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Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD), a
serious health problem worldwide, can involve ferroptosis. This study aimed to
comprehensively analyze the ferroptosis-related genes associated with MAFLD.

Methods: Ferroptosis-related differentially expressed genes (FRDEGs) were
identified in patients with MAFLD and healthy individuals. Gene ontology
functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis, and gene set enrichment analysis (GSEA) were
used to analyze the relevant action pathways of the FRDEGs. The Encyclopedia
of RNA Interactomes, CHIPBase, and comparative toxicogenomics databases
were used to build mRNA-miRNA, mRNA-transcription factor (TF), and mRNA-
drug interaction networks, respectively. A diagnostic model was constructed and
bioinformatics analysis methods, such as least absolute shrinkage and selection
operator regression analysis, Cox regression analysis, nomogram-based analysis,
consensus clustering analysis, and single-sample GSEA, were used to
systematically investigate the prognostic values and immunologic characteristics.

Results: A total of 13 FRDEGs were obtained and eight were used to construct a
diagnostic model and perform a prognostic analysis. Hub genes were also used to
construct mRNA-miRNA and mRNA-TF interaction networks and potential drug
or molecular compounds. Two MAFLD subtypes were identified: cluster2, which
represents an “immunoactive” type, and cluster1, which represents an
“immunosuppressive” type; a significant correlation was observed between the
immune cell contents and the expression of three FRDEGs (NR4A1, FADS2,
and SCD).

Conclusion: A ferroptosis-related gene signature was constructed to diagnose
MAFLD-associated steatohepatitis, predict the prognosis of MAFLD patients, and
analyze the immunologic characteristics of MAFLD. Our findings may provide
insights into developing innovative MAFLD treatment techniques.
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1 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD),
formerly known as non-alcoholic fatty liver disease (NAFLD), is a
term that describes liver diseases associated with metabolic risk
factors, such as obesity, Type 2 diabetes, and abnormal lipid
metabolism (Eslam et al., 2020). The incidence and prevalence of
MAFLD are rapidly increasing, with a prevalence of approximately
25% globally (Huang et al., 2021) and 42% in Asian countries (Li
et al., 2019). MAFLD is a heterogeneous condition with complex and
disparate causes that damages organs other than the liver.
Pathophysiological changes associated with MAFLD range from
simple steatosis to steatohepatitis, cirrhosis, and hepatocellular
carcinoma. Most individuals with MAFLD are in the hepatic
steatosis stage, whereas the minority show inflammation injury
that can occur at any point (Eslam et al., 2020). Furthermore,
hepatocyte ferroptosis may cause steatohepatitis and fatty liver
deterioration (Chen et al., 2022). Currently, there are no
pharmacologic treatments for MAFLD; therefore, non-
pharmacologic interventions remain the mainstay of treatment
for MAFLD. A novel approach to treating MAFLD may involve
inhibiting hepatocyte ferroptosis.

Ferroptosis is a form of programmed cell death that differs from
apoptosis and necrosis. It is iron dependent and associated with
oxidative stress (Dixon et al., 2012), glutathione depletion, and
glutathione peroxidase inactivation (Feng et al., 2022). The major
molecular mechanism of ferroptosis has three key components:
cystine absorption mediated by transport receptors of glutamate
and cystine, named System xc-; glutathione depletion in response to
iron and the inactivation of glutathione peroxidase 4 (GPx4) (Dixon
et al., 2012); and high levels of lipid peroxidation, and intracellular
reactive oxygen species build-up (Friedmann Angeli et al., 2014).

Ferroptosis has been extensively studied in neoplastic diseases;
however, its research in MAFLD is limited. Some reviews have
summarized the association between ferroptosis and MAFLD (Zhao
et al., 2021; Feng et al., 2022; Ji et al., 2023). Furthermore, recent
studies have shown that ferroptosis can cause an inflammatory
response in simple steatosis, promoting the emergence and
progression of steatohepatitis (Capelletti et al., 2020; Mao et al.,
2020). In 2011, researchers found iron build-up in the livers of
patients with MAFLD (Dongiovanni et al., 2011; Fujita and Takei,
2011; Salomao, 2021). Moreover, iron overload caused by metabolic
dysfunctions, such as hepatosiderosis and hereditary
hemochromatosis, could lead to iron accumulation in several
tissues, especially the liver (Nelson et al., 2011; Partridge et al.,
2014). In addition, iron removal could improve liver injury in
patients with MAFLD (Valenti et al., 2011). Elevated levels of
iron and lipid peroxidation markers, such as malondialdehyde
and 4-hydroxynonenal, are present in patients with MAFLD
(Loguercio et al., 2001). Vitamin E is a relatively effective
suppressor of lipid peroxidation and could alleviate liver damage
(Sanyal et al., 2010). However, the specific mechanism of ferroptosis
in patients with MAFLD remains largely unclear.

In recent years, technological advancements in DNA/RNA
sequencing and bioinformatics data analysis have increased our
understanding of the mechanisms of health and disease. Some
studies have investigated ferroptosis in MAFLD using
bioinformatics. One study emphasized selenoprotein and

selenium metabolism pathways (Day et al., 2021), and another
identified two highly heterogeneous MAFLD subtypes with
distinct clinical features, biological processes, and immune
statuses based on ferroptosis-related gene expression (Dai et al.,
2022).

In this study, our aim was to investigate ferroptosis in MAFLD
using bioinformatics methods, including RNA-seq data analysis,
consistent clustering, ssGSEA, etc. Our study highlights the
important role of ferritin in the pathophysiology of MAFLD,
particularly in its association with inflammation and fibrosis.
This finding helps to deepen our understanding of the
mechanisms underlying the development of MAFLD.
Furthermore, we hypothesized that an in-depth analysis of the
ferroptosis-related genes of MAFLD could be used to construct a
diagnostic model and prognostic signature to explore immunologic
characteristics and potential therapeutic drug targets, which might
have a positive impact on improving the health of MAFLD patients.

