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Early pregnancy is a complex and well-orchestrated differentiation process that
involves all the cellular elements of the fetal-maternal interface. Aberrant
trophoblast-decidual interactions can lead to miscarriage and disorders that
occur later in pregnancy, including preeclampsia, intrauterine fetal growth
restriction, and preterm labor. A great deal of research on the regulation of
implantation and placentation has been performed in a wide range of species.
However, there is significant species variation regarding trophoblast
differentiation as well as decidual-specific gene expression and regulation.
Most of the relevant information has been obtained from studies using mouse
models. A comprehensive understanding of the physiology and pathology of
human implantation and placentation has only recently been obtained because of
emerging advanced technologies. With the derivation of human trophoblast stem
cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell
type-specific transcript profiles and functions were generated, and each exhibited
a unique signature. Additionally, through integrative transcriptomic information,
researchers can uncover the cellular dysfunction of embryonic and placental cells
in peri-implantation embryos and the early pathological placenta. In fact, the
clinical utility of fetal-maternal cellular trafficking has been applied for the
noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy
complications. Furthermore, recent studies have proposed a viable path toward
the development of therapeutic strategies targeting placenta-enrichedmolecules
for placental dysfunction and diseases.
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1 Introduction

Achieving a successful pregnancy relies on a series of complex interactions between the
fetus-derived placenta and maternally derived decidua and the molecular signals that trigger
intrauterine programming (Fowden et al., 2008). These cellular interactions are coordinately
regulated at multiple levels, from systematic endocrine hormones to direct contact with
paracrine and juxtacrine factors between trophoblasts and decidual cells in the maternal
endometrium (Xu et al., 2021). The placenta is a highly complex and transient endocrine
organ that is critical in integratingmaternal and fetal signals to control the selective exchange
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of gas, nutrients, and waste between maternal and fetal circulation
(Jansson, 2016). Notably, the placenta secretes various hormones
and specific factors that help create an appropriate intrauterine
environment for fetal growth and development (Li et al., 2021a).

The placenta develops from the trophectoderm of the activated
blastocyst in both humans and mice (Hamatani et al., 2004). Upon
implantation, invasive trophoblasts anchor the blastocyst to the
decidualized uterine epithelium, where placentation occurs.
During this period, placental trophoblasts differentiate into
different cell subtypes that extensively remodel the maternal
decidual endometrium and uterine vessels. Cell-cell interactions
result in the adaptation and maintenance of maternal-fetal
immune tolerance, eventually establishing a unique
environment at the fetal-maternal interface (Wu et al., 2022).
Fetal development is underpinned by the placenta, with its
functional or developmental defects that may compromise and
predispose the fetus to a number of chronic adult diseases and
psychiatric disorders in adulthood (Bronson and Bale, 2016;
Burton et al., 2016).

Given the complexity of the placenta in maternal-fetal
communication, the dynamic metabolism and diverse functions
of the placenta at different developmental stages of normal
pregnancy remain largely elusive. Additionally, various types of
trophoblasts, including trophoblast stem cells, progenitor cells, and
different subtypes of differentiated trophoblasts, and their individual
roles in the physiological and pathophysiological conditions of
placentation are not completely understood. Indeed, our
knowledge of how inadequate or impaired placentation
contributes to pregnancy-related complications is primarily based
on the presumption that such placental dysfunction develops at the
early stage of pregnancy, when it is difficult to predict which
placental tissues would have developed pathological conditions
during late gestation. Therefore, our understanding of the
developmental information and function of the placenta is
primarily obtained from studies performed using mouse models.
In this regard, mouse knockout studies have identified several
critical regulatory genes, some of which are detected in the
human placenta (Simmons and Cross, 2005; Latos and
Hemberger, 2014). Although both humans and mice show some
similarities, such as hemochorial placentation, in which fetus-
derived trophoblasts directly contact maternal blood, different
implantation processes, trophoblast invasion, key regulators of
trophoblast development, placental structure, and placental
vascularization occur between the two species (for reviews, see
(Knöfler et al., 2001; Carter, 2007)). Taken together, these
findings indicate that studies performed using mouse models are
not ideal for interpreting the functional aspects of human placenta.
To better understand the molecular mechanisms of human
implantation and early placentation and further advance
therapeutic strategies for placental dysfunction and pregnancy
diseases, the establishment of appropriate human study models is
urgently needed. In this review, we summarize the current
knowledge of human embryo implantation, trophoblast
differentiation and invasion, and early placentation as well as
their underlying mechanisms. Additionally, we focus on different
cell lineages of human peri-implantation embryos and trophoblasts
and their unique cell markers. Furthermore, we review the current
literature on placentation- and pregnancy-related disorders and

describe the development of novel strategies for diagnosing,
treating, and preventing associated diseases.

2 Human peri-implantation embryo

Upon fertilization, the human oocyte resumes its second meiotic
division with a rapid exchange of protamines in the paternal genome
and histones in the maternal genome (Jansz and Torres-Padilla, 2019).
These two haploid genomes decondense to become segregated
pronuclei (Figure 1). The zygote and its associated membranes
undergo five to six mitotic cell divisions (cleavages), leading to more
cells without increasing the total volume of the embryo. After mitotic
division, each daughter cell produced by cleavage is defined as a
blastomere. Human embryo development begins in relative
transcriptional silence with a maternal-to-zygote transition (MZT)
and a pool of maternally transcribed mRNAs and proteins that
induce zygotic (or embryonic) genome activation (ZGA or EGA)
and the subsequent degradation of maternal transcripts (Lee et al.,
2013). Studies performed in mammalian embryos using high-
throughput methods have deepened our understanding of the
molecular principles underlying MZT. In the peri-implantation
embryo, mouse major ZGA occurs at the two-cell stage (26–29 h
after fertilization), whereas human major ZGA begins at the four-to
eight-cell stage (on day 3), although minor human ZGA occurs as early
as the two-cell stage (for reviews, see (Niakan et al., 2012; Eckersley-
Maslin et al., 2018)) (Figure 1). These chromatin remodeling events are
critical in establishing the nuclear foundations essential for subsequent
triggers of cell differentiation. An in vitro study performed using a
human embryonic stem cell overexpression model demonstrated that
LEUTX acts as a transcriptional activator at the 4-cell stage, whereas
DPRX acts as a balancing repressor at the 8-cell stage during human
ZGA (Jouhilahti et al., 2016) (Figure 1).

Following ZGA, the embryo subsequently becomes compacted
to form a morphological feature with a radial symmetrical structure,
the morula (Figure 1). The morula consists of blastomeres
(embryonic cells) in a compact cluster that are contained within
a glycoprotein membrane called the zona pellucida. Despite the lysis
or fragmentation of one or more blastomeres, the human embryo
continues to develop into a blastocyst that comprises a fluid-filled
cavity (blastocoel) and an inner cell mass (ICM), which is
surrounded by a group of cells that form the outer shell
(trophectoderm, TE) (Figure 1). The human blastocyst develops
at approximately 4–5 days after fertilization. The formation of TE
represents the first lineage of the precursor for all trophoblast cells
that segregates the ICM eventually giving rise to the embryo proper.
At 6–7 days after fertilization, the interaction of the polar TE (the
part of the TE that is adjacent to the ICM) with the uterine luminal
epithelium (decidualized endometrium) leads to implantation,
which is the first step in placental development. A recent single-
cell RNA sequencing (scRNA-seq) study has shown that in both
humans and mice, the transcriptomes of polar and mural TEs
diverged after the embryos hatched from the zona pellucida, with
polar TEs being more mature than mural TEs. (Liu et al., 2022). To
achieve developmental competence, the peri-implantation embryo
must undergo a highly orchestrated series of events that include
fertilization, formation of pronuclei, syngamy, cell division
(cleavage), ZGA, compaction, cell lineage differentiation and
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blastocyst formation (Zernicka-Goetz et al., 2009). During this
period, environmental alterations, epigenetic modification, and
embryonic metabolism may potentially affect the developmental
competence of human embryos (Chason et al., 2011). However,
in vitro studies performed using human embryos and human
pluripotent stem cells indicate that the critical remodeling events
at the peri-implantation stage of human development are embryo-
autonomous or self-organizing in the absence of maternal tissues
(Deglincerti et al., 2016; Shahbazi et al., 2016). Specifically, human
blastocysts can self-organize to recapitulate many key features of in
vivo embryo development (at least up to 12 days post-fertilization)
after they are in vitro cultured in an attachment substrate without
any maternal input (Deglincerti et al., 2016).

2.1 Cell lineages in the human peri-
implantation embryo

Studies have shown that human and mouse cell lineage
specification of embryos starts at the morula stage (Chazaud and
Yamanaka, 2016; Sahakyan and Plath, 2016). Unlike in humans, cell
fate decisions in mouse early embryo development are stepwise
(Figure 2). The first cell lineage segregation in the mouse embryo
occurs at embryonic day E) 2.75–3.25, a critical time when the
compact morula (consisting of 10–30 cells) undergoes cavity
formation to become the blastocyst. The cells positioned inside
the embryo are directed into the ICM, whereas the cells positioned
outside the embryo are directed into the first extraembryonic tissue,
the TE that supports uterine implantation and development of the
placental epithelium (Stirparo et al., 2018). The second segregation
further distinguishes between two distinct ICM cell lineages: the
second extraembryonic tissue, or primitive endoderm (PE), which
forms the primary yolk sac, and the pluripotent epiblast (EPI), which
gives rise to the embryo proper (Gardner, 1982; Stirparo et al., 2018).

However, human embryos display concurrent rather than stepwise
cell lineage segregation, in which PE, EPI, and TE emerge
simultaneously (Chazaud and Yamanaka, 2016; Sahakyan and
Plath, 2016) (Figure 2).

