (Illingworth,
1974; Neufeld and Zhao, 1995; Johnson and Lehoczky, 2022).
Furthermore, many lizards are capable of regenerating tails when
severed at a specific predetermined breaking point, though this
regenerated tail lacks the complexity of the original (Gilbert et al.,
2015). In both of these cases, it is unclear whether this regenerative
ability represents a retained ancestral process, orthologous to
salamander limb regeneration, or whether these abilities have
been regained after being lost (Muneoka and Dawson, 2021). We
can be more confident that the common ancestor of all tetrapods
possessed salamander-like limb regeneration abilities. This is
supported by the extensive appendage regeneration in lungfish,
the closest extant relatives of tetrapods, and also by fossil
evidence, which demonstrates that several ancient amphibian
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lineages, including lineages basal to the last common ancestor of
modern amphibians and amniotes, could regenerate limbs (Fröbisch
et al., 2014; Nogueira et al., 2016).

Beyond the Tetrapoda, extensive regenerative abilities are
widespread amongst bony fish, which also employ blastemas
during fin regeneration (Yoshinari and Kawakami, 2011; Darnet
et al., 2019). It is likely that the common ancestor of all bony fish
possessed axolotl-like regenerative abilities, and was capable of
regenerating both endoskeletal elements and fin rays (Darnet
et al., 2019). Supporting this, endoskeletal fin regeneration is seen
in both basal sarcopterygians such as the lungfish, and basal
actinopterygians such as the reed fish and paddlefish (Nogueira
et al., 2016; Darnet et al., 2019). These ancestral regenerative abilities
appear to be reduced in many lineages of teleost, including the
widely studied zebrafish, which can only regenerate fin rays and
dermal elements beyond larval stages (Darnet et al., 2019; Yoshida
et al., 2020). Zebrafish, and many other teleosts, are still capable of
extensive internal tissue regeneration in comparison to amniotes,
and they have been prolific models for regenerative research, but the
anatomical and regenerative differences between of limbs and fin
rays limit the use of teleosts as a limb regeneration model
(Gemberling et al., 2013; Pfefferli and Jaźwińska, 2015; Beffagna,
2019; Darnet et al., 2019; Marques et al., 2019).

Sharks and cartilaginous fish have only recently been
demonstrated to exhibit enhanced muscle, cartilage, CNS and
organ regeneration in comparison to amniotes (Lu et al., 2013;
Alibardi, 2019; Borucinska et al., 2020; Marconi et al., 2020;
Womersley et al., 2021; Alibardi, 2022a). As most of these
studies are observational, the molecular basis of these processes
remains unexamined, and it is unclear how closely they resemble
salamander limb regeneration on the molecular level. Amongst the
jawless fish, a large body of research has focused on the lamprey’s
ability to regenerate spinal cord (Rasmussen and Sagasti, 2017;
Hanslik et al., 2019), and recent research has investigated scar-
free wound healing in lampreys (Li et al., 2023). Though adult
lampreys seem incapable of appendage regeneration, larvae of at
least three lamprey species are capable of tail regeneration, but the
molecular basis of this process remains uninvestigated (Niazi, 1963;
Bayramov et al., 2018). Regeneration in the hagfish appears to be
unexplored. As these organisms sit at the base of the vertebrate tree,
understanding their regenerative abilities and the underlying
molecular mechanisms will be invaluable for our understanding
of the ancestral vertebrate regenerative program.

Non-vertebrate deuterostomes generally possess extensive
regenerative abilities (Ferrario et al., 2020). While the phylogeny
at the base of the deuterostome clade is somewhat murky,
urochordates, or tunicates, are commonly considered the closest
relatives of the vertebrates; many possess truly extensive
regenerative abilities, with some species capable of regenerating
entire organ systems, large portions of the body, and even
reproducing asexually (Rinkevich et al., 1995; 2007; Gordon
et al., 2019; Ferrario et al., 2020). Though molecularly more
distant than the tunicates, cephalochordates are more
anatomically similar to vertebrates than adult tunicates, and their
regenerative abilities would be more familiar to those who work on
salamander and fish regeneration (Somorjai et al., 2012a; Ferrario
et al., 2020). Lancelets can regenerate the post-anal tail through the
formation of a blastema which appears to express some of the same

markers as the salamander blastema, including Wnts and BMPs
(Somorjai, 2017; Ferrario et al., 2020). Many echinoderms and
hemichordates possess the ability to regenerate entire internal
organ systems, large portions of the body, or in some cases even
the entire body from an amputated appendage (Willey, 1900;
Hyman, 1956; Ferrario et al., 2020). The regenerative abilities of
echinoderms and basal chordates are well established, but the
underlying molecular machinery is less so; understanding these
mechanisms will be crucial to establishing whether there is any
connection between the vertebrate blastema, and regenerative
mechanisms throughout the broader animal kingdom.

Many protostomes also exhibit strong regenerative abilities.
Protostomes are typically divided into two major groups, the
Ecdysozoa, containing the arthropods, nematodes and their
closest relatives, and Spiralia, which contains annelids, mollusks,
and Platyhelminthes amongst others (Aguinaldo et al., 1997;
Stechmann and Schlegel, 1999; Giribet, 2008). Within Ecdysozoa,
several arthropods have been documented to regenerate appendages
(Bely and Nyberg, 2010; Suzuki et al., 2019; Brenneis et al., 2023).
Arthropod limb regeneration appears to depend on migratory
progenitor cells, and the formation of a proliferative blastema at
the tip of the regenerating limb, though, interestingly, the outward
morphological manifestation arthropod blastemas conforms to the
molt cycle (Suzuki et al., 2019). A basal arthropod, Pycnogonum
littorale, can also regenerate posterior structures including the
gonad, suggesting the ancestral arthropod had similar abilities
(Brenneis et al., 2023). Beyond Arthropoda, ecdysozoan
regeneration is relatively unstudied, though nematodes are
generally considered to be poor regenerators (Bely and Nyberg,
2010). Amongst Spiralia, several annelid and nemertean lineages can
regenerate large portions of the anterior-posterior axis, while other
lineages appear to have lost this ability completely (Bely et al., 2015).
Mollusk regeneration is relatively unexplored, and research has
primarily focused on the regeneration of neurons and neural
structures in a limited number of groups (Moffett, 1995; 2000;
Matsuo and Ito, 2011; Bely et al., 2015; Imperadore et al., 2017;
De Sio and Imperadore, 2022). Cephalopods can regenerate limbs,
but the underlying molecular biology of this process remains
uninvestigated (Zullo et al., 2017; De Sio and Imperadore, 2022;
Imperadore et al., 2022). When observed, regeneration in
arthropods, annelids, and mollusks employs an epimorphic
blastema, though the relatedness of these structures remains
unresolved even within these clades.