2 Materials and methods

2.1 Data retrieval

The expression profile datasets, GSE48452 (Ahren et al., 2013),
GSE63067 (Frades et al., 2015), and GSE89632 (Arendt et al., 2015),
for patients with MAFLD, were downloaded from the Gene
Expression Omnibus (GEO) database (Barrett et al., 2007) using
the R package, GEOquery (Davis and Meltzer, 2007). GSE48452,
GSE63067, and GSE89632 were all obtained from Homo sapiens.
The GSE48452 dataset was derived from human liver samples. The
inclusion criteria were: patients aged 18 years and having undergone
a liver biopsy-based diagnosis of MAFLD, including simple hepatic
steatosis and steatohepatitis.

The data platform for the GSE48452 dataset was GPL11532
[HuGene-1_1-st] Affymetrix Human Gene 1.1 ST Array [transcript
(gene) version], whereas that for the GSE63067 dataset was
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus
2.0 Array, and the data platform for the GSE89632 dataset is
GPL14951 Illumina HumanHT-12 WG-DASL V4.0 R2 expression
beadchip. The dataset probe names were all annotated using the
ChIP GPL platform files.

We collected ferroptosis-related genes from multiple database
sources using the term “Ferroptosis” as the search keyword. The
GeneCards database (Stelzer et al., 2016) (https://www.genecards.
org/) provided comprehensive information on human genes.
Furthermore, we obtained more genes from the FerrDb database
(Zhou and Bao, 2020). The final sample was obtained after
combined deduplication, as described in Supplementary Table S1.

2.2 Differentially expressed genes (DEGs)
associated with MAFLD

We merged the MAFLD datasets GSE48452 and GSE63067 to
identify the DEGs associated with MAFLD, their underlying
mechanisms of action, related biological features, and disease
pathways. Subsequently, we removed the batch effects using the
R surrogate variable analysis package and standardized the
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combined dataset using the limma package (Ritchie et al., 2015).
Thereafter, we obtained the MAFLD dataset and the expression
matrix of the principal component analysis (PCA) (Ben Salem and
Ben Abdelaziz, 2021). PCA is the preferred method for reducing data
dimension and analyzing the effect of batch effect removal. The
feature vectors of the data were extracted from high-latitude data,
converted to low-dimensional data, and displayed with two-
dimensional or three-dimensional graphs.

We used the limma package on theMAFLD dataset to obtain the
DEGs between different groups within the MAFLD dataset. The
genes selected by | logFC | > 0.5 and p < 0.05 were used as our DEGs.
genes with logFC >0.5 and p < 0.05 were DEGs with upregulated
expression (upregulated genes), and those with logFC < −0.5 and p <
0.05 were DEGs with downregulated expression (downregulated
genes).

To obtain FRDEGs associated with MAFLD, we crossed the
MAFLD dataset DEGs with | logFC |> 0.5 and p < 0.05 and the
ferroptosis-related genes and then drew a Venn diagram. The results
of the differential analysis were illustrated with the volcano map
using the R package ggplot2 and the heatmap map using the R
package pheatmap.

2.3 Receiver operating characteristic (ROC)
curve

The ROC curve (Mandrekar, 2010) is an analysis tool for a
coordinate scheme that can be used to select the best model,
discard the next best model, or set the best threshold in the
same model. The ROC curve is a comprehensive index of
continuous variables that reflect sensitivity and specificity.
Reflects the interrelationship between sensitivity and specificity
through the composition method. The area value under the ROC
curve (AUC) is between 0.5 and 1. We used the R survival ROC
package to plot the ROC curve of FRDEGs in the MAFLD dataset.
The AUC was calculated to evaluate the diagnostic effect of
FRDEG expression on the survival of patients with MAFLD.
The diagnostic effect is better if the AUC value is closer to 1.
AUC values of 0.5–0.7, 0.7–0.9, and >0.9 indicate low, moderate,
and high diagnostic accuracy, respectively.

2.4 Differential functional gene enrichment
analysis and pathway enrichment analysis

Gene ontology (GO) analysis (Yu, 2020) is a common method
for conducting large-scale functional enrichment studies, including
those to identify the biological processes (BPs), molecular functions
(MFs), and cellular components (CCs) for which genes are enriched.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000) is a database widely used to store information about
genomes, biological pathways, diseases, and drugs. The
clusterProfiler (Yu et al., 2012) of the R package was used to
perform the GO annotation analysis of FRDEGs, and the entry
screening criteria were p < 0.05 and a false discovery rate (FDR)
value (q-value) < 0.05, which was considered statistically significant.
The p-value was corrected using the Benjamini–Hochberg (BH)
method.

2.5 Gene set enrichment analysis (GSEA)

GSEA is used to assess the distribution trend of genes in a
predefined gene set in a list of genes ranked by phenotype
correlation to determine their contribution to the phenotype
(Subramanian et al., 2005). In this study, genes in the MAFLD
dataset were divided into two groups according to their phenotype
correlations. Subsequently, we used the clusterProfiler package to
enrich all DEGs in phenotype correlation. The parameters used in
the GSEAwere as follows: seed 2021, 1,000 calculations, 10 genes per
gene set, and a maximum of 500 genes. Correction of the p-valuewas
performed using the BH method. We obtained the c2. cp.v7.2.
symbols gene set from the Molecular Signatures Database
(MSigDB); significantly enriched screening criteria were p <
0.05 and FDR value (q-value) < 0.05.

2.6 Constructing a FRDEG-related
diagnostic model

To obtain a diagnostic model for FRDEGs in the MAFLD
dataset, we used the glmnet package (Engebretsen and Bohlin,
2019) based on the FRDEGs with the set of parameters: seed (2),
family = “binomial” to perform the least absolute shrinkage and
selection operator (LASSO) regression and run 1,000 cycles to
prevent overfitting. LASSO regression is often used to build
prognostic models. Model overfitting was reduced, and the
model’s generalization ability was improved by increasing the
penalty term (the absolute value of lambda slope) based on linear
regression. We visualized the LASSO regression results and
presented the molecular expression of each gene in the FRDEG
diagnostic model using forest plots. The FRDEGs screened by
LASSO regression were subjected to multivariate Cox regression
analysis and were constructed into multivariate Cox regression
models.