In the early mouse embryo, the pluripotency factor Pou5f1 (also
known as Oct4) is required for the formation of the ICM, and the
caudal-like transcription factor Cdx2 is required for the
development of TE (Nichols et al., 1998; Strumpf et al., 2005)
(Figure 2). However, in the early human blastocyst, POU5F1 is
expressed in both the TE and early ICM (Niakan and Eggan, 2013).
The expression of POU5F1 is downregulated in TEs by E6 in human
blastocysts, but POU5F1 remains at a high expression level in the
ICM (Niakan and Eggan, 2013; Yan et al., 2013; Deglincerti et al.,
2016). During the second lineage segregation (between E6 and E7),
high levels of POU5F1 and NANOG are co-expressed in the EPI,
while a lower level of POU5F1 as well as SOX17, GATA6, and
GATA4 are co-expressed in the PE (Kuijk et al., 2012; Roode et al.,
2012; Niakan and Eggan, 2013; Deglincerti et al., 2016; Guo et al.,
2016) (Figure 2). GATA2, GATA3, TEAD3, and KRT18 are
coexpressed in the TE (Yan et al., 2013; Blakeley et al., 2015;
Deglincerti et al., 2016) (Figure 2). Cell-specific markers for 3 cell
lineages (EPI, PE, and TE) in human embryos are listed in Table 1. A
recent scRNA-seq study has shown that in both humans and mice,
the transcriptomes of polar andmural TE diverged after the embryos
hatched from the zona pellucida, with polar TE being more mature
than mural TE (Liu et al., 2022).

3 Embryo implantation

3.1 Implanting embryos

The implantation of the competent blastocyst into the
receptive uterus is key for developing mammalian embryos.

FIGURE 1
Human peri-implantation embryo development. Before implantation, human embryo undergo cell divisions culminating in the development of a
blastocyst made up of a discernible inner cell mass and trophectoderm. The compaction of the embryo (morula) occurs between embryonic days 3 and 4,
while the blastocyst formation occurs between days 5 and 6. The minor zygotic (embryo) genome activation (ZGA or EGA) begins as early as the 2-cell
stage, while the major ZGA occurs at the 4- to 8-cell stage. LEUTX acts as a transcriptional activator at the 4-cell stage, whereas DPRX acts as a
balancing repressor at the 8-cell stage during the process of ZGA.
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Successful implantation comprises the following three phases:
apposition, attachment (or adhesion), and penetration.
Blastocyst activation is defined as the programming of a
blastocyst into an implantation-competent state (Paria et al.,
1993). Embryo transfer studies performed using a
delayed implantation mouse model have demonstrated that
blastocyst activation is the major determining factor for
implantation (Paria et al., 1993). Upon activation, the ICM of
blastocysts is programmed for further development. As the
first place that encounters an attachment reaction with the
blastocyst, the luminal epithelium is a critical mediator that
transmits molecular signals to achieve uterine receptivity.
However, the stroma is another major player, given that
studies performed using compartment-specific deletion
mouse models have demonstrated that bidirectional
communication between the stroma and epithelium is
required for proper uterine receptivity and subsequent
embryo implantation (Simon et al., 2009; Cha et al., 2012;
Franco et al., 2012). To understand the molecular mechanisms

underlying cell-cell communication between the TE and
endometrium during implantation, we recently used an
embryo–Ishikawa cell (which was established from an
endometrial adenocarcinoma woman) coculture system to
mimic in utero embryo implantation (Liu et al., 2022). Our
recent scRNA-seq study demonstrated that embryos that fail
to attach in vitro showed genetic aberrations (which were
downregulated) in pathways related to protein metabolism,
energy production, and 18 S ribosomal RNA m6A methylation
(Liu et al., 2022). Similarly, using the preimplantation genetic
testing (PGT) for genetic analysis before embryo transfer, one or
2 cells from the same biopsied cluster were isolated for
transcriptome sequencing to identify key genes that might
regulate embryo implantation. Our results showed that the
translational elongation genes (such as RPS28 and RPS29)
were upregulated, while genes involved in protein metabolism,
mitochondrion organization, and 18S rRNA m6A methylation as
well as genes involved in implantation (FGF13 and RBP7) and
DNA repair (C20orf196, also known as SHLD1) were

FIGURE 2
Cell lineages and their timing in humans versus mice during early embryo development. The first cell lineage segregation in the mouse embryo
occurs at embryonic days (E) 2.75–3.25, critical timing during which the compactmorula becomes an early blastocyst. Cells positioned inside the embryo
are directed into the inner cell mass (ICM), whereas the cells positioned outside the embryo are directed into the first extraembryonic tissue, the
trophectoderm that supports uterine implantation and the development of the placental epithelium. The second segregation further distinguishes
two distinct ICM cell lineages: the second extraembryonic tissue, then the primitive endoderm (PE) that forms the primary yolk sac and pluripotent
epiblast (EPI) that gives rise to the embryo proper. However, human embryos display a concurrent rather than stepwise cell lineage segregation, in which
the PE, EPI, and TE emerge simultaneously. Colored italic text represents the cell expression of genes for cell lineages in human embryos.
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downregulated in cells from embryos that failed to implant
during IVF/ET treatment (Liu et al., 2022).

Animal studies performed using rodent models have shown that
the state of activity in the blastocyst is the major determining factor
that initiates the implantation process in the receptive uterus
(Carson et al., 2000; Kim and Fazleabas, 2004). In mice,
embryonic diapause (or delayed implantation) is a naturally
occurring phenomenon in which the dormant blastocyst exhibits
most of the characteristics of the normal blastocyst, except for the
metabolic activity that mediates implantation competence (Paria
et al., 1993; Hamatani et al., 2004; Fu et al., 2014). Under the
influence of ovarian hormones (estrogen and progesterone), the
blastocyst is globally programmed to a competent state for
implantation, a process defined as blastocyst activation (Paria
et al., 1993). Embryonic diapause can be experimentally induced
by performing an ovariectomy before E4 at the time of peri-
implantation estrogen secretion, leading to a state of blastocyst
dormancy (implantation incompetency) (Paria et al., 1993).
Studies performed using this delayed implantation model have
shown that the competent status of blastocysts can be rescued by
administering estrogen (Paria et al., 1993). A study conducted using
this delayed model showed that the inhibitory regulators of the
mTOR and Myc signaling pathways as well as polyamine biogenesis
induce cell cycle arrest and reduce the cellular metabolism that
maintains blastocyst dormancy (He et al., 2019). Instead of polar TE,
the mural TE differentiates into an invasive status that penetrates
through the cellular tight junctions and extracellular matrices for
further implantation (He et al., 2019). Additionally, the differential
expression analysis revealed that the blastocyst acts as a
proinflammatory item that triggers embryo-uterine attachment
by secreting several proinflammatory substances, including TNFα
and S100A9 (He et al., 2019). In both humans and mice, the
implantation poles exhibit high transcriptional activity of
GATA3, RXRA, ARID3A, and BHLHE40, indicating the
important roles of these genes in embryo implantation (Liu et al.,
2022).

3.2 Implantation window and markers for
uterine receptivity

The menstrual cycle (approximately 28–30 days) begins with
menses, followed by the follicular (proliferative) phase that is
stimulated by the increasing estrogen secreted from developing
follicles. During the follicular phase, estrogen induces the
proliferation regeneration of endometrial tissues, including the
epithelium, stroma, and vascular endometrium. At midcycle (on
day 14), elevated estrogen exerts positive feedback on the surge
secretion of pituitary gonadotropins (FSH and LH), which in turn
triggers ovulation (Tomikawa et al., 2012). The early luteal
(secretory) phase is characterized by the remarkable thickening of
the endometrium accompanied by the formation of the corpus
luteum (which is derived from the ruptured follicle). During this
phase, the corpus luteum primarily secretes progesterone in
preparation for embryo implantation. Stimulatory effects of
progesterone lead to a series of endometrial ultrastructural
changes, including secretory glands, endometrial edema, stroma
cell differentiation, and an influx of leukocytes (a process called
predecidualization) (Cha et al., 2012). In humans, embryo
implantation occurs during the mid-luteal phase (days 20–24,
day 4 in mice) at the time that increasing estrogen superimposed
on progesterone accomplishes endometrial receptivity, a period
defined as the implantation window (or window of receptivity)
(Cha et al., 2012). Then, the endometrium proceeds to the
nonreceptive (late luteal) phase until the next menstruation
occurs (Wang and Dey, 2006). When successful implantation is
achieved, the blastocyst secretes chorionic gonadotropin to support
the corpus luteum and maintain pregnancy. Conversely, the mid-
luteal phase spontaneously transitions to a refractory phase in the
absence of a competent embryo, resulting in the event of luteolysis
followed by menstruation, which resets the menstrual cycle
(McCracken et al., 1999).

In most mammals, including humans and mice, estrogen and
progesterone are the main regulators of a successful pregnancy,
regulating uterine functions by coordinating multiple paracrine/
autocrine factors in a spatiotemporal manner. Indeed, the functional
receptors of these ovarian hormones (estrogen receptor α and
progesterone receptor A, or ERα and PR-A) are expressed in all
the major compartments of the uterus: the epithelium, stroma, and
myometrium (Wang and Dey, 2006). Leukemia inhibitory factor
(LIF) and Indian hedgehog (IHH) are crucial elements for
implantation, and they act as downstream responsive genes for
estrogen and progesterone, respectively (Hambartsoumian, 1998;
Simon et al., 2009). LIF belongs to the interleukin-6 family of
cytokines and plays an essential role in modulating uterine
receptivity and implantation, because the targeted depletion of Lif
in mice exhibits implantation failure (Stewart et al., 1992; Song et al.,
2000). Data obtained from clinical studies showed that the
endometrial expression of LIF is significantly higher at the time
of implantation in fertile women than in infertile women (Laird
et al., 1997; Hambartsoumian, 1998; Piccinni et al., 1998). IHH is
primarily expressed in the epithelium and acts to promote stromal
cell proliferation via interaction with its receptors (which are
expressed in the stroma) (Matsumoto et al., 2002). In the mouse
uterus, progesterone stimulates the expression of Ihh, which
mediates epithelial-mesenchymal interactions essential for

TABLE 1 Cell-specific markers for 3 cell lineages (EPI, PE, and TE) in human
embryos.