Platyhelminthes, display varying degrees of regeneration (Bely
et al., 2015). Planarians in particular have exceptional regenerative
abilities and are by far the most studied and well understood
invertebrate model for regeneration (Keller, 1894; Morgan, 1898;
Baguñà et al., 1989; Reddien and Sánchez Alvarado, 2004; Reddien,
2018). Planarians are capable of regenerating the whole body from a
small fragment utilizing body-wide stem cells, termed neoblasts
(Keller, 1894; Morgan, 1898; Baguñà, 2012; Reddien, 2018).
Neoblasts are the only dividing cells in the adult planarian and
serve as the sole source of new material during tissue homeostasis
(Baguñà et al., 1989; Newmark and Sánchez Alvarado, 2000;
Eisenhoffer et al., 2008; van Wolfswinkel et al., 2014; Reddien,
2018). Planarian neoblasts are heterogenous, with most neoblasts
exhibiting a limited degree of multipotency (Reddien, 2013). Some
neoblasts, however, remain totipotent and can replenish all other
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neoblast subpopulations (Wagner et al., 2011; Reddien, 2018; Ge
et al., 2022). During planarian regeneration neoblast cells
throughout the body proliferate and migrate to the site of injury
where they initiate a second wave of proliferation, creating an
epimorphic blastema outgrowth (Baguñà, 1976; Saló and Baguñà,
1984; Wenemoser and Reddien, 2010). Once the blastema is
established, regenerated tissue is patterned by Wnt and Bmp,
which also control axial polarity and patterning during
embryogenesis (Molina et al., 2007; Petersen and Reddien, 2008;
Reddien, 2018). Planarians express Wnt and Bmp gradients
throughout their lives, and rapidly readjust them in response to
injury; with muscle cells secreting these ligands (Witchley et al.,
2013; Reddien, 2018). This sequence of body wide proliferation
followed by migration and subsequent blastema outgrowth bears
superficial resemblance to salamander blastema formation, which
also redeploys the developmental signaling molecules Wnt and
BMP, perhaps hinting at a common ancestral regenerative
program (McCusker et al., 2015; Johnson et al., 2018; Srivastava,
2021).

From an evolutionary perspective, perhaps the most striking
aspect of planarian regeneration is its strong similarity to acoel
regeneration (Srivastava et al., 2014; Gehrke and Srivastava, 2016;
Raz et al., 2017; Srivastava, 2022). Though morphologically similar
to planarians, recent phylogenetic analyses place acoels either
amongst the deuterostomes, or at the base of bilateria; in either
scenario acoels are only distantly related to planarians (Srivastava,
2022). Like planarians, acoels possess both totipotent and
heterogeneous neoblast-like stem cells that provide all new tissue
during both homeostasis and regeneration (Srivastava, 2022). Wnt
and Bmp are also expressed in acoel muscle cells, in a graded fashion,
along major body axes, and control positional information (Raz
et al., 2017; Srivastava, 2022). The similarities between regeneration
in these two distantly-related groups strongly hint at a shared
regenerative mechanism in the last common ancestor of all
bilateral animals; this program may be antecedent to the
salamander blastema, with common features such as the
proliferation and migration of progenitor cells being conserved
elements of this program (Srivastava, 2022).

Beyond Bilateria, strong regenerative abilities are seen in
cnidarians, sponges, and placozoans (Holstein et al., 2003; DuBuc
et al., 2014; Ereskovsky et al., 2021; Fujita et al., 2021; Osigus et al.,
2022; Romanova et al., 2022). In these organisms, the lines between
regeneration, development, and asexual reproduction are more
blurred than in most studied bilateral species (Bely and Nyberg,
2010; Slack, 2017; Martinez et al., 2022; Rinkevich et al., 2022). Many
cnidarians are capable of regenerating large portions of their bodies
as well asexual reproduction (Bely and Nyberg, 2010; Slack, 2017;
Martinez et al., 2022; Rinkevich et al., 2022). Cnidarians also possess
stem cells which may be functionally similar to planarian neoblasts,
such as i-cells in hydrozoans, and amoebocytes in other groups, but
the majority of regenerated tissue typically comes from “mature”
epithelial cells which are also somewhat multipotent and
proliferative (Gold and Jacobs, 2013; Martinez et al., 2022;
Rinkevich et al., 2022). Sponges also have great regenerative
abilities, and as with cnidarians, “mature” sponge cells can often
proliferate and transdifferentiate (Ereskovsky et al., 2021). Generally
within these organisms, most cells are proliferative and retain some
degree of multipotency, making stem cells somewhat hard to define

(Rinkevich et al., 2022). Though the cellular basis for regeneration in
these basal animal groups is quite different from that employed in
the salamander blastema, shared regulatory features may still govern
regeneration in both contexts (Arendt et al., 2016; Srivastava, 2021;
Rinkevich et al., 2022).

Ctenophores exhibit variable regenerative abilities, ranging from
whole-body regeneration in some species to the complete absence of
adult regeneration in others (Martindale, 2016; Ramon-Mateu et al.,
2019; Edgar et al., 2021). Ctenophores may be the most basal
metazoan group and are likely to inform our understanding of
regeneration in the last common ancestor of all animals (Martindale,
2016; Edgar et al., 2021). Ctenophores appear to replace lost tissues
through the proliferation of differentiated cells of the same type, yet
the nuances of this process remain unresolved and the extensive
regeneration abilities of several species suggest that some
transdifferentiation probably occurs (Edgar et al., 2021). As with
sponges and cnidarians, it is unclear if traditional distinctions
between stem cells and differentiated cells truly apply within this
group (Edgar et al., 2021; Rinkevich et al., 2022). Moreover,
mesogleal cells appear to migrate to the wound site in
ctenophores, superficially resembling the migration of
mesenchymal or ameboid cells seen during regeneration in other
groups, and, possibly the formation of the salamander blastema, but
the role of these cells remains unclear (Edgar et al., 2021).
Intriguingly, ctenophores lack FGF, and have uniquely evolved
and elaborated gene families for other metazoan signaling
pathways, such as TGF-β and Wnt (Pang et al., 2010; 2011;
Moroz et al., 2014; Edgar et al., 2021). Accordingly, any
conserved regulatory mechanisms between ctenophores and other
animals would be extremely fundamental, preceding the subsequent
diversification of these major gene families. Currently, the
evolutionary distance of ctenophores and lack of molecular data
places such comparisons beyond our reach. Ultimately our
understanding of the evolution of animal regeneration, and the
limb blastema more specifically, will require a more thorough
molecular and mechanistic interrogation of many species on all
major branches of the animal tree.

Using gene regulatory network
analyses and tissue dependencies to
frame blastema evolution

It is important to acknowledge the significant challenges we face
when comparing sophisticated biological processes such as
regeneration across vast evolutionary distances. Processes like
regeneration evolve at several levels of abstraction in comparison
to the evolution of species or of gene families (Liberles and Dittmar,
2008; Arendt et al., 2016; Elchaninov et al., 2021; Srivastava, 2021).
Processes are generally considered to be homologous when they
derive from a common ancestral process, but the establishment of
this common ancestry is fraught. Conservation of molecular
components is a good starting point, but the replacement of
individual components in different lineages can mask a shared
origin, while the independent employment of the same genes by
convergently evolved processes misleadingly suggest a shared origin
(Striedter and Northcutt, 1991; Arendt et al., 2016; Elchaninov et al.,
2021; Srivastava, 2021).
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Considering these complications, gene regulatory networks
(GRNs) are a promising tool for establishing homology. While
individual GRN components, such as genes and genomic
regulatory elements, may be lost or replaced over evolutionary
time, cumulatively these circuits should remain relatively intact
(Davidson et al., 2002; Davidson, 2006; Srivastava, 2021).
Likewise, independently evolved processes may convergently
employ similar genes, but they are unlikely to incorporate the
same combinations of these elements or the same regulatory
interactions (Srivastava, 2021). Accordingly, truly homologous
GRNs should share several significant components, while
convergently evolved GRNs may share a few genes but should
generally be quite different (Srivastava, 2021). Two potential
GRNs, an injury-induced Erk-Wnt circuit, and a Germline
Multipotency Program (GMP), appear to be widely conserved in
animal regeneration (Srivastava, 2021). Unfortunately, the
identification and validation of such gene regulatory networks in
regeneration remains difficult, since cross-phyla molecular data
across is lacking (Rinkevich et al., 2022). Moreover, the
establishment of bone fide GRNs requires functional data, a well-
characterized genomic sequence, and ideally epigenetic information
in addition to gene expression data (Davidson et al., 2002; Davidson,
2006; Srivastava, 2021).