Subsequently, we constructed a nomogram based on the results
of the multivariate Cox regression analysis (Park, 2018). A
nomogram is a graph based on multivariate regression analysis,
and by setting a certain scale to score the variables in themultivariate
regression model, it can be used to predict the probability of events
by calculating the total score. Decision curve analysis (DCA) (Van
Calster et al., 2018) is a simple method for evaluating clinical
predictive models, diagnostic tests, and molecular markers.
Finally, we evaluated the accuracy and resolution of the Cox
regression model by drawing DCA plots using the ggDCA R
package (Tataranni and Piccoli, 2019).

2.7 Protein–protein interaction (PPI)
network

PPI networks comprise individual proteins involved in
biological signaling, gene expression regulation, energy and
substance metabolism, and cell cycle regulation. The STRING
database (Szklarczyk et al., 2019) can be used to search for
known proteins and predict interactions between them. In this
study, the STRING database was used to construct a PPI
network (minimum interaction score required: medium
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confidence [0.150]) using LASSO regression. Cytoscape (Shannon
et al., 2003; Cytoscape consortium version 3.9.1 was downloaded
from https://cytoscape.org/) was used to visualize the PPI network
model and select the FRDEGs associated with other nodes as the key
genes (hub genes) of MAFLD.

2.8 Construction of mRNA-miRNA, mRNA-
transcription factor, and mRNA-drug
interaction networks

The Encyclopedia of RNA Interactomes (ENCORI) (Li et al.,
2014) database (https://starbase.sysu.edu.cn) is version 3 h.0 of the
starBase database. The ENCORI database for the interactions of
miRNA-ncRNA, miRNA-mRNA, ncRNA-RNA, RNA-RNA, RBP-
ncRNA, and RBP-mRNA is based on CLIP-seq, degradome
sequencing (for plants) and data mining, providing various visual
interfaces for exploring microRNA targets. The miRDB (Liberzon et
al., 2015; Chen andWang, 2020) is a database for miRNA target gene
prediction and functional annotation. The ENCORI and miRDB
were used to predict the miRNAs that would interact with hub genes,
and the mRNA-miRNA interaction network was constructed after
crossing the data section of target score >80 in the miRDB database
with the mRNA-miRNA data in the ENCORI database.

The CHIPBase database (Zhou et al., 2017) (version 2.0, https://
rna.sysu.edu.cn/chipbase/) has identified thousands of binding
motif matrices and their binding sites from the ChIP-seq data for
DNA-binding proteins and predicted millions of regulatory
transcriptional relationships between transcription factors (TF)
and genes. The hTFtarget database (Zhang et al., 2020) (http://
bioinfo.life.hust.edu.cn/hTFtarget) contains data on human TF and
their corresponding regulatory targets. TFs bound to hub genes were
searched through the CHIPBase and hTFtarget databases and
visualized using Cytoscape software.

The Public Comparison Toxics Genomics Database
(Comparative Toxicogenomics Database, CTD (Davis et al.,
2021), http://ctdbase.org/) is a database based on innovative
digital ecosystems that link chemicals, genes, phenotypes,
diseases, and known toxicology information to facilitate access to
human health-related data. The CTD was also used to predict
potential drugs or small molecule compounds that would interact
with hub genes, and mRNA-miRNA, mRNA-TF, and mRNA-drug
interaction networks were visualized using Cytoscape software.

2.9 Construction of disease subtypes based
on FRDEGs

Consensus clustering (Brière et al., 2021) is a resampling-based
algorithm used to identify each member and its subgroup number
and to verify clustering. Consensus clustering involves multiple
iterations on subsamples of datasets that provide indicators of
clustering stability and parameter decisions by exploiting
subsampling and inducing sampling variability. The consensus
clustering method of the ConsensusClusterPlus package in R
(Wilkerson and Hayes, 2010) was used to identify different
MAFLD disease subtypes based on FRDEGs.

2.10 Identification and correlation analysis of
immune-infiltrating cells among different
MAFLD disease subtypes

The single-sample GSEA (ssGSEA) algorithm was used to
quantify the relative abundance of each immune cell infiltrate.
Various infiltrating immune cell subtypes, such as activated CD8+

T cells, activated dendritic cells, macrophages, natural killer T cells,
and regulatory T cells, were labeled. Enrichment scores calculated by
ssGSEA were used to represent the relative abundance of each
immune cell infiltrate in each sample (Barbie et al., 2009;
Charoentong et al., 2017). The ggplot2 package was used to
visualize the differential expression relationship of immune cells
in the different disease subtypes in the MAFLD dataset.

The degree of the infiltration of tumor microenvironment,
immune cells, and stromal cells in tumors significantly affects the
prognosis. The ESTIMATE package (Yoshihara et al., 2013) uses the
unique transcriptional profiles of cancer samples to infer the content
of tumor cells and different infiltrating normal cells. To better
understand the prognostic impact of genes involved in immune
and stromal cells, the ESTIMATE package was used to calculate the
immune and mechanism scores of the different disease subtype
samples from the MAFLD dataset and to assess the purity of the
tumor. The principle is based on the ESTIMATE algorithm to
quantify the immune and stromal components in the tumors by
calculating the ESTIMATE, Immune, and Stromal scores, and purity
of the tumor expression matrix characteristics.

2.11 Differential analysis of FRDEG
expression in clinical subgroups

To explore the expression differences of 13 FRDEGs in the
GSE48452 of the MAFLD dataset neutron dataset, Mann‒Whitney
U test (Wilcoxon rank sum test) was used to combine the specific
clinical characteristics grouping information (sex, age, BMI, leptin,
and adiponectin) and to analyze the expression level of 13 FRDEGs
in GSE48452 dataset samples in the MAFLD dataset and the
expression difference between different groups (numerical
grouping was not strictly performed using median values, but by
the range of values, with each sample equal). We showed the results
of the expression difference analysis through a group comparison
diagram.