Trophectoderm (TE) GATA2

GATA3

TEAD3

KRT18

Epiblast (EPI) NANOG

SOX2

TDGH1

KLF17

Primitive endoderm (PE) GATA4

GATA6

SOX17

PDGERA
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blastocyst implantation, because its targeted depletion in the uterus
leads to poor uterine receptivity and implantation failure
(Matsumoto et al., 2002; Lee et al., 2006). Similarly, progesterone
upregulates the expression levels of IHH and its receptor in human
endometria, indicating its critical role in human implantation (Wei
et al., 2010). Other factors that are responsive to ovarian hormones
include tumor suppressor protein p53, FKBP52, steroid receptor
coactivator 2 (SRC-2, Ncoa2), chicken ovalbumin upstream
promoter-transcription factor (COUP-TFII,mNr2f2), and Hand2
(for reviews, see (Cha et al., 2012)).

3.3 Preparation of endometrium for
implantation

In the menstrual cycle, the human endometrium is a highly
regenerative tissue in response to estrogen stimulation during the
proliferative phase (Wang et al., 2020). The dynamic change of
endometrial tissue to sex steroid hormones is a complex process that
is controlled by the interactions of various cell types, including
epithelial, stromal, endothelial, and immune cells in the
endometrium (Critchley et al., 2020). During the secretory phase
following ovulation, the human endometrium transforms into a
narrow window of receptive status to accept the embryo, which is
called the window of implantation (WOI) (Wilcox et al., 1999). The
scRNA-seq studies showed that the humanWOI opens rapidly with
a discontinuous transcriptomic activation in the epithelial cells, and
this event is accompanied with a widespread decidualization change
in the stromal fibroblasts (Wang et al., 2020). Aberrations of
transcriptome expression of genes related to specific signaling
pathways (cell cycle, SEMA3, EGF, PTN, and TWEAK) in
stromal cells or decreased numbers of macrophages and natural
killer cells may cause thin endometria, leading to infertility,
recurrent implantation failure, recurrent pregnancy loss, and
placental abnormalities (Lai et al., 2022; Lv et al., 2022).
Additionally, there is a marked reduction of total uNK cells in
the shed endometrium obtained from women with endometriosis
compared with that from the normal controls (Shih et al., 2022).
Furthermore, there is a decreased number of IGFBP1+ decidualized
subset of endometrial stromal cells in the endometrium of women
with endometriosis, indicating that compromised decidualization of
stromal cells in these affected women (Shih et al., 2022).

During the menstrual cycle, decidualization is featured by the
differentiation of elongated, fibroblast-like mesenchymal cells in the
uterine stroma into rounded, epithelioid-like cells (Okada et al.,
2018). Primarily secreted by the decidual stromal cells, IGFBP1 and
prolactin have been widely used as markers of decidualization
in vitro (James-Allan et al., 2018). When the blastocyst
successfully implants, the serum progesterone remains at a high
level, which preserves the decidua and remodels the basal
endometrial layer (Brosens et al., 2002). Decidualization is
essential for trophoblast invasion and placentation, because
various knock-out mouse studies have shown that the targeted
depletion of specific genes (Hoxa10 or Src) related to
decidualization results in impaired decidualization, failed
implantation and infertility (Lim et al., 1999; Shimizu et al.,
2005; Lim and Wang, 2010). During early pregnancy, the
decidual stromal cells maintain decidualization in response to the

stimulation from the elevated intracellular cAMP levels, sustained
activation of the PKA signaling pathway and the actions of
progesterone (James-Allan et al., 2018).

3.4 Dynamics of implantation

Uterine receptivity that matches blastocyst apposition is
characterized by cellular and structural modifications of the
endometrium: loss of epithelial cell polarity and formation of
pinopodes (also known as uterodomes, apical epithelial cellular
microprotrusions of the endometrium) (Nikas and Psychoyos, 1997;
Blanco-Breindel et al., 2023). In mice, the implantation process starts
with the placement of the blastocyst in a small tubular gland (crypt or
nidus) because of the invagination of the luminal epithelium. Mouse
trophoblasts further displace the luminal epithelium from the basal
lamina and pass into the stroma of the endometrium. In humans, the
implantation process is intrusive, and blastocysts are embedded within
the subepithelial stroma (Figure 3). Human trophoblasts further
penetrate both the luminal epithelium and basal lamina into the
stroma of the endometrium (Figure 4) (Schlafke and Enders, 1975;
Blanco-Breindel et al., 2023). During attachment, most mammalian
blastocysts encounter increased vascular permeability at the apposition
side of the endometrium. In mice, this phase occurs on E4 when the
ICM of the blastocyst implants toward the lumen. In humans, the
blastocyst is oriented with its ICM toward the epithelium on E6-E7
when the first step of placental development commences (Carson et al.,
2000; Shibata et al., 2020) (Figure 3).

Following blastocyst attachment with the luminal epithelium,
decidualization is initiated in the stroma bed where blastocysts
implant. A functional luminal epithelium is required for the
development of stromal decidualization, suggesting that specific
factors and signals are transmitted by the epithelium to the stroma
(Cha et al., 2012; Ochoa-Bernal and Fazleabas, 2020). This notion was
confirmed by studies performed using conditionally deleted mouse
models (knock out of Msx1/Msx2 or Klf5) showing that mice with
impaired epithelial function exhibit defective decidualization (Daikoku
et al., 2011; Sun et al., 2012). In mice, the competent blastocyst is the
major stimulus for the occurrence of decidualization, which is
characterized by stromal cells that surround the blastocyst as it
undergoes remarkable proliferation and differentiate into decidual
cells with polyploidy. In human endometria, the initiation of
predecidualization does not necessarily require the appearance of the
blastocyst; however, the implanting blastocyst enhances the process
(Cha et al., 2012; Ochoa-Bernal and Fazleabas, 2020). Taken together,
these observations indicate that a functional network of interconnected
compartments involving the luminal epithelium, stroma, and blastocyst
is required to develop decidualization and uterine receptivity.

4 Trophoblast cell differentiation and
invasion

After implantation, the outer monolayer of the blastocyst, the TE,
generates the first trophoblast lineages, which develop into 2 cell types,
the early mononuclear cytotrophoblast (CTB) and the multinuclear
primitive syncytium (PS), at E8 (Boss et al., 2018) (Figure 3).
Additionally, the ICM of the blastocyst develops into the second
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bilaminar extraembryonic tissue, the primitive endoderm (PE, also
termed hypoblast, Hy), which in turn forms the primary yolk sac
and pluripotent epiblast (EPI) that gives rise to the embryo proper
(Gardner, 1982; Stirparo et al., 2018) (Figure 3). In primates, lineage
tracing studies have shown that the PE also develops into the
extraembryonic mesoderm (ExM), which subsequently forms the
mesenchymal compartment of chorionic villi and the umbilical cord
(Bianchi et al., 1993). However, evidence from molecular and lineage
analysis studies shows that the ExM may be partially derived from the
EPI, because the cells of these two lineages express several compatible
markers (Sheng, 2015). At approximately E15, the EPI gives rise to the
three embryonic germ layers and the amnion.

However, the PS is the first invasive trophoblast that expands into
the decidual endometria (Figure 3). At E9, several vacuoles form in the
PS, further fusing to form a dense network of lacunar spaces and
subsequently breaching the uterine capillaries forming a discontinuous
blood sinusoid (MS) at approximately E12-E13 (Hamilton and Boyd,
1960). The development of placental villi morphogenesis commences by
E10. Upon PS expansion, CTBs proliferate and penetrate through the
expanding syncytial mass to form primary trophoblast villi (primary
villi) (Figure 4). The primary villi further extend through the underlying
decidual endometria and erode into uterine glands and blood vessels.
This process is followed by the migration of ExM cells into the structure
of the primary villi, a transformation into the secondary villi during the
following days. In addition, the proliferative CTBs associated with the
secondary villi continue to tremendously expand, branch, and develop
into villous cytotrophoblasts (vCTBs) (Figure 5). Cell fusion of the
developing vCTB generates an outer layer of multinuclear
syncytiotrophoblasts (STs) that establishes an interface between
maternal blood and embryonic extracellular fluid, facilitating nutrient
transport and gas exchange in floating villi (Figure 5). Arising from the
asymmetrical cell division, fusion, and differentiation of vCTBs with the
surrounding syncytium, the multinucleated STs form a superficial
polyploid, a nonmitotic syncytial layer that secretes large quantities
of placental hormones and growth factors to maintain the pregnancy,
including progesterone, leptin, human chorionic gonadotropin (hCG),

and human placental lactogen (HPL) (Evain-Brion andMalassine, 2003;
Aplin, 2010).

At approximately E17-E19, the fetal circulatory system forms,
and embryonic blood vessels enter the villi, forming the tertiary villi.
At this moment, the fetal allantois (a hollow sac-like structure filled
with clear fluid) extends, and three primary germ layers (the
ectoderm, mesoderm, and endoderm) form. These villous blood
vessels are derived from the ExM and eventually connect with the
fetal vessels 4 weeks after conception (Burton et al., 2009a). Evidence
from studies performed using cell lineages shows that the placenta
leads the developmental process of de novo vascular formation,
because the cells involved in early placental vasculogenesis and
hemangiogenesis are derived from the ExM (Knöfler et al., 2019).