GRNs can also be used to trace the evolution of cell type. Specific
GRNs, recently termed Core Regulatory Complexes (CoRCs)
enforce the identity of distinct cell types (Arendt et al., 2016).
Over the course of evolution, CoRCs diverge from each other,
either through the duplication of genetic components or through
the integration of new regulatory machinery (Arendt et al., 2016).
When the regulatory basis of two CoRCs is sufficiently different, the
selective pressure maintaining these “sister” cell type identities
becomes unlinked, and the new cell types can be considered
distinct (Arendt et al., 2016). This concept is notable, because it
allows researchers to trace the evolution of cell types to characteristic
regulatory modules which can be investigated independently of
morphology, host species, and developmental origin (Arendt
et al., 2016). The characterization and comparison of relevant
blastema CoRCs throughout the animal kingdom should allow us
to tell the degree to which these cells, and by extension these
processes, are related.

As previously mentioned, our ability to compare regeneration
across animal phyla is complicated by a lack of molecular data from
several major groups, with many taxa represented by only a handful
of species, or none at all (Rinkevich et al., 2022). Even the well-
established axolotl suffers from poor genome annotation compared
to more established genetic models such as mouse and zebrafish
(Frahry et al., 2015; Keinath et al., 2015; Nowoshilow et al., 2018;
Lertzman-Lepofsky et al., 2019; Smith et al., 2019; Dwaraka and
Voss, 2021; Schloissnig et al., 2021; Haley and Mueller, 2022). That
said, over the last 10 years, transcriptomic and genomic studies have
already greatly enhanced our understanding of several phyla,
especially cnidarians, and acoels, and we are likely to make rapid
progress in the coming years (Ferrario et al., 2020; Rinkevich et al.,
2022; Srivastava, 2022). This influx of molecular data does come
with some caveats. Sequencing efforts are biased towards
emphasizing commonalities and understating differences;
conserved genes are easier to annotate in models with
rudimentary and/or unreliable annotation, and naturally will

draw more attention when they show up in gene expression lists
(Ferrario et al., 2020; Rinkevich et al., 2022). Generating hypotheses
for uncharacterized genes is more challenging than for characterized
genes, though these may have significant biological importance and
even clinical relevance (Ferrario et al., 2020; Rinkevich et al., 2022).

Given these challenges, one might wonder, why even try to trace
the evolution and interrelatedness of metazoan regenerative
mechanisms? One motivation is pure, basic-biological curiosity.
Regeneration is widespread throughout the animal kingdom,
suggesting an origin at the very base of the animal tree, and
appears to be connected to other processes like development and
pluripotency, which lie at the very heart of animal multicellularity
itself (Bely and Nyberg, 2010; Slack, 2017). Tracing the evolution of
regeneration is likely to enhance our understanding of these
processes. Regenerative abilities have also been reduced in many
animal taxa and may have been secondarily enhanced or reacquired
within subgroups within these phyla; a general understanding of
regenerative evolution will inform our understanding of the selective
pressures that act on regeneration and illuminate physiological and
developmental tradeoffs involved with retaining and losing
regenerative abilities (Bely and Nyberg, 2010; Elchaninov et al.,
2021). This motivation has already inspired several reviews (Sánchez
Alvarado, 2000; Bely and Nyberg, 2010; Elchaninov et al., 2021).

There is also a practical motivation. As mentioned previously,
understanding homology between regenerative processes will aid in
our selection of model systems; this is particularly important from a
translational perspective. As salamanders are the only tetrapods
capable of complete limb regeneration, the salamander limb
blastema represents an aspirational goal for the field of
regenerative medicine (Fior, 2014). If we can understand which
key features of the salamander blastema are shared by other systems,
we may be able to study these processes in organisms with easier
husbandry and friendlier genetics, such as fish and planarians.
Likewise, we will be able to assess the therapeutic validity of
more closely related models of regeneration, such as the mouse
digit tip and the lizard tail; if these processes are secondarily derived,
they may not be as informative towards the goal of whole appendage
regeneration. It is worth emphasizing that such comparisons are
capable of bearing fruit. As previously mentioned, developmental
biologists have identified a conserved Spemann-Mangold organizer
program demonstrating that we can establish evolutionary
continuity, homology, and convergence between complex
processes (De Robertis, 2009). The field stands at an exciting
juncture, armed with new heuristics for understanding the
evolution of GRNs and cell types, and as we acquire molecular
and functional data from an expanding menagerie of species across
the evolutionary tree we will be able to make these comparisons with
a much greater degree of authority and specificity in the coming
years.

For comparative purposes we will focus on specific functional
features and molecular aspects of the salamander blastema. The
salamander limb blastema can be thought of as having several key
ingredients: a protective wound epidermis which forms over the
nascent blastema and promotes its growth, a population of
mesenchymal cells which is the substrate of blastema formation,
a neural contribution, and molecular signals that guide and organize
cell behaviors globally and locally (Simon and Tanaka, 2013;
McCusker et al., 2015; Payzin-Dogru and Whited, 2018). In this
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review, we will give particular focus to the conservation of nerve
dependence, the mesenchymal/stem cells which contribute to the
blastema, the progenitor status of these cells, and the pluripotency
associated factors expressed and GRNs within these blastema cells.
Though we are primarily interested in appendage regeneration, we
will also integrate insights from whole-body regeneration, visceral
organ regeneration, and stem cell biology more generally when
relevant.

Is nerve dependence an ancestral feature of
the vertebrate blastema?

The importance of neurons and supporting tissues/cells (such as
Schwann cells) appears to be widespread in vertebrate regeneration:
in addition to the salamander blastema, it is a feature of mouse digit
tip regeneration, the regeneration of various tissues throughout the
mouse body, such as the heart, the regeneration of the lizard tail, and
the regeneration of the zebrafish fin (Kumar and Brockes, 2012; Bely,
2014; Simões et al., 2014; Pirotte et al., 2016; Farkas and Monaghan,
2017; Storer and Miller, 2020). Nerves appear to have important
functional roles in the regeneration of several invertebrates (Kumar
and Brockes, 2012; Pietak et al., 2019; Suzuki et al., 2019). In some
annelids, echinoderms, and cephalopods, presumptive blastema
cells appear to migrate along nerves towards the site of injury
(Ferrario et al., 2020; Kostyuchenko and Kozin, 2021; Imperadore
et al., 2022). In planarians the polarity of the residual nervous system
partially informs the morphology of the regenerating body axis
(Kumar and Brockes, 2012; Pietak et al., 2019). In Drosophila,
innervation supports various stem cell niches, similar to its roles
in mammalian tissue regeneration (Brückner, 2011; Makhijani et al.,
2011; Kumar and Brockes, 2012). Even in cnidarians, where neurons
are not obligatorily required for regeneration, they promote
regeneration (Miljkovic-Licina et al., 2007; Kumar and Brockes,
2012). The widespread involvement of nerves in regeneration hints
at deep evolutionary origins for this feature of the salamander limb
blastema (Bely and Nyberg, 2010; Kumar and Brockes, 2012). This
feature is also of particular interest because it marks a major
difference between limb development and regeneration, as the
initial limb bud forms prior to innervation (Farkas and
Monaghan, 2017).