2.12 Cell culture and treatment

For in vitro research, Procell Life Science&Technology
(Wuhan, Hubei, China) supplied mouse hepatocytes AML12.
AML12 cells were grown in Dulbecco’s modified Eagle medium
(DMEM) at 37 °C in a humid environment under 5% CO2

conditions; the medium was supplemented with 10% (v/v) fetal
bovine serum 1% penicillin/streptomycin. The steatohepatitis cell
model (SHC) was established by administering 0.25 mmol/L
palmitic acid (PA) and 0.5 mmol/L oleic acid (OA) to the cells
for 24 h, followed by culturing in methionine-choline and
glutamine-deficient (MCD) DMEM.
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2.13 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

Total RNA was extracted using the Trizol reagent and the RT kits
for reverse transcription were provided by TOYOBO (Japan). The
SYBR Green qRT-PCR Mix (Solarbio, Beijing, China) was used to
perform RT-qPCR. Using 2−ΔΔCT, the relative expression was
estimated with GAPDH as the internal reference. The following are
the forward and reverse primers: NR4A1 (F: 5′-CCGTGGCTTTGG
TGATTGGATTG′-3′, R: 5′-TGAGGACCAGAGCGGACAGG-3);
FADS2 (F: 5′-AGAAGACTGCTGAGGACATGAACC′-3′, R: 5′-
CGAGAGGATGAACCAGGCAAGG-3′); stearoyl-CoA desaturase
(SCD) (F: 5′-TGAGGCGAGCAACTGACTATCATC′-3′, R: 5′-
TGGTGGTGGTCGTGTAAGAACTG-3′); GAPDH (F: 5′-GCA
TCCACTGGTGCTGCC-3′, R: 5′-TCATCATACTTGGCAGGT
TTC-3′).

2.14 Statistical analysis

All the data processing used for the bioinformatics analysis in
this study were performed using the R software (Version 4.1.2). For
continuous variables, data are presented as the mean ± standard
deviation; distributed data are presented as median. Comparisons
between two groups were made using the Wilcoxon rank sum test,
whereas comparisons between three or more groups were made
using the Kruskal–Wallis test. The chi-square or Fisher’s exact test
was used to compare and analyze statistical significance between
two groups of categorical variables. If not indicated explicitly, all
results were all calculated as correlation coefficients between
different molecules using Spearman correlation analysis, and all
results used p < 0.05 as the criterion for significant difference
results.

GraphPad Prism (GraphPad Prism Software, CA, United States)
was used to analyze the PCR data. Student’s unpaired t-test (two-
group comparisons) was performed and p < 0.05 was considered
statistically significant.

3 Results

3.1 Technical roadmap

3.1.1 Extracted data
A total of 73 cases in the GSE48452 dataset were obtained from

the GEO database, including 14 normal control samples and
59 human liver biopsy samples of different phases from patients
with MAFLD. The MAFLD group included liver biopsy samples
from 27 cases of healthy patients with obesity, 14 cases with simple
hepatic steatosis, and 18 cases with steatohepatitis, whereas the
microarray GSE63067 dataset included gene expression profiles of
11 human liver samples from patients with MAFLD (including two
cases with simple hepatic steatosis and nine cases with
steatohepatitis) and seven healthy individuals. The samples for
the GSE89632 dataset were human liver samples, totaling
63 cases, including 24 normal samples, 39 human liver samples
from patients with MAFLD (20 patients with steatosis, and
19 patients with steatohepatitis).

Subsequently, we analyzed the data profile of 32 cases from the
GSE48452 dataset, including 18 liver biopsy samples from patients
with steatohepatitis (group: MAFLD) and 14 normal samples
(group: Control). A total of 16 expression profiles were analyzed
in the GSE63067 dataset, including those of nine liver biopsy
samples from patients with steatohepatitis (group: MAFLD) and
seven healthy human liver samples (group: Control). A total of
43 expression profile data were analyzed in the GSE89632 dataset,
including those of 19 liver biopsy samples from patients with
steatohepatitis (group: MAFLD) and 24 healthy human liver
samples (group: Control). The GSE89632 dataset was used as a
validation set to verify the expression of genes in different groups
(Control/MAFLD). The specific dataset information is presented in
Table 1.

We identified 619 and 567 ferroptosis-related genes from the
GeneCards and FerrDb databases, respectively. After combined
deduplication (Supplementary Table S1), 958 ferroptosis-related
genes were obtained for analysis.

3.2 MAFLD metabolism-related differential
gene analysis

After removing batch effects on the two MAFLD datasets and
standardizing the combined dataset, we obtained the overall
MAFLD dataset (Figures 1A, B). The MAFLD dataset included
27 steatohepatitis samples (group: MAFLD) and 21 healthy samples
(group: Control). The results of the PCA performed on the dataset
expression matrix before and after batch effect removal confirmed
its elimination in the MAFLD dataset (Figures 1C, D).

We standardized the GSE89632 dataset using the limma package
in R to obtain the standardized GSE89632 dataset (Figures 1E, F).
The results showed that the batch effect of samples in the MAFLD
dataset was also eliminated after the standardization treatment.

To analyze the differences in gene expression within theMAFLD
group compared to those of the Control group, we used the limma
package to obtain the DEGs among different groups in the MAFLD
dataset. The results were as follows: among the 15,370 DEGs in the
MAFLD dataset, 111 genes met the | logFC |> 0.5 and the p-
value <0.05 thresholds. At this threshold value, the number of
upregulated genes in the MAFLD group (identified by low
expression in the Control group, positive logFC) was 82, whereas
the number of downregulated genes in the MAFLD group (high
expression in the Control group, negative logFC) was 29.We created
a volcano map to illustrate the results of the MAFLD dataset
(Figure 2A).

To obtain FRDEGs, we recorded the intersection of all DEGs
with | logFC |> 0.5 and p < 0.05 obtained in the MAFLD dataset. A
total of 13 FRDEGs for MAFLD were obtained and illustrated with a
Venn diagram (Figure 2B). The 13 FRDEGs were acyl-CoA
synthetase long-chain family member 4 (ACSL4), ChaC
glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1),
enolase 3 (ENO3), ectonucleotide pyrophosphatase/
phosphodiesterase 2 (ENPP2), fatty acid binding protein 4
(FABP4), fatty acid desaturase 2 (FADS2), fatty acid synthase
(FASN), FAT atypical cadherin 1 (FAT1), fibronectin Type III
domain containing 5 (FNDC5), inter-alpha-trypsin inhibitor
heavy chain 3 (ITIH3), nuclear receptor subfamily 4 group A
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member 1 (NR4A1), SCD, and squalene epoxidase (SQLE). Specific
gene information is presented in Table 2.