At approximately E15, the proliferating CTBs located at the
distal sites expand laterally and form the outermost part of the
placenta that envelops the conceptus, a structure called the
trophoblastic shell. The trophoblastic shell firmly secures the
placenta to the maternal endometrium called the decidua basalis,
which is a critical anchorage between the placenta and the decidual
endometria, acting to protect the embryo from oxidative stress
(Burton and Jauniaux, 2017). In this shell, gaps between the villi
and decidua basalis allow endometrial vessels to enter the
intervillous spaces. During the early developmental process of
placentation, cells of the trophoblastic shell differentiate into
invasive extravillous trophoblasts (EVTs). However, EVTs can be
derived from CTBs located in the tips of the anchoring villi once
mature villi (proliferative proximal cell column trophoblasts,
pCCTs) have developed (Figure 6). In this regard, pCCTs serve
as the progenitor cells of differentiated EVTs (Knöfler et al., 2019).
Placental EVTs invade through the decidual endometrium and
further move toward the spiral arteries. These cells enter and
facilitate the remodeling of arteries into large-bore, high
conductance vessels that increase blood flow to the intervillous
space (Burton et al., 2009b). At E15-E16, two distinct EVT cell
types (endovascular EVT, eEVT, or eCTB and interstitial EVT,
iEVT, or iCTB) have developed. The eEVTs remodel the uterine

FIGURE 3
Implantation of human blastocyst into the uterine endometrium. The blastocyst is oriented with its inner cell mass toward the epithelium on days
6–7 when the first step of placental development commences. After implantation, the outer monolayer of the blastocyst, the trophectoderm, generates
the first trophoblast lineages, which develop into 2 cell types, the early mononuclear cytotrophoblast and multinuclear primitive syncytium at day 8.
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spiral arteries and promote maternal blood supply to the placenta,
whereas the iEVTs invade the decidual stroma (Pijnenborg et al.,
1980; Pijnenborg et al., 2006) (Figure 6). During early pregnancy,
invasive iEVT provokes various actions to regulate placental
function. In particular, iEVTs promote the immunological
acceptance of the fetal allograft and control EVT function by
interacting with neighboring cells, including decidual natural
killer (dNK) cells, macrophages, and decidual stroma cells
(Moffett et al., 2017; Pollheimer et al., 2018). Other EVT cell
subtypes may exist, given that EVT cells have also been identified
in endometrial glands, uterine veins, and lymphatics (Moser et al.,
2010; Windsperger et al., 2017).

4.1 Cell lineages in trophoblast
differentiation

All trophoblast cell lineages are derived from the TE cells of the
blastocyst. The coordinated proliferation and differentiation of these cell

lineages is critical to pregnancy establishment. Despite the development
of different types of trophoblasts, including progenitors, stem cells, and
differentiated subtypes, the pathophysiological roles of these cell types
remain largely unknown (Knöfler et al., 2019). Our understanding of
early placental development regulation is primarily based on the
information obtained from studies conducted using mouse models.
Animal studies using mouse trophoblast stem (TS) cells have provided
useful information regarding the molecular and functional aspects of
placental development (for reviews, see (Latos and Hemberger, 2014)).
In vitro culture medium containing fibroblast growth factor 4 (FGF4),
activin, and transforming growth factor-β1 (TGF-β1)maintains the self-
renewal of mouse TS cells, which are able to differentiate into all
trophoblast lineages (Tanaka et al., 1998). The maintenance of the
undifferentiated state of mouse TS cells also involves several critical
transcription factors, including Cdx2, Elf5, Esrrb, Emos, and Gata3
(Latos and Hemberger, 2014). Given that humans and mice display
similar hemochorial placentation, the two species display the direct
contact of fetus-derived trophoblasts with maternal blood at the fetal-
maternal interface. Despite their many similarities, significant

FIGURE 4
Development of embryonic disc and primary villi. The human embryo implantation process is intrusive; the blastocyst is embedded within the
subepithelial stroma and further penetrates both the luminal epithelium and basal lamina. Upon primitive syncytium expansion, cytotrophoblasts
proliferate and penetrate through the expanding syncytial mass to form the primary trophoblast villi (primary villi).

Frontiers in Cell and Developmental Biology frontiersin.org08

Huang et al. 10.3389/fcell.2023.1200330

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1200330


differences have been observed in human and murine placentation in
terms of structure and developmental events. Unlike in humans, mouse
trophoblast invasion is relatively shallow, and factors derived from
maternal sites determine the remodeling of uterine arteries (for reviews,
see (Carter, 2007)). Additionally, the principal regulators that control
human and murine placentation are different (for reviews, see (Knöfler
et al., 2001)). Because of these discrepancies, studies using the mouse
model are imperfect for investigating early placental development and
related pregnancy complications in humans.

One of themost distinctive features of the human trophoblast is the
expression profile of human leukocyte antigen (HLA) class I. The
vCTBs fuse to form overlying multinuclear STs, and EVTs form
placental bed giant cells that are located in the decidua
endometrium and myometrium. Therefore, neither vCTBs nor STs
express HLA class I, whereas EVTs express HLAs, including HLA-C,
HLA-E, and HLA-G (a unique HLA expressed by trophoblasts) (Apps

et al., 2009). In contrast to trophoblasts, most somatic cells express
several HLAs, includingHLA-A, HLA-B, HLA-C, andHLA-E antigens
(Wei and Orr, 1990). In this regard, EVTs are the only human cells that
uniquely express HLA-G but not HLA-A or HLA-B. Studies have
shown that HLA-G is not coexpressed with either HLA-A or HLA-B in
normal trophoblasts (Lee et al., 2016).

Traditionally, cytokeratin 7 (KRT7) and hCG are the most
commonly used cell markers for determining trophoblasts (Lee
et al., 2016). Some transcription factors, such as CDX2 and
EOMES, which have been identified in the development of
mouse TS cells, are considered markers for human trophoblasts.
However, there are species differences between humans and mice in
the network regulation and expression patterns during early
placental development. KRT7 is a pan-trophoblast cell marker,
whereas GATA3 and transcription factor activator protein-2
gamma (TFAP2C) are good cell markers for mononuclear

FIGURE 5
Development of the embryonic disc and tertiary villi. The primary villi extend through the underlying decidual endometria and erode into the uterine
glands and blood vessels, followed by themigration of ExM cells into the structure of the primary villi, a transformation into the secondary villi. Proliferative
CTBs associated with the secondary villi continue to tremendously expand, branch, and develop into villous cytotrophoblasts (vCTBs). The cell fusion of
the developing vCTB generates an outer layer of multinuclear syncytiotrophoblasts (STs) that establishes an interface between the maternal blood
and embryonic extracellular fluid, facilitating nutrient transport and gas exchange in the floating villi.
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trophoblasts but not multinuclear STs and villous stroma cells (Apps
et al., 2011; Lee et al., 2016). Studies using an scRNA-seq analysis of
human first-trimester placental cells have shown that all trophoblast
cell lineages share the expression of KRT7 and PERP (p53 apoptosis
effector related to PMP-22) (Suryawanshi et al., 2018). Additionally,
these trophoblasts can be further subdivided into vCTBs, STs, and
EVTs by expressing cell-specific markers, PARP1 (poly [ADP-
ribose] polymerase 1), ERVFRD-1 (endogenous retrovirus group
FRD member 1), and HLA-G, respectively (Lee et al., 2016;
Suryawanshi et al., 2018). Cell-specific markers for human
trophoblast cell lineages are listed in Table 2.

In mice, ELF5 is a critical transcription factor that maintains
self-renewal and thus the commitment to differentiate into the
extraembryonic cell lineage in mouse TS cells (Donnison et al.,
2005). Notably, the lineage-specific methylation of the
Elf5 promoter is characterized in mouse embryos,
hypermethylated in embryonic stem cells and hypomethylated in
TS cells (Ng et al., 2008). Similarly, the promoter of ELF5 is mostly
hypomethylated in early human placental tissue, indicating that the

lack of methylation on the ELF5 promoter can be considered a cell
marker for human trophoblasts (Hemberger et al., 2010).

Studies performed using microarray approaches show that
human trophoblasts express specific noncoding microRNAs
(miRNAs) (Bentwich et al., 2005). The chromosome 19 miRNA

FIGURE 6
Development of anchoring villi, extracellular trophoblast cell lineage, and spiral artery remodeling. Extravillous trophoblasts are derived from the
cytotrophoblasts located in the tips of the anchoring villi once mature villi (proliferative proximal cell column trophoblasts, pCCTs) have developed. The
pCCTs serve as the progenitor cells of the differentiated EVTs. Two distinct EVT cell types (endovascular EVT, eEVT or eCTB and interstitial EVT, iEVT or
iCTB) develop and the eEVTs remodel the uterine spiral arteries and promote maternal blood supply to the placenta, whereas the iEVTs invade the
decidual stroma.

TABLE 2 Cell-specific markers for human trophoblasts.

All trophoblasts KRT7

PERP

Mononuclear trophoblasts GATA3

TFAP2C

Villous cytotrophoblasts PARP1

Syncytiotrophoblasts ERVFRD-1

Extravillous trophoblasts HLA-G
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cluster (C19MC) is one of the largest miRNA clusters identified in
the human genome, and it accommodates 46 miRNAs at the q arm
of chromosome 19 (chr19q13.42) (Bortolin-Cavaillé et al., 2009). In
cancer biology, C19MC miRNAs have been implicated in various
invasive cancer cells (Augello et al., 2012). Notably, the expression of
C19MC specifically marks human trophoblasts and embryonic stem
cells (Bentwich et al., 2005; Noguer-Dance et al., 2010). The C19MC
is a primate-specific miRNA that is maternally imprinted (Noguer-
Dance et al., 2010). In humans, C19MC is highly expressed in
human trophoblasts, indicating another potential candidate for
defining human trophoblasts (Bortolin-Cavaillé et al., 2009;
Donker et al., 2012).