Much interest has focused on the molecular factors underlying
the relationship between nerves and the salamander blastema. The
neurotropic hypothesis postulates that neurons secrete factors which
support and maintain the salamander limb blastema, and stands as
the dominant paradigm within the field (Singer, 1964; 1978; Pirotte
et al., 2016; Farkas and Monaghan, 2017). Researchers have
identified FGFs, BMPs, Insulin, Transferrin, Substance P, NGF,
Newt Anterior gradient, Neuregulin-1, Oncostatin M, and PDGF-
AA as potential candidates for such neurotropic factors, as they are
secreted by neurons, reduced in the case of denervation, and
promote the proliferation of blastema cells (Vethamany-Globus
and Liversage, 1973; 1973; Globus, 1978; Albert et al., 1987;
Anand et al., 1987; Globus et al., 1991; Kiffmeyer et al., 1991;
Mescher et al., 1997; Wang et al., 2000; Christensen et al., 2001;
Kumar et al., 2007b; Makanae et al., 2013; Farkas et al., 2016;
Grassme et al., 2016; Johnston et al., 2016; Pirotte et al., 2016;
Satoh et al., 2016; Farkas and Monaghan, 2017). BMPs and FGFs are

known to play a variety of roles in regeneration and development
throughout the animal kingdom, although the presence of these
factors alone does not necessarily involve communication between
neurons and the blastema (Molina et al., 2007; Reddien et al., 2007;
Maddaluno et al., 2017; Slack, 2017). NGF has been observed in
echinoderm and annelid regeneration (Patruno et al., 2001;
Thorndyke and Carnevali, 2001; Kostyuchenko and Kozin, 2021),
while planarian regeneration appears to employ a different set of
neuronal factors (Reddien et al., 2005a; Pirotte et al., 2016). The
presence of other axolotl neurotropic candidates has not been noted
in invertebrates; this could be because, as with planarians, a different
set of factors is involved in these systems. If this is the overall trend it
could suggest that nerve dependence evolved convergently multiple
times in different lineages. Ultimately the lack of an established
mechanism for nervous system contribution during salamander
regeneration, and a lack of molecular studies that characterize
nervous system involvement in invertebrate appendage
regeneration limit our ability to directly compare nervous
dependence across these systems (Farkas and Monaghan, 2017;
Kostyuchenko and Kozin, 2021). Furthermore, it should be noted
that “nerve” is a squishy term that encompasses both neurons and
accessory cell types, such as Schwann cells and others, which may
very likely play important roles but whose contributions have not
been cleanly parsed out.

If nerve dependence is an ancestral feature of regeneration, the
evolutionary history of this feature should be intertwined with the
evolution of the nervous system more generally. All four basal
animal clades exhibit strong regenerative abilities, yet sponges
and placozoans completely lack neurons, and denervated
cnidarians are still capable of regeneration (Miljkovic-Licina
et al., 2007; Kumar and Brockes, 2012; Edgar et al., 2021;
Ereskovsky et al., 2021; Osigus et al., 2022). This may mean
nerve dependence evolved at the base of Bilateria, or that this
feature was independently acquired multiple times in unrelated
bilaterian lineages. Alternatively, the molecular mechanism that
underlies nerve dependence may have preceded the development
of a distinct neural cell type and has been acquired by non-neural
cells in these lineages. The recent, controversial placement of
ctenophores at the base of the metazoan tree challenges our
traditional understanding of nervous evolution, suggesting that
the nervous system was either an ancestral trait of all metazoans
that was secondarily lost in sponges and placozoans, or that neurons
evolved independently in ctenophores and eumetazoans (Cnidaria
and Bilateria) (Moroz et al., 2014; Colgren and Burkhardt, 2022). If
the molecular machinery that underpins nerve dependence is truly
ancient, we may be able to use the manifestation of this mechanism
in basal animal lineages to discern between these two hypotheses.

Though nerve dependence may be widespread, there are notable
examples of nerve independence in systems where nerves are
typically required (Filoni et al., 1995; 1999; Suzuki et al., 2005;
Farkas and Monaghan, 2017). Denervated salamanders can be
produced through the removal of the neural tube during
embryogenesis, and they can be maintained through parabiosis
with an otherwise unmanipulated host with an intact nervous
system (Yntema, 1959). Surprisingly, these animals regenerate
amputated limbs normally without any innervation (Wallace,
1980; Filoni et al., 1995; 1999; Tassava and Olsen-Winner, 2003;
Suzuki et al., 2005; Satoh et al., 2011), suggesting nerve dependence
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only occurs after initial innervation. Similarly, the Xenopus tadpole
is capable of forming a nerve-independent blastema, but Xenopus
blastema formation becomes increasingly nerve dependent over the
course of development (Filoni et al., 1995; 1999; Suzuki et al., 2005;
Farkas and Monaghan, 2017).

These examples strongly suggest that even in these “nerve
dependent” systems, regeneration can still occur in the absence
of nerves. Resolving the mechanistic differences between nerve-
dependent regeneration and nerve-independent regeneration in
these amphibian models will be key to understanding the
evolution of nerve dependence, at least within the vertebrate
lineage. Is the neural program delegated to a different cell type in
the nerve-independent examples, or is a different mechanism
employed entirely? An interesting hypothesis is that after their
initial development, regenerating limbs become “addicted” to
neurogenic factors (Kumar et al., 2011). Perhaps during
vertebrate, or even bilaterian, evolution, regeneration transitioned
from a nerve-independent to a nerve-dependent process. Likewise,
the involvement of nerves in salamander limb regeneration may
illuminate the loss of limb regeneration in amniotes, where limbs
develop in a less mature tissue environment than in salamanders
(Borgens et al., 1977; Borgens, 1984; Borgens et al., 1987; Alibardi,
2022a).

While much research has focused on the neurotropic
hypothesis, less attention has focused on alternative
mechanisms for nervous system involvement (Singer, 1978;
Farkas and Monaghan, 2017). Recent findings suggest that
innervation is required for the body-wide proliferation of stem
cells after injury in the axolotl (Payzin-Dogru et al., 2023). Others
have proposed that the nervous system encodes and directs the
ultimate target morphology of the regenerated appendage,
reflecting the observed impact ectopic innervation on blastema
morphology (Stocum, 1991; Levin, 2012). Intriguingly, cancer
tumors also depend on innervation, hinting at shared cellular
mechanisms between regeneration and cancer (Levin, 2012;
Boilly et al., 2017; Wong and Whited, 2020). Moreover,
adrenergic signaling has been implicated in both metastasis
and in the nerve-dependent, body-wide cell cycle activation
during axolotl regeneration (Nagaraja et al., 2016; Payzin-
Dogru et al., 2023). When considered alongside the superficial
observations that both tumors and blastemas employ the
proliferation of a dedifferentiated cell mass, these findings
support the hypothesis that cancer tumors redeploy
regenerative machinery (Levin, 2012; Wong and Whited,
2020). From this vantage point, our understanding of the limb
blastema may yield therapeutic insights into novel cancer
treatments. Cumulatively these findings suggest that nervous
contributions to the blastema are more complex and varied
than is commonly appreciated; understanding these
uncharacterized functions will likely facilitate future
comparative studies.

Are mesenchymal cells a conserved feature
of blastema formation?

Understanding and comparing the cell types which contribute to
the blastema in different animal lineages is key to tracing the

homology of regenerative mechanisms. In the salamander, the
bulk of the cells that contribute to the blastema are of fibroblast
origin (Muneoka et al., 1985; 1986; Gerber et al., 2018; Leigh et al.,
2018), and there is evidence to suggest these cells provide the bulk of
blastema material in other vertebrates, including Xenopus, fish, mice
and lizards (Johnson and Bennett, 1998; Sehring and Weidinger,
2020; Storer and Miller, 2020; Lin et al., 2021; Alibardi, 2022b; Hu
et al., 2022). Though fibroblasts have been conventionally
considered a mature cell type, specialized in the maintenance of
intracellular matrix, increasing evidence supports the idea that at
least some fibroblasts serve as dedicated progenitor cells during
tissue homeostasis (LeBleu and Neilson, 2020; Plikus et al., 2021).
Recent studies leveraging single-cell RNA-seq and in vivo fate
mapping have revealed considerable heterogeneity in fibroblast
subtypes and their differing behaviors following injury (Jiang
et al., 2018; Leigh et al., 2018; Jiang and Rinkevich, 2021; Sinha
et al., 2022; Talbott et al., 2022). Fibroblast migration, accumulation,
and proliferation are also features of scar formation in non-
regenerative vertebrates (Jaźwińska and Sallin, 2016; Jiang et al.,
2018; Jiang and Rinkevich, 2021; Moretti et al., 2022; Talbott et al.,
2022), hinting that in some ways, a scar could be considered a
vestigial or modified blastema.