We analyzed the differential expression of 13 FRDEGs among
different groups within the MAFLD dataset according to the results
obtained by the Venn diagram and used the heatmap constructed
with the pheatmap package in R to visualize the specific differential
analysis results (Figure 2C). Subsequently, we showed the
correlations between the expression of 13 FRDEGs in the
MAFLD dataset and that in the heatmap (Figure 2D). In
addition, we annotated the 13 FRDEGs using the RCircos
package (Figure 2E) to analyze the chromosomal locations of the
13 FRDEGs. The FRDEGs were mainly distributed on chromosomes
3, 4, 8, 10, 11, and 12, with the largest distribution on chromosome 8
(three FRDEGs).

3.3 Differential expression analysis and
validation of the FRDEGs

To explore the differential expression of the 13 FRDEGs in
the MAFLD dataset, we used the Mann–Whitney U test
(Wilcoxon rank sum test) to analyze the relationship between
the expression levels of the 13 FRDEGs and the different groups
(MAFLD groups/Control groups). We showed the correlation
analysis results using group comparison plots (Figure 3A). As
shown in Figure 3A, the expression of all 13 FRDEGs in the
MAFLD dataset differed significantly among the groups (p <
0.05). The expression levels of ENO3, FABP4, FADS2, FAT1, and
ITIH3 in the MAFLD dataset showed very highly significant
differences among the different groups (p < 0.001). Furthermore,
the expression levels of FNDC5, SCD, and SQLE in the MAFLD
dataset showed highly significant differences among the different
groups (p < 0.01).

Subsequently, we drew the ROC curves for the 13 FRDEGs in the
MAFLD dataset (Figure 3B–N). The ROC curve results were as
follows: the expression levels of FRDEGs ENPP2 (AUC = 0.681,
Figure 3E), FASN (AUC = 0.679, Figure 3H), and NR4A1 (AUC =
0.681, Figure 3L) in the MAFLD dataset showed a low correlation
between the different groups. The expression levels of the
ACSL4 genes (AUC = 0.709, Figure 3B), CHAC1 (AUC = 0.707,
Figure 3C), ENO3 (AUC = 0.822, Figure 3D), FABP4 (AUC = 0.774,
Figure 3F), FADS2 (AUC = 0.774, Figure 3G), FAT1 (AUC = 0.788,
Figure 3I), FNDC5 (AUC = 0.755, Figure 3J), ITIH3 (AUC = 0.840,
Figure 3K), SCD (AUC = 0.753, Figure 3M) and SQLE (AUC =

0.771, Figure 3N) showed a certain correlation between the MAFLD
and Control groups in the MAFLD dataset.

Finally, we analyzed the correlation between expression level of
13 FRDEGs in the GSE89632 dataset and the different groups
(MAFLD group/Control group); we showed the correlation
analysis results using a group comparison diagram (Figure 3O).
The results showed that the expression of 13 FRDEGs in the
GSE89632 dataset, except for ACSL 4 and ITIH 3, differed
significantly between the groups (p < 0.05). Among these genes,
the expression levels of CHAC 1, ENO3, FABP4, FADS2, FASN,
FNDC5, NR4A1, SCD, and SQLE in the GSE89632 dataset showed
very highly significant differences among the different groups (p <
0.001); moreover, the expression levels of the genes ENPP2 and
FAT1 in the GSE89632 dataset showed very significant differences
among the different groups (p < 0.01).

3.4 GO and KEGG enrichment analyses of
FRDEGs

To analyze the BPs, MFs, and CCs that were enriched for the
13 FRDEGs and the relationship between biological pathways and
NAFLD, we performed a GO functional enrichment analysis
(Supplementary Table S2) of the FRDEGs. The screening
criteria for the enrichment entries were p < 0.05; FDR values
(q-values) < 0.05 were considered significant. The results showed
that the 13 FRDEGs in MAFLD were mainly enriched for the
following BPs: biosynthesis of cofactors, sulfur compounds,
coenzymes, and monocarboxylic acid; the following CCs: the
peroxisomal and microbody membranes, lipid droplets, and
microbody parts; and the following MFs: lyase activity, hydro-
lyase activity, hormone receptor binding, and coenzyme binding.
We have presented the results of the GO enrichment analysis in a
bubble diagram (Figure 4A) and a circular network map
(Figure 4B).

We performed a KEGG enrichment analysis (Supplementary
Table S3) of the 13 FRDEGs. The results indicated that the
13 FRDEGs were significantly enriched in five KEGG pathways,
such as fatty acid metabolism, the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, fatty acid, and unsaturated fatty
acid biosynthesis, and the AMPK signaling pathway. We used upset
maps (Figure 4C) and network maps (Figure 4D) to show the gene
expression in the five KEGG pathways. Subsequently, we performed
GO and KEGG enrichment analyses of the joint logFC for these

TABLE 1 GEO microarray Chip information.

GSE48452 GSE63067 GSE89632

Platform GPL11532 GPL570 GPL14951

Species Homo sapiens Homo sapiens Homo sapiens

Tissue Human liver biopsy samples Human liver samples Human liver samples

Samples in the MAFLD group 18 9 19

Samples in the control group 14 7 24

References PMID: 23931760 PMID: 25993042 PMID: 25581263

GEO: gene expression omnibus.
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13 FRDEGs based on the enrichment analysis by providing the
logFC value of the genes of different analysis results in the MAFLD
dataset to calculate a z-score for each gene. We have presented the
GO enrichment analysis results of the joint logFC as a circle diagram
(Figure 4E) and the KEGG enrichment analysis results of the joint
logFC as a chord diagram (Figure 4F).