4.2 Derivation of human trophoblast stem
(TS) cells and establishment of the CTB 3D
organoid culture system

TS cell populations have been isolated and developed from
peri-implantation blastocysts in various mammalian species,
including mice (Fléchon et al., 1995; Hashizume et al., 2006;
Vandevoort et al., 2007). However, there is a significant
difference in the regulation of lineage-associated placental
development between species (Blakeley et al., 2015;
Petropoulos et al., 2016). Although a great deal of information
has been obtained from animal TS cells, understanding the
development of human TS cells has been very challenging
because of the distinct structural difference between human
and animal placenta. Furthermore, the growth factors used to
maintain animal TS cell self-renewal or culture conditions used
to propagate these TS cells were unable to achieve human TS cells
until recently (Kunath et al., 2014). The first human TS cells were
isolated from first-trimester villi (Okae et al., 2018). Using an
in vitro culture system consisting of the activation of Wingless/
Integrated (Wnt) and the epidermal growth factor and inhibition
of TGF-β, histone deacetylase (HDAC), and Rho-associated
protein kinase (ROCK), the vCTBs can remain in an
undifferentiated state for far longer than had previously been
reported (Okae et al., 2018). Similar to the corresponding
primary trophoblast cells, these human TS cells have the
capacity to give rise to the three major trophoblast lineages
(Okae et al., 2018). Notably, scRNA-seq analyses of these TS
cells show transcriptomes similar to those of primary trophoblast
cells (Okae et al., 2018). Intriguingly, lineage-specific markers
associated with mouse TS cells are not predominantly expressed
in human TS cells, indicating that these two species may have
differential transcription networks for modulating trophoblast
development.

Human CTB 3D-organoid (CTB-ORG) cultures have recently
been generated from purified first-trimester CTB preparations
(Haider et al., 2018; Cui et al., 2023; Dietrich et al., 2023). The
established 3D organoids, which resembles the human placenta’s
original structure and physiology, can maintain long-term self-
renewal and expansion under specific culture conditions (Haider
et al., 2018; Dietrich et al., 2023). Using global gene expression
analyses, the CTB-ORGs were identified to express cell markers of
trophoblast proliferation and stemness very similar to those in
primary CTBs (Haider et al., 2018). Most importantly, the

removal of growth factors required for self-renewal leads to
cell outgrowth and differentiation into EVTs (expressing the
NOTCH1 progenitor marker) and the formation of adjacent
HLA-G+ EVTs (Haider et al., 2018). Additionally, the
generation of a 3D organoid culture system using naive human
pluripotent stem cells may help develop a placental environment
and its susceptibility to emerging pathogens (Karvas et al., 2022).
These studies have provided useful in vitro experimental systems
for studying the sequential molecular steps of trophoblast cell
column formation and differentiation.

4.3 Trophoblast cell invasion

During embryo implantation, EVT differentiation and
invasion are critical for developing the human placenta and
successful pregnancy outcomes. Inadequate placentation is
characterized by defects in trophoblast differentiation or
restricted EVT invasion and spiral artery remodeling, and it is
associated with infertility, trophoblast cancers, and pregnancy-
related complications, including preeclampsia, miscarriage, and
fetal growth restriction (Wallace et al., 2012). At the fetal-
maternal interface, human EVT invasion is stringently
regulated by multiple factors, including growth factors,
various adhesion molecules, and extracellular matrix
components in an autocrine/paracrine manner (Graham and
Lala, 1991; Chakraborty et al., 2002). Among these factors, recent
studies have shown that TGF-β superfamily members, including
TGF-βs, activins, inhibins, growth differentiation factors
(GDFs), and bone morphogenetic proteins (BMPs), are
multifunctional cytokines that regulate various cellular
activities in EVTs (Cheng et al., 2013; Li et al., 2014; Li et al.,
2015a; Li et al., 2015b; Cheng et al., 2015; Cheng et al., 2017; Zhao
et al., 2018a; Zhao et al., 2018b; Cheng et al., 2018; Zhao et al.,
2018c; Luo et al., 2020; Xie et al., 2020; Zhao et al., 2020; Li et al.,
2021a; Luo et al., 2021; Yi et al., 2021; You et al., 2021; Luo et al.,
2023). Emerging evidence reveals that TGF-β superfamily
members and their putative receptors are expressed at the
fetal-maternal interface (Wijayarathna and de Kretser, 2016;
Li et al., 2021b; Haider et al., 2022). Through cellular and
molecular genetic approaches, these cytokines have recently
been shown to be closely involved in human embryo
implantation and early placentation at the fetal-maternal
interface (Ni and Li, 2017). Additionally, studies using human
biological materials revealed that TGF-β superfamily members
are essential for regulating human trophoblast differentiation
toward invasive pathways, including interstitial EVT invasion
and endovascular EVT invasion routes (Wijayarathna and de
Kretser, 2016; Li et al., 2021b). With emerging technologies,
including tissue microarrays, the clinical availability of
recombinant human proteins, pharmaceutical development,
new experimental settings, immortalized human cell lines, and
advanced single-cell transcriptomics, functional studies have
revealed divergent roles for TGF-β superfamily members in
regulating human EVT invasion. Specifically, in vitro
functional studies have shown that three activin isoforms
(activin A, activin B, and activin AB) and BMP2 promote
human EVT cell invasion, whereas TGF-β inhibits EVT cell
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invasion by modulating various cellular components, including
matrix metalloproteinases, endothelial-like tube formation,
connexins, cadherins, and cyclooxygenases (Cheng et al.,
2013; Li et al., 2014; Li et al., 2015a; Li et al., 2015b; Cheng
et al., 2015; Cheng et al., 2017; Zhao et al., 2018b; Zhao et al.,
2018c). Furthermore, the dysregulation or variations in the levels
of these ligands, their receptors, or related signaling pathways
may affect their divergent effects on EVT invasion, leading to
infertility or pregnancy-related complications (Ni and Li, 2017;
Yi et al., 2021; You et al., 2021).

5 Early placentation

Although rodent models are frequently applied to study fetal-
maternal interface establishment, they display substantial
differences in placental structure, gestational period, and
mechanisms of placentation compared with humans. In humans,
the definite architecture of the placenta is established by the end of
the third week after conception. Structurally, the human placenta
comprises complex villous trees containing both anchoring and
floating villi. The placental villous trees are surfaced by a single layer
of contiguous multinuclear STs acting as the principal cellular
barrier that separates the fetus from maternal blood. The
underlying subjacent layer is the undifferentiated, mononucleated
progenitor CTBs that can divide and fuse to replenish the STs. The
CTBs at the tips of the anchoring villi can differentiate into
mononucleated EVTs. Based on histological classification, the
human placenta is defined as hemochorial because the placental
villi are in direct contact with the maternal blood that fills the
intervillous space (Soares et al., 2018). During the first trimester, the
human placenta is defined by its hemodichorial pattern, a placenta
with a double trophoblastic layer (the CTBs and STs) (Furukawa
et al., 2014). With advancing gestation, the human placenta grows
and becomes hemomonochorial with only one layer of STs because
the underlying CTB layer becomes dispersed, thin, and
discontinuous during the second and third trimesters. Aside from
functioning as the primary endocrine cells of the placenta, STs act to
facilitate nutrient, gas, and waste transport across the fetal-maternal
interface.

EVTs are the main trophoblasts that anchor the human placenta
to the decidual endometrium. Themigration of EVTs to remodel the
spiral arteries of the first third of the myometrium represents the
other principal process of human placentation (Figure 6). During
early pregnancy, in combination with dNK cells and macrophages,
iEVTs (or iCTBs, a subtype of EVTs) migrate into the spiral arteries,
where these cells initiate the remodeling process (Smith et al., 2009;
Wallace et al., 2012). The iEVTs then differentiate into eEVTs (or
eCTBs, a vascular adhesion phenotype of EVTs) that further
interdigitate into the endothelial layer of the vessels, where
eEVTs replace endothelial cells by inducing cell apoptosis (Zhou
et al., 1997). The remodeling process dramatically changes the
narrow spiral arteries into dilated vessels with high conductivity,
ensuring maximal perfusion at the fetal-maternal interface.

In addition to remodeling the spiral arteries, eEVTs can form
trophoblast during early gestation plugs to occlude the spiral arteries
in the decidua basalis underlying the embryo implantation site. This
vessel occlusion thus creates a low-oxygen environment that

protects the fetal-placental unit from oxidative damage and
promotes early placental development, angiogenesis, and
vasculogenesis (Knöfler et al., 2019). Indeed, incomplete
trophoblast plugging of the spiral arteries leading to a premature
increase in oxygen concentration is reportedly associated with
miscarriage (Khong et al., 1987; Hustin et al., 1990). At the end
of the first trimester, the trophoblast plug is progressively eroded
and accompanied by a significant increase in oxygenated maternal
blood flow into the intervillous space (Roberts et al., 2017). With the
disintegration of spiral artery plugs, the high oxygenated blood flow
initiates the degeneration of the trophoblast layer, leading to the
regression of placental villi and the formation of a mature form of
the placenta (a discoidal shape) later in gestation (Knöfler et al.,
2019). Given that there is no direct contact of the human placenta
with maternal blood until the end of the first trimester, we may use
this physiological event to distinguish between two gestational stages
of pregnancy, early (first trimester) and late (second and third
trimesters) stages.

Upon the establishment of placentation during the first
trimester, the intervillous space is filled with fluid that contains
substantial substances secreted by the uterine glands. Studies have
shown that the uterine glands provide histotrophic nutrition for the
developing fetus by delivering secretions into the placental
intervillous space (Burton et al., 2002). For instance, STs
phagocytose maternal uterine gland-secreted glycoproteins, such
as mucin MUC-1 and glycodelin A, for dominant nutrient support
(Burton et al., 2002). Thus, uterine glands are an essential source of
fetal nutrients during early pregnancy, when the metabolic
environment is essentially anaerobic. In addition to the principal
nutrition source, uterine glands modulate placental growth and
development by secreting a number of growth factors, including
TGF-β, epidermal growth factor, vascular endothelial growth factor,
and LIF (Hempstock et al., 2004).