Fibroblast-like cells have been observed in both mollusk and
echinoderm appendage regeneration (Ben Khadra et al., 2015;
Furukawa et al., 2021), but the direct contribution of these cells
to regenerating tissue remains unexamined. Indeed, there seems to
be relatively little comparative analysis of the fibroblast cell type
across major animal taxa. Planarians, acoels, cnidarians, and
annelids utilize multipotent progenitors termed neoblasts,
amoebocytes, or i-cells during regeneration (Gold and Jacobs,
2013; Raz et al., 2017; Reddien, 2018, 201; Kostyuchenko and
Kozin, 2021; Rinkevich et al., 2022). These cells are superficially
similar to each other and to the fibroblasts utilized in the salamander
blastema owing to their interstitial residence, migratory behavior,
proliferative potential, and multipotency, but the homology of these
cell types between major taxa is unconfirmed and is even
contentious between different lineages within Cnidaria and
Annelida (Gold and Jacobs, 2013; Reddien, 2018; Kostyuchenko
and Kozin, 2021; Srivastava, 2022). Moreover, while cnidarian i-cells
and amoebocytes most closely resemble planarian neoblasts, they do
not contribute to the majority of regenerated tissue in cnidarians,
instead this material is provided by transdifferentiating epithelial
cells, which appear to have a greater degree of multipotency than
similar cells in other animal groups (Gold and Jacobs, 2013;
Rinkevich et al., 2022).

Migratory ameboid cells also appear to play a major role in
regeneration throughout the animal kingdom. In axolotls, fish, and
the mouse digit tip, macrophages and other myeloid cells migrate to
the injury site, where they are not only involved in stereotypical
macrophage roles, such as clearing infectious pathogens and
removing cellular debris, but they appear to be necessary for the
promotion and maintenance of the subsequent blastema (Fernando
et al., 2011; Godwin et al., 2013; Morales and Allende, 2019; Bohaud
et al., 2021). Recent experiments have shown that macrophages are
obligate required for blastema formation and outgrowth in the
axolotl limb, zebrafish fin, and mouse digit tip (Fernando et al.,
2011; Godwin et al., 2013; Morales and Allende, 2019; Bohaud et al.,
2021). Notably in macrophage-depleted axolotls, wounds can still
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heal, but regeneration is disrupted, suggesting a profound role for
macrophages in the establishment and maintenance of the blastema
itself, independent of their canonical immune functions (Godwin
et al., 2013). Circulating ameboid cells can also be found in the
arthropod, annelid, echinoderm, ascidian, and mollusk blastemas
(Pinsino et al., 2007; Hernroth et al., 2010; Rinkevich et al., 2010;
Gold and Jacobs, 2013; Imperadore et al., 2017; 2022; Suzuki et al.,
2019; Kostyuchenko and Kozin, 2021). These cells go by many
different names: plasmocytes, hemocytes, Coelomocytes, and
amoebocytes. During regeneration, they appear to take on many
different roles, including phagocytosis, clot formation, and even
direct cellular contribution to the blastema itself (Pinsino et al., 2007;
Hernroth et al., 2010; Gold and Jacobs, 2013; Imperadore et al., 2017;
2022; Suzuki et al., 2019; Kostyuchenko and Kozin, 2021). At certain
stages of regeneration these cells make up the major component of
the blastema in some echinoderms and cephalopods, but their
ultimate contribution remains unclear in the absence of lineage
tracing (Pinsino et al., 2007; Imperadore et al., 2017; 2022).

On the most superficial level, there is a common theme by which
interstitially resident, non-epithelial cells migrate to and accumulate
at the blastema. Their superficial resemblance to basal stem cells
such as sponge archaeocytes or cnidarian amoebocytes, and
migratory resemblance to blastema fibroblasts present a
tantalizing hypothesis: that these cells descend from a shared
ancestral regenerative cell type, the roles of which have been sub
functionalized to different sister cell types in different animal
lineages. At present such a hypothesis is extremely speculative,
but the increased cellular characterization of invertebrate models
coupled with the CoRC frame work may allow us to test such
hypotheses in the near future (Arendt et al., 2016).

When did the use of dedifferentiation and
progenitor cells evolve in the salamander
blastema and other regenerative systems?

The relative contribution of dedicated progenitor stem cells and
dedifferentiated mature cells has been a major area of focus in
several regenerative systems (Bely and Nyberg, 2010; Rinkevich
et al., 2022). In this regard there is considerable variation across
the animal kingdom, and the means by which we distinguish
between these processes depends on how we define “mature” and
“progenitor” cells (Rinkevich et al., 2022). Some systems, such as
planarians and acoels, have well defined stem cells: neoblasts are
specified during embryonic development, retain an unspecialized
morphology, and are the only proliferative cells in the adult during
both homeostasis and regeneration (Wenemoser and Reddien, 2010;
Raz et al., 2017; Kimura et al., 2022; Hulett et al., 2023). Cnidarians
and sponges on the other hand, have multiple proliferative cell types
with varying degrees of multipotency (Gold and Jacobs, 2013; Edgar
et al., 2021; Ereskovsky et al., 2021; Rinkevich et al., 2022). Though
these organisms also possess apparent adult stem cells, such as
i-cells, amoebocytes, and archaeocytes, which retain an
unspecialized morphology and have a greater degree of
multipotency, the bulk of regenerated material in these species
comes from the proliferation of specialized epithelial cells (Gold
and Jacobs, 2013; Ereskovsky et al., 2021). The proliferation and
outgrowth of mature tissues is also a major component of

regeneration in ctenophores, echinoderms, tunicates, and several
annelids (Ferrario et al., 2020; Edgar et al., 2021; Kostyuchenko and
Kozin, 2021). Several echinoderms and tunicates also employ
dedifferentiation, where morphologically mature, specialized cells
revert to a less specific, often migratory morphology, before
redifferentiating into new mature cell types (Rinkevich et al.,
2010; Voskoboynik and Weissman, 2015; Ferrario et al., 2020).
These strategies are not mutually exclusive and are combined in
many systems, including cnidarians, tunicates, echinoderms,
annelids, and most notably for this review, salamanders
(Rinkevich et al., 2010; 2022; McCusker et al., 2015; Voskoboynik
and Weissman, 2015; Ferrario et al., 2020). In the salamander limb,
several tissues, including the skin, nerves and vasculature, are largely
produced through the proliferation of resident, mature tissues; the
blastema bud itself appears to consist of heterogenous progenitor
cells some of which may originate from dedifferentiated mature cells
(Kragl et al., 2009; McCusker et al., 2015; Tanaka et al., 2016; Choi
et al., 2017; Leigh et al., 2018; Dwaraka and Voss, 2021).