3.5 GSEA of the MAFLD dataset

To determine the effects of the gene expression levels on the
occurrence of MAFLD, we analyzed the expression of the genes in
the MAFLD datasets and the BPs, CCs, and MFs enriched for these
genes by GSEA (Figure 5A). p < 0.05 and FDR values (q-values) <

FIGURE 1
MAFLD dataset de-batch processing. (A, B)MAFLD dataset removes the batch effect. (A) The box plot before processing. (B) The boxplot plot after
processing. (C, D) NAFLD dataset removes the batch effect. (C) The PCA plot before processing. (D) The PCA plot after processing. (E, F) Box plot of
normalized processing before (E) and after (F) of the GSE89632 dataset. MAFLD: metabolic dysfunction-associated fatty liver disease; PCA: principal
component analysis.
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FIGURE 2
Differential gene expression analysis of the MAFLD dataset. (A) MAFLD dataset volcano plot of differential expression gene analysis in the
steatohepatitis (group: MAFLD) and Control (group: Control) groups. Green represents downregulated genes and yellow represents upregulated up-
regulated genes (B) Venn diagram of DEGs and ferroptosis-related genes in theMAFLD dataset. (C)Complex numerical heatmap of FRDEGs in theMAFLD
dataset. Yellow represents positive correlation and green represents positive correlation (D) Correlation analysis of the FRDEGs in the MAFLD
dataset. Yellow represents positive correlation and green represents positive correlation (E) Chromosome localization map of the FRDEGs. MAFLD:
metabolic dysfunction-associated fatty liver disease; FRDEGs: ferroptosis-related differentially expressed genes; DEGs: differentially expressed genes. ns,
p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly significant; and ***p < 0.001, very highly significant.
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0.05 were the screening criteria for significant enrichment. The
results showed that the expression levels of genes in the MAFLD
dataset were significantly enriched in the microglia pathogen
(Figure 5B), interleukin-10 signaling (Figure 5C), FcγR-mediated
phagocytosis (Figure 5D), and cholesterol biosynthesis pathways
(Figure 5E) (Figures 5A–E; Supplementary Table S4).

3.6 Diagnostic and prognostic performance
of the FRDEG model

To determine the diagnostic value of the 13 FRDEGs in the
MAFLD dataset, we used LASSO regression analysis to construct a
FRDEG diagnostic model (Figure 6A). LASSO regression was based
on linear regression by increasing the penalty term (the absolute
value of the lambda slope) and improving the model’s generalization
ability. We also visualized the LASSO regression results and
obtained the LASSO variable trajectory map (Figure 6B). The
figure shows that we used eight FRDEGs, namely, ACSL4,
CHAC1, ENO3, ENPP2, FABP4, FAT1, ITIH3, and SQLE. Next,
we visualized the expression of the eight FRDEGs in the FRDEG
diagnostic model in different groups using a forest map (Figure 6C).
The coefficients of the eight genes based on the LASSO analysis were
multiplied by the expression of the corresponding genes and
summed to establish a MAFLD prediction score. We calculated
the final prediction score for each sample and then drew its ROC
curve using the prediction score. The results showed that the
FRDEG diagnostic model could accurately predict MAFLD
(AUC = 0.922, Figure 6D).

We performed uni- and multivariate Cox regression analyses of
the eight FRDEGs (ACSL4, CHAC1, ENO3, ENPP2, FABP4, FAT1,
ITIH3, and SQLE) and constructed a Cox regressionmodel. Next, we
performed a nomogram analysis to determine the prognostic ability
of the model and drew a nomogram (Figure 6E); thereafter, we
performed a prognostic calibration analysis of the nomograms of the

univariate and multivariate Cox regression models and calibration
curves (Figure 6F). Finally, we used DCA to evaluate the role of the
constructed Cox regressionmodel in clinical practice. The results are
shown in Figure 6G.

3.7 PPI, mRNA-miRNA, mRNA-TF, and
mRNA-drug interaction networks

We used the STRING database for eight FRDEGs in the FRDEG
diagnostic model (ACSL4, CHAC1, ENO3, ENPP2, FABP4, FAT1,
ITIH3, and SQLE) for the PPI analysis (minimum required
interaction score: medium confidence [0.150]). Eight FRDEG PPI
networks were constructed. We used Cytoscape software to visualize
the interaction relationships (Figure 7A), with FRDEGs associated
with other nodes in the PPI network identified as key genes in
MAFLD (hub genes). Seven hub genes were obtained: ACSL4,
CHAC1, ENO3, ENPP2, FABP4, FAT1, and SQLE.

We predicted that miRNAs interact with these seven key genes
using the miRDB database and the mRNA-miRNA data from the
ENCORI database. Next, we visualized the mRNA-miRNA
interaction network using Cytoscape software (Figure 7B). Our
mRNA-miRNA interaction network comprised five hub genes
(FRDEGs: ACSL4, CHAC1, ENPP2, FAT1, and SQLE) and
72 miRNA molecules to form 76 mRNA-miRNA interaction pair
relationships. Specific mRNA-miRNA interaction relationships are
presented in Supplementary Table S5.

We searched for hub genes binding to TFs through the CHIPBase
(version 2.0) and hTFtarget databases. After the interaction relationship
was downloaded, the interaction relationship data for six genes (ACSL4,
CHAC1, ENO3, ENPP2, FAT1, and SQLE) and 48 TFs were obtained
and visualized through the Cytoscape software (Figure 7C). The hub
gene ENO3 had the most interaction relationships (26 pairs) with TF in
the mRNA-TF interaction network. Specific mRNA-TF interaction
relationships are presented in Supplementary Table S6.

TABLE 2 Ferroptosis-related differentially expressed gene information list.