6 Maternal immune responses and
tolerance at the fetal-maternal
interface

Normal pregnancy is a process of physiological stress that
requires a delicate balance between the effects of
proinflammatory and anti-inflammatory factors. Adaptation
failure or the disturbance of this balance during embryo
implantation and placentation has been associated with
implantation failure and pregnancy-related complications
(Kheshtchin et al., 2010; Szarka et al., 2010). The decidual
endometrium is replete with activated immune cells; therefore,
the successful implantation of the foreign allogenic embryo in the
pregnant uterus highly relies on the establishment and maintenance
of maternal-fetal immune tolerance.

6.1 Maternal immune responses during
pregnancy

In addition to stromal cells, the decidual endometrium consists
of a substantial portion (approximately 40%) of maternal leukocytes.
During early pregnancy, dNK cells are the major (approximately
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70%) immune cells, followed by decidual macrophages (20%–25%)
and T cells (3%–10%) at the site of implantation [for reviews, see
(Liu et al., 2017)]. These decidual leukocytes are recruited by
decidual stroma and trophoblast cells in a chemokine gradient
manner, and their phenotypes and functional characteristics are
distinct from those in the maternal peripheral circulation (Huang
et al., 2008; Zhao et al., 2011). With regard to angiogenesis during
placentation, there are remarkable similarities between the invading
trophoblast cells and cancer cells. Similar to cancer cells in
oncogenesis, the underlying mechanisms by which decidual
immune cells (especially dNK and regulatory T cells) promote
angiogenesis are mediated by the secretion of various
chemokines, cytokines, and angiogenic factors (Zhang et al., 2012).

A maternal active inflammation-like response starts from
exposure to the seminal antigen at coitus (Sharma, 2014). In fact,
several cytokines, including LIF, granulocyte colony-stimulating
factor (G-CSF), interleukin (IL)-1, IL-6, and IL-11, have been
shown to play pivotal roles in regulating decidualization and
implantation (Stewart et al., 1992; Singh et al., 2011). In
particular, seminal fluid-derived cytokines and chemokines
attract regulatory T (Treg) cells to the endometrium (Schjenken
et al., 2016). Additionally, maternal dendritic cells recognize the
cross-presented seminal fluid and fetal antigens and transform
effector CD4+T cells into Treg cells, which are then recruited to
the endometrium (Sharma, 2014). Notably, the beneficial
inflammatory response in initiating embryo implantation has
been supported by the unexpected beneficial effect of endometrial
biopsy-induced injury on the implantation outcome in patients
undergoing in vitro fertilization (IVF) (Barash et al., 2003;
Gnainsky et al., 2010). Taken together, these studies suggest that
an inflammatory response and microenvironment are required to
enhance uterine receptivity for embryo implantation.

6.2 Immune tolerance at the fetal-maternal
interface

A successful pregnancy is based on the establishment of an
immune tolerance that permits the uterus to carry the genetically
different (allogenic) fetus while maintaining the maternal immune
competence. Maternal immune tolerance at the fetal-maternal
interface is achieved through multiple overlapping innate and
adaptive immune mechanisms mediated by the restriction and
modulation of decidual leukocytes and trophoblast cells (Solano,
2019). An abundance of dNK cells gain access to the fetal-maternal
interface. These cells interact with decidual stromal and trophoblast
cells, leading to an alteration in the functional profile and regulatory
phenotype of decidual leukocytes (Nancy et al., 2012; Ander et al.,
2019). During the first trimester, explants from human placental
tissues produce factors, including G-CSF, TGF-β, and IL-10, which
promote the differentiation of two types of cells in peripheral
circulation: monocytes into M2MØ cells and T cells into Treg
cells (Svensson-Arvelund et al., 2015). The polarity of these
transformed cells most likely contributes to a homeostatic and
tolerant immune microenvironment essential for stable fetal
development (Svensson-Arvelund et al., 2015). Studies performed
using animal and human models show that the number of Treg cells
is markedly decreased during miscarriage (Alijotas-Reig et al., 2014).

To create a tolerant microenvironment at the fetal-maternal
interface, Treg cells suppress fetal allorejection by upregulating
the expression of a number of immune modulatory molecules,
including TGF-β1, IL-10, and heme oxygenase 1 (HO-1) and
downregulating the expression of Th1 cytokines (cytokines
responsible for causing macrophages to attack organisms and
infected cells) (Zenclussen et al., 2002; Choi et al., 2005). In vivo
studies have shown that Treg cell sensitization induced by paternal
antigens is required for maternal immune tolerance (La Rocca et al.,
2014).

Apoptosis is another mechanism applied to mediate the creation
of maternal immune tolerance and the immune privilege of the fetus
(Clark, 2005; Stenqvist et al., 2013). In particular, human STs secrete
exosomes that express two bioactive surface molecules, the Fas
ligand and the TNF-related apoptosis-inducing ligand (Stenqvist
et al., 2013). These molecules further bind to their cognate death
receptors, which are located on the decidual leukocytes that convey
apoptosis, also suggesting the exosome-mediated immune privilege
of the fetus (Stenqvist et al., 2013).

As a member of the nonclassical major histocompatibility
complex (MHC), the HLA-G leukocyte antigen is a critical
immunomodulatory molecule for embryo implantation and the
establishment of immune tolerance (Ferreira et al., 2017).
Uniquely expressed in human EVTs, HLA-G protects trophoblast
cells from dNK cell-mediated cell lysis by binding to two dNK
inhibitory receptors, LILRB and KIR2DL4 (Rajagopalan and Long,
1999; Apps et al., 2007). At present, many fundamental questions
regarding the detailed molecular mechanisms by which HLA-G
modulates fetal-maternal immune tolerance are only starting to be
elucidated. In this regard, murine models are not suitable for
investigating HLA-G-related function, because there is no
consensus HLA-G orthologous gene in mice (Ferreira et al.,
2017). However, the counterpart molecule of HLA-G in mice, a
complement regulator, Crry, is the key immunomodulatory
molecule that protects murine fetuses from complement-
mediated cytotoxicity (Xu et al., 2000). Because Crry is murine
specific, whether human trophoblasts or decidual cells express
similar complement regulators to suppress complement activation
and deposition remains to be determined.

Increasing evidence has suggested that miRNAs are also
involved in the maintenance of maternal immune tolerance
(Kamity et al., 2019). In the human placenta, miRNAs are
present in the extracellular fluid and packed within placental cell-
secreted extracellular vesicles. As early as the sixth week of gestation,
the human placenta is an abundant source of extracellular vesicles
(Mitchell et al., 2015). Specific miRNAs contained within placental
extracellular vesicles have recently been proposed to mediate the
tolerance phenotype at the fetal-maternal interface induced by
repeated exposure to implantation- and placentation-induced
inflammatory responses (Kamity et al., 2019). Additionally,
human blastocysts express miRNA, which is essential for
successful implantation and subsequent embryo survival (Kamity
et al., 2019). Various miRNAs have been reported to tolerate the
maternal immune system by regulating the function and
differentiation of several innate immune cells (Nahid et al., 2011;
Kumar Kingsley and Vishnu Bhat, 2017). For instance, miR-146 is
an inhibitor targeted to the Toll-like receptor (TLR) signaling
pathway of the innate immune response in decidual leukocytes,
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which plays a principal role in mediating maternal immune
tolerance (Taganov et al., 2006; Vergadi et al., 2018). It was
concluded that failed acquired immunity or impaired immune
tolerance at the fetal-maternal interface will lead to a pathological
response responsible for various adverse early and late pregnancy
outcomes.

7 Human placental pathology and
diseases

7.1 Recurrent pregnancy loss

Recurrent pregnancy loss is defined as women who have had two
or more consecutive clinical pregnancies until 20 (defined by the
ASRM) or 24 (defined by the ESHRE) weeks of gestation (Medicine,
2012). Approximately 5% of reproductive women suffer from two
consecutive pregnancy losses, and 75% of failed pregnancies are due
to implantation failure (Norwitz et al., 2001). Studies using various
animal models have demonstrated that a defective implantation
process can create detrimental effects that result in poor pregnancy
outcomes (Cha et al., 2012). In humans, the window of uterine
receptivity is crucial for successful conception, and any implantation
beyond this window leads to spontaneous abortion (Wilcox et al.,
1999). Multiple risk factors have been proposed for recurrent
implantation failure, including advanced maternal age, smoking,
elevated body mass index, stress, endocrine disorders, and
embryonic abnormalities (e.g., aneuploidy) [for reviews, see
(Bashiri et al., 2018; Ma et al., 2022)]. Uterine pathologies
(polyps, myomas, and congenital uterine anomalies) and paternal
effects on human embryo development (spermDNA fragmentation)
should be taken into consideration (Tesarik et al., 2004; Saravelos
et al., 2008).

Immunological factors, specific autoantibodies, and infectious
organisms causing chronic endometritis should be evaluated in
women with recurrent implantation failure (Bashiri et al., 2018).
In general, an increased number of Th1 cells is associated with the
rejection of the embryo, whereas an increased number of Th2 cells is
associated with the implantation of the embryo, and these cells are
quantified by measuring their secreted cytokines (Nakagawa et al.,
2015). Specifically, cytokines (such as TNF-α) produced by Th1 cells
inhibit trophoblast growth and implantation, whereas cytokines (IL-
4, IL-6, and IL-10) produced by Th2 cells suppress Th1 cell-induced
tissue factor by monocytes (Robertson et al., 2018). Clinical studies
show that the mean TNF-α/IL-4 ratio is significantly higher in
women with multiple implantation failures than in normal controls
(Kwak-Kim et al., 2003). LIF is a key factor linked to endometrial
receptivity. In the clinic, this immune molecule is considered a
possible cause of unexplained infertility, because lower LIF levels
have been associated with a higher risk of multiple implantation
failures (Hambartsoumian, 1998; Seli et al., 2005).