It was long thought that all cells within the axolotl blastema
arose through dedifferentiation and constituted a single multipotent
blastema cell type, capable of regenerating all mesenchymal tissues
within the axolotl limb (Thornton, 1938; Smith and Wolpert, 1975).
Recent studies have challenged this view, revealing that the blastema
contains many heterogenous cell populations with limited
multipotency (Kragl et al., 2009; Choi et al., 2017; Flowers et al.,
2017; Gerber et al., 2018; Leigh et al., 2018; Currie et al., 2019).
Moreover, while some transdifferentiation may occur during limb
regeneration, most differentiated cells appear to be derived from
progenitors of the same, or closely-related, lineages within the
original limb (Kragl et al., 2009; McCusker et al., 2016; Choi
et al., 2017; Leigh et al., 2018). This aspect of salamander
regeneration resembles planarian and acoel regeneration, which
also employ heterogenous migratory progenitor cells, although
unlike axolotls, these groups possess a truly pluripotent adult
stem cell population capable of restoring all progenitor classes
(Wagner et al., 2011; Reddien, 2013; Gehrke and Srivastava,
2016; Ge et al., 2022; Hulett et al., 2023).

Given the heterogeneity and potential multipotency and
proliferative abilities of the many blastema fibroblast populations,
whether they are truly progenitors or dedifferentiated cells remains
unclear (LeBleu and Neilson, 2020; Plikus et al., 2021). One clear
example of dedifferentiation, is the dedifferentiation of
polynucleated muscle fibers during post-metamorphic newt limb
regeneration (Sandoval-Guzmán et al., 2014; Tanaka et al., 2016;
Dwaraka and Voss, 2021). If this trait is limited to salamanders, it
would suggest that this is a derived mechanism, but the absence of
non-salamander examples may simply reflect a lack of studies which
specifically interrogate muscle dedifferentiation outside the
salamander clade. The distribution of this mechanism across
salamander taxa also remains unclear; while it is employed by
post metamorphic newts (Salamandra clade), it is not used in
axolotls (Ambystoma clade) with forced metamorphosis
(Sandoval-Guzmán et al., 2014; Dwaraka and Voss, 2021). The
sheer cytological complexity and sophistication of this process
suggest it likely evolved over a long period of time, and the
observation of superficially similar phenomena in echinoderms
and annelids, may hint at a more ancient origin (Sandoval-
Guzmán et al., 2014; Tanaka et al., 2016; Ferrario et al., 2020;
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Kostyuchenko and Kozin, 2021). Ultimately, investigations in less
characterized salamander families will illuminate the evolutionary
provenance of this mechanism (Dwaraka and Voss, 2021).

Variations in the regenerative deployment of progenitor cells or
dedifferentiation across the animal kingdom, generally reflect the
underlying stem cell logic in those organisms (Rinkevich et al.,
2022). This logic exists on a continuum: on one extreme, as seen in
acoels and planarians, dedicated, undifferentiated stem cells are the
only proliferative cell class and provide all material during
regeneration; on the other extreme, as in many sponges and
cnidarians, most mature cell types are proliferative and retain
some degree of multipotency (Gold and Jacobs, 2013; Reddien,
2018; Ereskovsky et al., 2021; Srivastava, 2022). Basal metazoans
generally sit towards the latter end of this continuum, while bilateral
lineages sit at different positions, with vertebrates and arthropods
relying more heavily on dedicated stem cells, some echinoderms and
tunicates relying more on mature cells, and many annelids sitting
somewhere in the middle (Ferrario et al., 2020; Kostyuchenko and
Kozin, 2021; Rinkevich et al., 2022). From this distribution we can
infer that ancestral metazoans most likely possessed multiple
proliferative mature cell types, with the increasing use of
dedicated stem cells emerging later (Rinkevich et al., 2022). It is
less obvious whether this transition occurred in the basal bilaterian,
or if dedicated stem cells convergently evolved in different bilateral
lineages. Supporting a common origin, there are remarkable
similarities between planarian and acoel neoblasts, despite their
vast evolutionary distance, suggesting that the ancestral bilaterian
regenerated through a similar, stem-cell-exclusive mechanism
(Gehrke and Srivastava, 2016; Raz et al., 2017). If this is the case,
several bilaterian lineages, in particular several tunicates and
echinoderms, which utilize both mature cell proliferation and
dedifferentiation, would have re-evolved these mechanisms
(Auger et al., 2010; Jeffery, 2015; Ferrario et al., 2020).
Supporting this in the most basal echinoderm group, the
crinoids, regeneration appears to employ dedicated stem cells, in
a manner which more closely resembles vertebrate, planarian, and
acoel regeneration (Candia Carnevali and Bonasoro, 2001; Ferrario
et al., 2020). Alternatively, the “dedifferentiation” observed in
echinoderms may reflect the retention of a more basal, cnidarian-
like mechanism, with stem cell dependence arising convergently in
other bilaterian groups (Rinkevich et al., 2022). This may explain the
vast range of stem cell strategies we see throughout the animal
kingdom, most of which are not as extreme as those employed by
planarians and acoels (Ferrario et al., 2020; Rinkevich et al., 2022).
We speculate that as several bilaterian lineages evolved an increasing
number of mature, specialized cell types, trade-offs between somatic
function and proliferative potential became more acute, resulting in
the increased reliance on a dedicated stem cell class.

Whether we consider blastema cells to arise from
dedifferentiated mature cells or from undifferentiated progenitor
cells depends to a great degree on how we define these terms.
Constructs such as dedifferentiation and stem cells are often very
useful, but when we are overly zealous in their use, we risk artificially
separating related processes or grouping unrelated processes. Both
dedifferentiated and de novo progenitor cells may employ
homologous genetic circuitry derived from an ancestral
regenerative GRNs (Arendt et al., 2016; Srivastava, 2021). With
the CoRC concept it is possible that such cells may even be

considered the same cell type, as evolutionarily homologous cell
types do not necessarily need to arise from the same developmental
origins (Arendt et al., 2016; Srivastava, 2021). If we consider
regeneration to be a developmental process, the differential
employment of stem cells and dedifferentiation in different
tissues and species may be analogous to the way in which several
mature cell types, such as bone, can arise from multiple embryonic
germ layers (Arendt et al., 2016; Srivastava, 2021). Already, efforts
have potentially identified an ancestral stem cell regulatory module,
which we will discuss more in the next section (Alié et al., 2015;
Srivastava, 2021).

Do conserved gene regulatory networks
(GRNs) maintain blastema cell identity?

Given that gene regulatory networks (GRNs) are arguably the
best way to establish homology between cell types and regenerative
processes (Davidson, 2006; Arendt et al., 2016; Srivastava, 2021),
what can our current knowledge of gene expression in the
salamander blastema tell us about its evolution? Though several
studies have profiled the blastema transcriptome and proteome, the
field is only beginning to directly interrogate the functional
relationships between specific genetic elements (Rao et al., 2009;
2014; Stewart et al., 2013; Bryant et al., 2017; Gerber et al., 2018;
Leigh et al., 2018; Nowoshilow et al., 2018; Sibai et al., 2020;
Sousounis et al., 2020). Indeed, the field has only recently
identified reliable blastema markers such as Kazald2 (Bryant
et al., 2017), meaning regulatory interactions and mechanistic
functions of genes in the salamander blastema must largely be
inferred from their roles in more well characterized systems.
Salamander blastema cells are enriched for genes associated with
stemness in mammals, as well as genes associated with RNA binding
and DNA repair, and genes associated with germline maintenance
(Chera et al., 2006; Zhu et al., 2012; Stewart et al., 2013; Bryant et al.,
2017; Haas and Whited, 2017; Leigh et al., 2018; Nowoshilow et al.,
2018).