Gene symbol Description Category logFC p-value AveExpr

1 ACSL4 Acyl-CoA Synthetase Long-Chain Family Member 4 Protein Coding 0.823464 0.003938 5.828833

2 CHAC1 ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1 Protein Coding −0.788984 0.002374 4.913718

3 ENO3 Enolase 3 Protein Coding 1.221403 0.000009 7.313875

4 ENPP2 Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 Protein Coding 0.531732 0.020691 7.975373

5 FABP4 Fatty Acid Binding Protein 4 Protein Coding 0.887550 0.001471 5.331615

6 FADS2 Fatty Acid Desaturase 2 Protein Coding 0.883478 0.000177 8.214937

7 FASN Fatty Acid Synthase Protein Coding 0.594994 0.019310 8.275047

8 FAT1 FAT Atypical Cadherin 1 Protein Coding 0.753564 0.000293 7.632159

9 FNDC5 Fibronectin Type III Domain Containing 5 Protein Coding 0.758143 0.004707 7.124574

10 ITIH3 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 Protein Coding −0.521859 0.000016 11.171580

11 NR4A1 Nuclear Receptor Subfamily 4 Group A Member 1 Protein Coding −0.650639 0.011771 6.054939

12 SCD Stearoyl-CoA Desaturase Protein Coding 0.850099 0.000569 8.355172

13 SQLE Squalene Epoxidase Protein Coding 0.864208 0.000283 7.042331
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FIGURE 3
Differential analysis of FRDEG expression and verification in theMAFLD dataset. (A)Group comparison plot of the FRDEG expression difference analysis
in theMAFLD dataset. (B–N) The ROC curves for the FRDEGs ACSL4 (B),CHAC1 (C), ENO3 (D), ENPP2 (E), FABP4 (F), FADS2 (G), FASN (H), FAT1 (I), FNDC5 (J),
ITIH3 (K), NR4A1 (L), SCD (M), and SQLE (N) in the MAFLD dataset. (O) Group comparison diagram of the differences the expression levels of FRDEGs in the
GSE89632 dataset. ns, p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly significant; and ***p < 0.001, very highly significant. MAFLD:
metabolic dysfunction-associated fatty liver disease; FRDEGs: ferroptosis-related differentially expressed genes;ROC: receiver operating characteristic curve.
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FIGURE 4
FRDEG functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis. (A, B) Results of the GO function enrichment analysis of the
FRDEGs are displayed as (A) a bubble diagram and (B) a ring network diagram. (C, D) Results of the KEGG pathway enrichment analysis results of the
FRDEGs are displayed as (C) an upset diagram and (D) a network diagram. (E) Circle plot display of the GO function enrichment with combined logFC
analysis results for the FRDEGs. (F) Chord plot presentation of the KEGG pathway enrichment analysis combined with the logFC analysis results for
the FRDEGs. The coordinates in the bubble chart (A) represent the GO terms; the bubble color indicates the GO terms showing activation or inhibition;
the orange yellow color indicates activation and the light-green color indicates inhibition. The orange dots in the network diagrams (B, D) represent
specific genes and the light-green circles represent specific pathways. The circle (E) represents the upregulated genes (logFC >0), and the light green dots
represent the downregulated genes (logFC <0). FRDEGs: ferroptosis-related differentially expressed genes; GO: Gene Ontology; BP: biological process;
CC: cellular component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes. The screening criteria for the GO and KEGG
enrichment entries were the p < 0.05 and FDR value (q-value) < 0.05.
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The CTD was used to identify potential drugs or molecular
compounds for seven hub genes (ACSL4, CHAC1, ENO3, ENPP2,
FABP4, FAT1, and SQLE) based on the mRNA-drug interaction
network. We identified 41 potential drugs or molecular compounds
corresponding to these seven hub genes (Figure 7D). Among them,
we found 23 drugs or molecular compounds that target FABP4.
Specific mRNA-drug interaction relationships are presented in
Supplementary Table S7.

3.8 Identification of the disease subtypes
associated with MAFLD

To explore the differences in FRDEG expression in the
MAFLD group, we used the “ConsensusClusterPlus” package
in the R software based on 13 FRDEGs (ACSL4, CHAC1,
ENO3, ENPP2, FABP4, FADS2, FASN, FAT1, FNDC5, ITIH3,
NR4A1, SCD, and SQLE). We used consensus clustering
methods to identify the disease subtypes associated with
MAFLD. Two MAFLD subtypes (cluster1 and cluster2) were
identified (Figures 8A, B). MAFLD subtype 1 (cluster1)
contained 13 samples, and MAFLD subtype 2 (cluster2)
contained 14 samples. The results of the PCA clustering

showed significant differences between the two subtypes of the
disease (Figure 8C). We used the R package pheatmap to draw a
heatmap showing the differential expression of 13 FRDEGs in the
two disease subtypes in the MAFLD dataset (Figure 8D).

Next, we used the Mann–Whitney U test (Wilcoxon rank sum
test) to analyze the correlations between the expression levels of the
13 FRDEGs in the MAFLD dataset and the two MAFLD subtypes
(cluster1 and cluster2). We displayed the correlation analysis results
as group comparison plots (Figure 8E). According to Figure 8E, the
expression levels of the FRDEGs (CHAC1, ENPP2, FABP4, FASN,
FAT1, ITIH3, and SQLE) did not differ significantly between the
different MAFLD subtypes (p ≥ 0.05), whereas those of ACSL4,
ENO3, FADS2, FNDC5, NR4A1, and SCD differed significantly
between the different MAFLD subtypes (p < 0.05). Subsequently,
we plotted the ROC curves of six FRDEGs (ACSL4, ENO3, FADS2,
FNDC5, NR4A1, and SCD) in the two disease subtypes of the
MAFLD dataset (Figures 8F–K). As shown in Figure 8, the
expression levels of ACSL4 (AUC = 0.791, Figure 8F), ENO3
(AUC = 0.753, Figure 8G), FADS2 (AUC = 0.764, Figure 8H),
FNDC5 (AUC = 0.852, Figure 8I), NR4A1 (AUC = 0.742, Figure 8J),
and SCD (AUC = 0.799, Figure 8K) in the MAFLD subtypes were
somewhat correlated with their grouping in either of the two
MAFLD subtypes (cluster1 and cluster2).