Other molecules involved in the implantation process include
prostaglandins and cellular adhesion molecules. Studies have shown
that decreased prostaglandin synthesis in the endometrium is
associated with repeated implantation failure during IVF
(Achache et al., 2010). Integrins, especially α1β1, α4β1, and αvβ3,
are the major types of cellular adhesion molecules that function in
cell-cell interactions during the implantation window and play a

pivotal role in implantation, because lower expression levels of these
integrins are associated with delayed histological development or an
out of phase endometrium that decrease the implantation rate
(Thomas et al., 2003).

7.2 Ectopic pregnancy

Ectopic pregnancy is defined as embryo implantation outside
the uterine endometrium, with approximately 98% occurring in the
fallopian tube (tubal pregnancy) (Khan et al., 2006; Shaw et al.,
2010). Multiple etiologies have contributed to the occurrence of
ectopic pregnancy, including pelvic inflammatory disease, advanced
maternal age, smoking, and IVF procedure [for reviews, see (Shaw
et al., 2010)]. Notably, the incidence of tubal pregnancy following
the IVF procedures (approximately 4%–6%) increases two-to
threefold compared to that of spontaneous pregnancy
(approximately 1%–2%) (Farquhar, 2005). The possible
contributing factors that cause a higher incidence of ectopic
pregnancy in women undergoing IVF include the technique used
for embryo transfer, having a thin endometrium, the ovulation
stimulation protocol, and a higher estrogen concentration during
the assisted reproduction cycle (Shao et al., 2012; Muller et al., 2016;
Ma et al., 2017). Ectopic pregnancy occurs more frequently during
induction protocols using gonadotropin-releasing hormone
(GnRH) antagonists than those using a GnRH agonist flare-up
and luteal GnRH agonist, indicating an extrapituitary role for
GnRH in regulating the uterine and tubal environment during
IVF treatment (Londra et al., 2016; Peng et al., 2016). Studies of
functional ER subtypes using dual immunofluorescence analysis
suggest that ERα and ERβ are coexpressed in ciliated and secretory
epithelial cells and smooth muscles of the human fallopian tubes
(Horne et al., 2009; Shao et al., 2011). Therefore, a higher estrogen
concentration during the assisted reproduction cycle may alter the
normal physiological function of the fallopian tube, which increases
the incidence of tubal pregnancy (Shao et al., 2012).

7.3 Preeclampsia

Preeclampsia affects 3%–5% of all pregnancies and is a severe
life-threatening pregnancy-related disorder and the leading cause of
neonatal mortality and morbidity (Vigil-De Gracia, 2009). This
systemic hypertensive disorder has different phenotypes that are
triggered by distinct underlying mechanisms occurring at the early
stage of pregnancy (Than et al., 2018). The key signature of
preeclampsia is presented by models showing inadequate spiral
artery invasion precluding normal placentation (Maltepe et al.,
2010; Hunkapiller et al., 2011). Studies using mouse models have
revealed that Notch signaling activity is highest in eEVTs and that
the conditional depletion of Notch2 reduces eEVT arterial invasion
and placental perfusion, leading to embryo lethality (Hunkapiller
et al., 2011). Furthermore, studies performed using placental tissues
obtained from patients with preeclampsia showed that Notch ligand
expression is absent in EVTs located at perivascular and
endovascular areas (Hunkapiller et al., 2011). In addition to
arterial invasion, poor trophoblast migration and endothelial
remodeling are other events associated with preeclampsia (Lam
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et al., 2005). Evidence frommany studies (including ours) has shown
that endothelial dysfunction is the primary cause of clinical features
in patients with preeclampsia (Roberts and Cooper, 2001; Yi et al.,
2021). In particular, endothelial dysfunction leading to a decrease in
vascular tone causes hypertension, increased glomerular vascular
permeability causes proteinuria, and decreased coagulation factor
causes coagulopathy (Lam et al., 2005). Additionally, subsequent
endothelial injury induces vasoconstriction and ischemia and gives
rise to liver dysfunction (Lam et al., 2005). Given that preeclampsia
occurs more often in first pregnancies, it is most likely that an
increase in reproductive hormones and pregnancy-related factors
during the first pregnancy prime the reproductive system for
subsequent pregnancies (Cha et al., 2012).

7.4 Preterm labor

Preterm labor (also known as premature birth) is defined as
labor that begins before 37 weeks, and it accounts for 75% of early
neonatal morbidity and mortality (Goldenberg et al., 2008). Studies
performed using a mouse model have demonstrated that preterm
labor can adversely result from defective decidualization at the
maternal site (Hirota et al., 2010). Transformation-related protein
53 (Trp53), which encodes p53, is a tumor suppressor gene that also
plays a critical role in regulating female reproduction (Vogelstein
et al., 2000; Brosens and Gellersen, 2006). Constitutive depletion of
Typ53 in mice results in implantation failure due to the
downregulation of LIF on E4 (Hu et al., 2007). Conditional
uterine depletion of Trp53 in mice results in normal
implantation, whereas most of these mice have an increased
incidence of preterm birth, which can be corrected by
administering a selective cyclooxygenase-2 (COX-2) inhibitor
(Hirota et al., 2010). Notably, these mutant mice exhibit
compromised decidualization accompanied by an increase in
terminally differentiated decidual cells with polyploidy, indicating
a regulatory role for Trp53-LIF-COX-2 signaling in uterine
decidualization and placentation stabilization (Hirota et al.,
2010). The mammalian target of rapamycin complex 1
(mTORC1) signaling is an important molecular mechanism that
triggers cellular senescence, and rapamycin (an mTORC1 inhibitor)
attenuates senescence, which increases the life span of mice
(Harrison et al., 2009). Intriguingly, subsequent studies have
indicated that the decidua of Trp53 mutant mice has increased
the mTORC1 activity that can be suppressed by administering
rapamycin, leading to the rescue of preterm birth because of the
attenuation of premature decidual senescence (Hirota et al., 2011).
Consistent with these animal studies, clinical information shows
that pregnant women of advanced age have an increased risk of
preterm labor (Cnattingius et al., 1992; Nelson and Lawlor, 2011).

8 Clinical applications and therapeutic
potential

8.1 Maternal-fetal cellular trafficking

Maternal-fetal cellular trafficking is the bidirectional passage of cells
between a mother and her fetus during pregnancy, resulting in the

presence of fetal cells in the maternal circulation (a phenomenon called
fetal microchimerism) as well as the presence of maternal cells in the
fetal circulation (maternal microchimerism) (Bianchi et al., 1996;
Maloney et al., 1999). This cellular trafficking begins at 7 weeks of
gestation and steadily increases throughout gestation, with a peak level
at parturition (Ariga et al., 2001). The underlying mechanisms of this
physiological phenomenon involve vascular endothelial growth factor-
and integrin-dependent signaling pathways and HLA class II
molecules; however, the factor that triggers these signaling pathways
remains unclear (Chen et al., 2008; Hahn et al., 2019). Studies have
shown that alterations in maternal-fetal cellular trafficking are
associated with the disruption of the fetal-maternal interface due to
preeclampsia, termination of pregnancy, and fetal surgery, suggesting a
regulatory role for the placenta in cell trafficking (Holzgreve et al., 1998;
Bianchi et al., 2001; Saadai et al., 2012; Hahn et al., 2019).

Nonshared HLA-DR alleles (informative alleles) between the fetus
and mother are used to detect and distinguish maternal-fetal
microchimerism in human blood and tissues (Nijagal et al., 2011).
This bidirectional passage of cells has been widely implicated in various
pathophysiological conditions, including maternal immune tolerance,
the fetal immune system, immune surveillance, tissue repair in
autoimmune diseases and cancers, and the delicate balance between
immunological priming and tolerance in organ transplantation (Jeanty
et al., 2014). The related technique has been clinically applied for the
prenatal diagnosis of fetal aneuploidy and the prediction of pregnancy
complications, such as preeclampsia and preterm labor (Farina et al.,
2004; Jakobsen et al., 2012). Ongoing studies have shown that the
placenta is the major source of cell-free fetal nucleic acids in maternal
circulation (Faas et al., 2012; Tsang et al., 2017). Given that levels of cell-
free DNA and placenta-specific RNA transcripts are elevated in the
maternal circulation of women with preeclampsia, preterm labor, and
restricted fetal growth, detecting these cell-free fetal nucleic acids can be
a useful, noninvasive tool for placental functional monitoring (Leung
et al., 1998; Pang et al., 2009; Zhang et al., 2016). During trophoblast
invasion and throughout pregnancy, the discovery of extracellular
vesicles (EVs) has deepened our understanding of immune
modulation as local or systemic carriers of antigens and immune-
regulatory molecules (Morelli and Sadovsky, 2022). Novel findings of
immune-regulatory molecules located on EVs or within their cargo
indicate that EVs play an essential role in exerting immune tolerance
during human pregnancy. Recent findings from transplant
immunology studies suggest molecular interactions between fetus-
or placenta-derived EVs and maternal lymphoid tissues (Morelli
and Sadovsky, 2022).