In mammalian embryos, pluripotency is maintained by a core
network of well characterized transcription factors including Oct4,
Klf4, Sox2, Myc and Nanog (Takahashi and Yamanaka, 2006; Liu
et al., 2008; Young, 2011). Three of these factorsMyc, Klf4, and Sox2
are upregulated in the salamander blastema (Maki et al., 2009; Zhu
et al., 2012; Stewart et al., 2013; Leigh et al., 2018). Pluripotency-
related genes are also expressed in a variety of vertebrate blastemas:
lizard blastemas express cMyc (Alibardi, 2022b), Xenopus blastemas
express cMyc and Sox2 (Christen et al., 2010), and lungfish blastemas
express Sox2 and cMyc (Nogueira et al., 2016). The widespread
employment of these pluripotency genes suggests a conserved roll in
vertebrate regenerative processes; however, it is possible that these
genes, which are associated with proliferation and “stemness” more
generally, were convergently integrated into regeneration programs.
A more thorough investigation of the regulatory interactions and
elements involved in these processes is needed if we want to properly
discern between conservation and convergence (Srivastava, 2021).

Tracing this circuitry beyond the vertebrates is more tenuous
(Gold et al., 2014; Srivastava, 2021; Rinkevich et al., 2022). Oct4,
Klf4, Sox2, and Nanog are members of large gene families which
diversified dramatically in the deuterostome lineage (Resch et al.,
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2012; Önal et al., 2012; Gold and Jacobs, 2013; Presnell et al., 2015;
Rinkevich et al., 2022). In particular Oct4 and Nanog represent
branches of their respective gene families entirely unique to
vertebrates (Gold et al., 2014; Scerbo et al., 2014; Sukparangsi
et al., 2022). Nonetheless, more distantly-related members of the
Pou (Oct4) family have been found to be upregulated in planarian
neoblasts, acoel neoblasts, and cnidarian i-cells, as well as during
regeneration in echinoderms and hemichordates (Resch et al., 2012;
Önal et al., 2012; Mashanov et al., 2015b; 2015a; Ferrario et al.,
2020). This may reflect a regenerative/multipotency role for the
ancestral Pou family gene in the most ancient metazoans.
Challenging this hypothesis, planarian Pou genes lack an α-helix
domain which is required for pluripotency in vertebrates, and Pou5/
Oct4 paralogs from basal vertebrates (hagfish) fail to maintain a
pluripotent state in mouse embryonic stem cells, suggesting the pro-
pluripotency function of Pou5/Oct4 evolved in jawed fish (Gold
et al., 2014; Sukparangsi et al., 2022). On the other hand, axolotl and
medaka Pou5/Oct4 and Pou2 are both competent to induce
pluripotency in mouse stem cell models (Tapia et al., 2012).
Pou5, Pou2, and Pou3 share a common ancestor at the base of
bilateria; if this ancestral Pou2/3/5 gene promoted pluripotency, this
role may have been subfunctionalized to different paralogs in
different lineages (Gold et al., 2014).

Myc and Sox2 are more deeply conserved and are also found
quite widely in invertebrate regeneration. Sox paralogs are
upregulated in planarian neoblasts, acoel neoblasts, cnidarian
i-cells, and in regenerative echinoderm and tunicates cells (Resch
et al., 2012; Önal et al., 2012; Gold and Jacobs, 2013; Mashanov et al.,
2015b; 2015a; Reddien, 2018; Rinkevich et al., 2022; Srivastava,
2022).Myc is even more widespread; it is expressed during imaginal
disc regeneration in Drosophila, tunicate regeneration, echinoderm
regeneration, cnidarian i-cells, and even sponge archaeocytes,
though this gene has notably been lost in acoels and planarians
(Gallant, 2013; Gold and Jacobs, 2013; Mashanov et al., 2015b;
2015a; Alié et al., 2015; Rinkevich et al., 2022). Klf4 has been
observed in regeneration in echinoderms (Mashanov et al.,
2015a). Other vertebrate pluripotency transcription factor
families such as Gata4/5/6, FoxO, and Pax are found in multiple
invertebrate stem cells (Brown and Swalla, 2007; Boehm et al., 2012;
Somorjai et al., 2012b; Chiodin et al., 2013; Rosner et al., 2013; Alié
et al., 2015; Ricci et al., 2016; Somorjai, 2017; Srivastava, 2021;
Rinkevich et al., 2022). Does the widespread use of these genes in
regenerative processes reflect an ancestral circuit, which has been
modified in vertebrates to also include Oct4 and Nanog, or is this an
example of the convergent use of pro-proliferative genes in
regenerative processes? Further probing of regulatory factors,
binding sites and interactions utilized during regeneration will
enable us to discern which elements are truly conserved or
derived across the animal kingdom.

Pluripotency is often associated with germline, and salamander
blastema cells express many germline-associated genes including the
RNA-binding proteins Piwi, Vasa and Nanos (Zhu et al., 2012;
Sousa-Victor et al., 2017). Piwi genes in particular are expressed in a
wide variety of regenerative cells in invertebrates, including,
planarian, acoel, and annelid neoblasts, cnidarian i-cells, as well
as regenerative stem cells in ascidians and echinoderms (Reddien
et al., 2005b; Seto et al., 2007; Palakodeti et al., 2008; Rinkevich et al.,
2010; 2013; Leclère et al., 2012; vanWolfswinkel, 2014; Mashanov V.

et al., 2015; Özpolat and Bely, 2016; Lai and Aboobaker, 2018;
Kostyuchenko and Kozin, 2021; Hulett et al., 2023). Piwi and other
germline markers have also been observed in somatic stem cells of
sponges, and ctenophores in addition to the aforementioned groups
(Alié et al., 2011; Lai and Aboobaker, 2018; Koutsouveli et al., 2020).
The widespread appearance of Piwi genes and other germline
markers in regenerative and somatic stem cells has led some to
propose a conserved GRN, the germline multipotency program,
involved with germline maintenance, pluripotency, and
regeneration throughout the animal kingdom (Lai and
Aboobaker, 2018; Srivastava, 2021).

One potentially very ancient feature of the blastema
transcriptome is the general upregulation of RNA binding
proteins (RNBPs). Several RNBPs including cirbp, fus, roa1,
safb1, and hnrnpd are upregulated in the axolotl blastema
(Bryant et al., 2017). Comparisons between sponge archaeocytes,
planarian neoblasts, and hydrozoan i-cells suggest that RNBPs were
a major component of their inferred ancestral stem cell regulatory
program (Alié et al., 2015). Interestingly several blastema-enriched
RNBP homologs are found in sponge archaeocytes, including
CIRBP, SAFB1, and members of the hnRNP family (Alié et al.,
2015; Bryant et al., 2017). While these genes may represent an
ancient, conserved link between blastema cells and basal metazoan
stem cell programs, it is important to caution that these specific
genes are not appreciably upregulated in planarian neoblasts, and
the most promising candidates for an ancestral stem cell program,
such as members of the DDX (Vasa-related), family do not appear to
be upregulated in the axolotl blastema (Alié et al., 2015; Bryant et al.,
2017). As with other examples of shared gene usage in distantly
related lineages, untangling convergence and conservation is
complicated, requiring a thorough characterization of regulatory
relationships (Srivastava, 2021). Importantly, several
uncharacterized genes are upregulated in both the salamander
blastema and other regenerative models (Alié et al., 2015; Bryant
et al., 2017; Rinkevich et al., 2022). The comparative analysis of these
genes may eventually reveal important, ancient components of the
regenerative circuitry which have been lost in mammals.

The evolutionary origins of the
vertebrate blastema within the greater
context of metazoan regeneration

Robust regenerative abilities are found in all basal metazoan
groups (Bely and Nyberg, 2010; Tanaka and Reddien, 2011; Slack,
2017; Ricci and Srivastava, 2018), suggesting an early, and most
likely shared origin for regeneration throughout the animal
kingdom. This regenerative ability likely evolved in parallel to
other processes necessary for multicellularity, such as
development, growth, wound healing, and reproduction (Bely
and Nyberg, 2010; Slack, 2017). Indeed, when we look at the
most basal metazoans, we see that the lines between these
processes are somewhat blurred (Bely and Nyberg, 2010; Gold
and Jacobs, 2013). Many sponges and cnidarians redeploy
developmental processes throughout their lifecycle: symmetry
breaking and patterning are redeployed in the adult to enforce
the appropriate spacing of repeating structures during growth and
reproduction (Lengfeld et al., 2009; Watanabe et al., 2014; Soubigou
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et al., 2020). In particular, Wnt signaling, FGF signaling, and BMP/
TGF-β signaling are all employed during regeneration and
development in sponges and cnidarians (Gold and Jacobs, 2013;
Maddaluno et al., 2017; Slack, 2017; Soubigou et al., 2020; Tursch
and Holstein, 2023), and all have significant roles in the axolotl
blastema (McCusker et al., 2015; Vincent et al., 2020). These
components also have deeply conserved roles in early embryonic
development (Slack, 2017; Zinski et al., 2018), and are possibly the
most frequently reoccurring components in regenerative systems
throughout the animal kingdom (Maddaluno et al., 2017; Slack,
2017).

Within Bilateria, commonalities between planarian and acoel
regeneration strongly suggest that the last common ancestor of
Bilateria regenerated by a similar mechanism; both employ body
wide, totipotent neoblast stem cells during whole-body regeneration
(Reddien and Sánchez Alvarado, 2004; Srivastava et al., 2014; Raz
et al., 2017). As with cnidarians, these cells are directed by axial
gradients of developmental positional control genes, includingWnts
and Bmps, which are expressed throughout the animal’s lifetime
(Reddien and Sánchez Alvarado, 2004; Srivastava et al., 2014; Raz
et al., 2017; Slack, 2017; Srivastava, 2022). Arguably, the main
similarity between axolotl limb regeneration and this proposed
ancient bilateral mechanism is the activation of and migration of
scattered stem cells to the site of injury during blastema formation
(Kragl et al., 2009; Choi et al., 2017; Flowers et al., 2017; Raz et al.,
2017; Gerber et al., 2018; Leigh et al., 2018). Interestingly, in both
planarians and acoels, neoblasts across the entire body start to
proliferate, in-situ, shortly after injury, increasing in number
before migration (Raz et al., 2017). The proliferative activation of
distant stem cells shortly after dramatic injury is seen in many
distantly related organisms, including the axolotl, and even in
nonregenerative species such as mice, hinting that whole-body
stem cell activation may be a remnant of this ancient mechanism
(Rodgers et al., 2014; Johnson et al., 2018; Reddien, 2018; Srivastava,
2022; Payzin-Dogru et al., 2023). Perhaps, like planarian neoblasts,
globally activated axolotl stem cells are primed to migrate towards
the injury site and contribute to the nascent blastema but only those
situated close enough to the injury site receive migration and/or
blastema-specification signals. Another possibility is that more
distant cells are also physically impeded by extracellular matrix,
while local matrix is deconstructed in response to amputation.
However, further study into this phenomenon is required to
address these possibilities.

Where then does the salamander blastema
sit within the greater context of metazoan
regeneration?

Slack proposes that an ancient whole-body body regenerative
mechanism is conserved across basal metazoans, but that
salamander limb regeneration is probably derived (Slack, 2017).
This argument rests on the observation that basal metazoans retain
body-wide, embryonic axial patterning gradients as adults; these
gradients facilitate regeneration in these groups, but have been lost
in vertebrates andmost bilaterian lineages (Slack, 2017).While this is
one interpretation, we present an alternate hypothesis: salamander
limb regeneration is ultimately derived from ancient whole body

regenerative mechanisms but is restricted and limited by the
developmental and physiological demands of anatomically
sophisticated vertebrates. In this model the axolotl blastema is not
an evolutionary novelty, but a vestige of earlier whole-body
regenerative mechanisms. Slack argues that because molecules
such as Wnts and BMPs are repurposed several times in
vertebrate development, the ancestral whole body regenerative
mechanism must have been lost in the adult, and limb
regeneration must have been reacquired (Slack, 2017). It is
possible, however, that vertebrates lost whole body regeneration
for other reasons, with limb regeneration being a remnant of this
ancient ability. Some hypothesize that vertebrate paired appendages
arose through a reactivation of the developmental program that
patterns the anterior posterior axis (Shubin et al., 1997). Supporting
this hypothesis, the hox genes that pattern the proximal distal axis of
the developing and regenerating vertebrate limb are related to, and
ordered in the same way as the hox genes which pattern the
embryonic anterior-posterior axis (Shubin et al., 1997).
Moreover, Wnts are expressed distally in the developmental
limb-bud, potentially reflecting their role in posterior
specification, and BMPs specify ventral tissue, as they do during
axial patterning (Shubin et al., 1997; Robert, 2007; Lovely et al.,
2022). If axial developmental programs were repurposed for
vertebrate limb development, perhaps whole-body regenerative
mechanisms were similarly repurposed towards the limb. Of
course, this is highly speculative. Whether vertebrate limb
regeneration is a vestige of ancestral whole-body regeneration, or
an evolutionary novelty depends on whether “the entire ancestral
line of animals has had a similar regenerative ability” (Slack, 2017).
Recent evidence supports this ancestral continuity: tunicates have
extensive regenerative abilities, cephalochordates regenerate the tail
through a mechanism at least superficially similar to axolotl
regeneration (Ferrario et al., 2020), larval jawless fish such as
lampreys can regenerate their tails (Bayramov et al., 2018),
sharks have recently been shown to regenerate fins (Lu et al.,
2013; Alibardi, 2019; 2022a; Borucinska et al., 2020; Marconi
et al., 2020; Womersley et al., 2021), and of course there are
many examples of appendage regeneration throughout the bony
fish (Yoshinari and Kawakami, 2011; Nogueira et al., 2016; Darnet
et al., 2019).

While the relationship between the axolotl blastema and basal
metazoan regeneration remains unresolved, we can compare
vertebrate blastemas with relative confidence: several features
of the salamander limb blastema—Wnt/FGF/BMP signaling, the
expression of pluripotency markers, the contribution of
fibroblasts, and nerve dependence, are shared by the bony fish
fin blastema, as well as the less regenerative lizard tail blastema,
and mouse digit tip blastema (Gemberling et al., 2013; McCusker
et al., 2015; Nogueira et al., 2016; Payzin-Dogru and Whited,
2018; Darnet et al., 2019; Alibardi, 2022b; Johnson and Lehoczky,
2022). If the salamander blastema represents a vestige of a more
flexible ancestral regenerative mechanism, mouse digit tip
regeneration may itself represent a vestige of a more
salamander-like ancestral amniote regenerative mechanism.
Our current understanding of blastema evolution is
constrained by lack of diverse model systems. If digit tip
regeneration is vestigial, it should be widespread amongst the
amniotes, but this trait remains unexamined beyond a handful of
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placental mammal species. Likewise, sharks, lampreys, and
cephalochordates all regenerate fins through mechanisms that
superficially resemble the axolotl blastema, but the molecular and
cellular circuitry underlying these processes remains largely
uncharacterized (Somorjai et al., 2012b; Womersley et al.,
2021; Li et al., 2023). As the field explores regeneration in
less-characterized species, with an expanding arsenal of
molecular and genetic tools, the relationships between well-
established regenerative models, such as the mouse digit tip,
and the axolotl limb will be more clearly defined. A thorough
understanding of blastema evolution will both sate our biological
curiosity and facilitate the selection of appropriate models for
human regenerative therapies.
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