8.2 Placenta-enriched molecules

The placenta is a temporary organ of fetal origin and thus has a
unique transcriptome and proteome. Indeed, a number of miRNAs,
mRNAs, and proteins are either exclusively or highly expressed in
the placenta compared to other human tissues. These placenta-
enriched molecules have been identified and are detectable in the
maternal peripheral blood, and they decay rapidly after delivery. The
measurement of these unique molecules has been considered for use
as potential biomarkers for pregnancy-related disorders (Whigham
et al., 2019). Recent studies have focused on targeting several
placenta-enriched molecules as a therapeutic strategy for
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placental dysfunction and pregnancy complications. In the human
genome, approximately 40% of miRNAs are present in clusters,
some of which are placenta-specific or primarily expressed in the
placenta (Altuvia et al., 2005). The C19MC cluster is a primate-
specific miRNA cluster that is exclusively inherited in the placenta
and derived from the paternal allele (Noguer-Dance et al., 2010).
C14MC is another placenta-specific miRNA cluster inherited from
maternally imprinted genes (Seitz et al., 2004). Notably, the
circulating levels of miRNA from the C19MC cluster steadily
increase throughout pregnancy, whereas the circulating levels of
miRNA from the C14MC cluster decrease throughout pregnancy
(Morales-Prieto et al., 2012). The differential expression patterns of
these two placental miRNA clusters may indicate their regulatory
roles at different gestational stages. Several placental miRNAs are
derived from primary trophoblasts and are linked to hypoxia
(Mouillet et al., 2010; Lee et al., 2011). These hypoxia-related
miRNAs are measurable in the maternal peripheral blood
throughout pregnancy as the fetus encounters progressive
placentation-induced hypoxia, suggesting a potential assessment
tool for fetal health and placental function (Whitehead et al., 2013a).

Similarly, several placenta-specific mRNA transcripts were
detected in the maternal peripheral blood that rapidly
disappeared after delivery (Ng et al., 2003; Whigham et al.,
2019). Some unique placental mRNA transcripts have been
identified as being differentially expressed in pathological
conditions representing placental dysfunction (Whigham et al.,
2019). For instance, the mRNAs of CRH, PLAC3, PLAC4, and
ERVWE1 are significantly increased in maternal plasma and
placental tissue obtained from women with preeclampsia (Paiva
et al., 2011). Additionally, the levels of some placental mRNA
transcripts, such as adrenomedullin, are positively correlated with
increased fetal hypoxia and fetal growth restriction during the
progression of gestation, which is also highly associated with
abnormal findings in fetal vessels examined using Doppler
velocimetry (Whitehead et al., 2013b). These findings suggest
that these placental mRNA transcripts are promising biomarkers
for assessing the health of both the fetus and the placenta. In
addition to miRNAs and mRNA transcripts, placenta-enriched
proteins have long been studied to predict and prevent placental
dysfunction and to improve maternal and fetal surveillance. Among
these placenta-enriched proteins, hCG is the most popularly applied
biomarker. At approximately 2 weeks after implantation, this
biomarker is detectable in urine and blood samples to determine
the pregnancy status and further differentiate normal and ectopic
pregnancies (Murray et al., 2005). Combined with ultrasonographic
markers, maternal circulating hCG concentrations are commonly
used as a prenatal screen test for fetal Down syndrome (Trisomy 21)
during the first trimester (Wald et al., 1996). Pregnancy-associated
plasma protein A (PAPP-A) is exclusively expressed by trophoblasts
in the placenta and is involved in placental development and fetal
growth (Bolnick et al., 2016). During the first trimester, several
circulating placenta-derived proteins have been compared in
prenatally predicting fetuses that are small-for-gestational-age
(SGA, body weight <10th centile), and PAPP-A is the most
reliable biomarker (Zhong et al., 2015). Placental growth factor
(PlGF) is a promising placenta-enriched protein that is produced by
STs. This placental protein is an angiogenic factor that has been
demonstrated to be diminished in the serum of women with

preeclampsia and gestational diabetes mellitus (Reuvekamp et al.,
1999; Carmeliet et al., 2001; Yanachkova et al., 2023). As early as
13–16 weeks of gestation, pregnant women who subsequently
develop preeclampsia have lower serum levels of PIGF than the
controls, highlighting a potential biomarker for predicting the early
onset of preeclampsia (Levine et al., 2004). Intriguingly, this
placental protein has also recently been reported to predict
infants born with SGA (Gaccioli et al., 2018). These findings
suggest that PIGF is most likely an indicator of overall placental
function rather than a marker of a specific placental disease
(Whigham et al., 2019).

Soluble fms-like tyrosine kinase 1 (sFlt-1) is a natural slice
variant of the vascular endothelial growth factor-A (VEGFA)
receptor Flt-1 lacking the transmembrane and cytoplasmic
domains and it acts as a potent antagonist against VEGFA and
PlGF (Kendall et al., 1996). Many studies have demonstrated that the
maternal circulating levels of sFlt-1 are significantly elevated in
women with preeclampsia (Maynard et al., 2003; Whigham et al.,
2019). Studies performed using preeclampsia placental tissues have
shown that the expression of VEGFA is upregulated in maternal
decidual cells, whereas the expression of sFlt-1 is highly
overexpressed in fetal EVTs that invade the decidua, indicating
that EVTs overexpress sFlt-1 in self-defense against excessive
VEGFA production by maternal decidual cells (Fan et al., 2014;
Whigham et al., 2019). Therefore, the sFlt-1/PlGF ratio has been
clinically applied as a predictive value in women with suspected
preeclampsia (Zeisler et al., 2016). Information obtained from
clinical studies shows that the circulation levels of sFlt-1 are
directly proportional to the severity of preeclampsia
(Chaiworapongsa et al., 2004; Thadhani et al., 2004). Specifically,
sFlt-1 concentrations are relatively higher in women with
preeclampsia of more severe grades, in earlier onset of disease,
and with SGA infants (Lam et al., 2005; Modzelewski et al., 2023).
Clinical studies suggest that diagnostic indicators using the
circulating sFlt-1/PlGF ratio in combination with
ultrasonographic parameters increase the predictive value for
severe fetal growth restriction (Gaccioli et al., 2018).

8.3 Therapeutic strategies targeting
placenta-enriched molecules

To date, effective therapeutic options for pregnancy diseases
(especially preeclampsia and fetal growth restriction) are limited,
even though many potential therapeutic strategies have been
proposed (Onda et al., 2017; Pepe and Albrecht, 2021). Because
many drugs are small molecules that can pass the placenta to enter
the fetal body, it has been challenging to make reformulated
medications with potentially detrimental effects on the fetuses.
Upcoming clinical studies performed using specific targeted
designs for specific placenta-enriched molecules seem to be a
reliable strategy for prenatal medicine. These methods are
designed to reduce the dose of drugs and enhance delivery
efficiency, thus minimizing fetal exposure to the medications. At
present, several treatment strategies targeting placenta-enriched
molecules have emerged.

Epidermal growth factor receptor (EGFR) is a transmembrane
glycoprotein that is highly expressed in the placenta compared to
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other noncancerous human tissues, indicating that EGFR is also a
placenta-enriched protein (Wu et al., 2009). A phase II clinical trial
proposed a combination therapy using methotrexate and the EGFR
inhibitor gefitinib to treat patients with ectopic pregnancies
(Whigham et al., 2019). Nanoparticle-targeted drug therapy is
designed to achieve controlled drug release and disease-specific
localization by optimizing the polymer characteristics (for
reviews, see (Singh and Lillard, 2009; Leziak et al., 2022)). This
nanoparticle-based technique has been exploited to pack
doxorubicin (a chemotherapeutic reagent) into drug-delivery
vehicles incorporated with antibodies against EGFR, which are
delivered into the trophoblasts to treat patients with ectopic
pregnancies (Kaitu’u-Lino et al., 2013). In animal studies
performed using the same strategy, methotrexate (a
chemotherapeutic reagent) is packaged into nanoparticles
incorporated with a specific placental marker and delivered into
the mouse placenta to impair the development of the placenta and
fetus in mice dramatically (Zhang et al., 2018).

In addition to its diagnostic potential for preeclampsia, sFlt-1
has been a considerable focus of research regarding therapeutic
approaches. It is proposed that the targeted reduction in the
circulating levels of sFlt-1 will be of clinical benefit in controlling
disease progression and prolonging pregnancy duration for women
with preeclampsia (Rduch et al., 2023). Several studies have shown a
reduction in the placental secretion of sFlt-a1 following the
administration of several small-molecule inhibitors, including
pravastatin, esomeprazole, and metformin (Brownfoot et al.,
2015; Brownfoot et al., 2016; Onda et al., 2017). A study using a
small interfering RNA (siRNA)-mediated approach demonstrated
successful selective silencing of sFlt-1 mRNA transcripts in mouse
placenta (Turanov et al., 2018). Animal studies performed by the
same study group using a baboon preeclampsia model have
demonstrated that a single dose of siRNA suppresses the
overexpression of sFlt-1 and relieves the clinical signs of
preeclampsia (Turanov et al., 2018). These findings suggest that
treatment using RNA interference that targets placenta-enriched
molecules could be a novel therapeutic strategy for pregnancy
dysfunction.

9 Conclusion

The establishment of the fetal-maternal interface
predominantly relies on highly organized events, including
blastocyst development, implantation, decidualization,
trophoblast differentiation and invasion, and placentation. The
success of each event involves an intricate succession of various
genetic and cellular interactions that must be executed in an
appropriate manner and within an optimal time frame. A better
understanding of these fundamental events is imperative to explain
the underlying molecular mechanisms and pathogenesis of failed
implantation, inadequate placentation, placental dysfunction, and
pregnancy-related diseases. Although many functions of this
adaptable organ have yet to be uncovered, increasing evidence
suggests that placental health has a dramatic impact on the short-

and long-term consequences of the developing fetus. The
development of scRNA-seq and the derivation of human TS
cells and the CTB 3D-organoid culture system has created
novel tools to explore the delicate and complicated niche built
by the crosstalk between trophoblasts and the decidual
endometrium. Analyses of the placenta-specific transcriptome
and proteome have identified several unique gene products in
the maternal circulation that are clinically applied as potential
noninvasive biomarkers of placental dysfunction and diseases. The
clinical potential of appropriately designed therapeutic strategies
targeting placenta-enriched molecules in various pregnancy
dysfunctions and diseases has been demonstrated recently.
Although some medical agents are in clinical trials, practical
issues related to bioavailability and safety must be critically
evaluated.
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