FIGURE 5
GSEA of the MAFLD dataset. (A) GSEA of the MAFLD dataset. (B–E) The DEGs in the MAFLD dataset were significantly enriched in (B) the microglia
pathogen phagocytosis pathway, (C) interleukin-10 signaling, (D) FcγR-mediated phagocytosis, and (E) cholesterol biosynthesis pathway. MAFLD:
metabolic dysfunction-associated fatty liver disease; DEGs: differentially expressed genes; GSEA: gene set enrichment analysis. The screening criteria for
significant enrichment for GSEA were p < 0.05 with an FDR value (q-value) < 0.05.
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FIGURE 6
Construction of the FRDEG diagnostic model and its prognostic performance. (A) The least absolute shrinkage and selection operator (LASSO)
binary logistic regression model used for constructing the FRDEG diagnostic model of MAFLD. The parameter set: seed (2), family = “binomial” performs
the LASSO regression and runs for 1,000 cycles. (B) Ten-time cross-validation for tuning parameter selection in the LASSO model. (C) Forest plot of
FRDEGs in the FRDEGdiagnosticmodel. (D) The ROC curve of the FRDEG diagnosticmodel in theMAFLD dataset. (E)Nomogram plot, (F) calibration
curve plot, and (G)DCA plot of the FRDEG univariate andmultivariate Cox regressionmodels in the FRDEG diagnosticmodel. In the DCA figure, the X-axis
represents the probability threshold or the threshold probability and the Y-axis represents net income. The results could be judged by observing the x
value range of the line of All positive and the line of All negative. The larger the x value range, the better the model effect. FRDEGs: ferroptosis-related
differentially expressed genes; MAFLD: metabolic dysfunction-associated fatty liver disease; ROC: receiver operating characteristic curve; DCA: decision
curve analysis.
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FIGURE 7
The PPI network, mRNA-miRNA, mRNA-TF, and mRNA-drug interaction networks were constructed. (A) The PPI networks of the FRDEGs. (B)
mRNA-miRNA, (C)mRNA-TF, and (D)mRNA-drug interaction networks of key genes. The sky-blue oval block in the mRNA-miRNA interaction network
(B) is mRNA; the orange octagonal blocks represent themiRNAs. The sky-blue oval blocks in themRNA-TF interaction network (C) represent themRNAs;
the light-green diamond blocks represent the TFs. The sky-blue oval blocks in themRNA-drug interaction network (D) represent themRNAs and the
light-red hexagonal blocks represent the specific molecular compounds (drugs). FRDEGs: ferroptosis-related differentially expressed genes; PPI
network: protein–protein interaction network; TF: transcription factor.
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FIGURE 8
Building the related subtypes ofMAFLD. (A)Diagramof the consistent clustering results forMAFLDdiseases. (B)Delta plot of the different numbers of
types in the consensus cluster. (C) PCA of the two MAFLD subtypes (cluster1 and cluster2). (D) A complex numerical heatmap of FRDEGs in different
disease subtypes. The color is darker represents the expression of genes is higher. (E)Group comparison plots of FRDEGs in different disease subtypes of
MAFLD. ns, p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly significant; and ***p < 0.001, highly significant. (F–K) The ROC curves of
FRDEGs in the different disease subtypes of MAFLD. (F) ACSL4, (G) ENO3, (H) FADS2, (I) FNDC5, (J) NR4A1, and (K) SCD. In the PCA plots, complex
numerical heatmaps, and group comparison plots, the orange and light-green colors indicate cluster1 and cluster2, respectively. MAFLD: metabolic
dysfunction-associated fatty liver disease; PCA: principal component analysis; FRDEGs: ferroptosis-related differentially expressed genes; ROC: receiver
operating characteristic curve.
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FIGURE 9
Analysis of ssGSEA immune infiltration between the two MAFLD subtypes. (A) Group comparison of ssGSEA immune infiltration analysis results
between two MAFLD subtypes. (B, C) Results of the correlation analysis of the abundance of infiltrating immune cells in the MAFLD subtypes cluster1 (B)
and cluster2 (C) are shown. (D, E)Heatmap of the correlation between immune cells and FRDEGs in the MAFLD subtypes cluster1 (D) and cluster2 (E). ns,
p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly significant; and ***p < 0.001, very highly significant. MAFLD:metabolic dysfunction-
associated fatty liver disease; ssGSEA: single-sample gene set enrichment analysis; FRDEGs: ferroptosis-related differentially expressed genes.
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3.9 Analysis of the differential immune
characteristics between the two MAFLD
subtypes

To explore the difference in immune infiltration between the
different MAFLD subtypes (cluster1 and cluster2), we calculated
the infiltration abundance of 28 immune cells in the samples of

MAFLD subtypes in the MAFLD dataset using the ssGSEA
algorithm, analyzed the infiltration abundance using the
Mann–Whitney U test, and displayed the results as a group
comparison plot (Figure 9A). The results showed that the
infiltration abundance of 15 immune cells varied significantly
between the MAFLD subtypes in the MAFLD dataset (p < 0.05).
These immune cell types were activated CD4+ T cells, activated

FIGURE 10
Immune scores between the twoMAFLD disease subtypes (estimate). (A, B) The immune score results are shown between the twoMAFLD subtypes.
(A) ESTIMATE, (B) Immune. (C–E) Scatter plot of the correlation between the ESTIMATE Score of the two MAFLD subtypes and the FRDEGs FNDC5 (C),
NR4A1 (D), and SCD (E). (F–H) Scatter plots of correlation between the Immune Scores of the two MAFLD subtypes and the FRDEGs FNDC5 (F), NR4A1
(G), and SCD (H). If the correlation coefficient (r) value in the correlation scatter plot is positive, the two variables may show a positive correlation;
conversely, if the r value is negative, the two variables may show a negative correlation. Furthermore, absolute r values above 0.8, between 0.5 and 0.8,
between 0.3 and 0.5, and <0.3 indicate a strong, moderate, general, and weak or no correlation, respectively. The horizontal axis of the correlation scatter
plot represents the immune score of the samples of theMAFLD subtypes cluster1 and cluster2, and the vertical axis represents the expression levels of the
FRDEGs. p ≥ 0.05, not significant; p < 0.05, significant; p < 0.01, highly significant; p < 0.001, very highly significant. MAFLD: metabolic dysfunction-
associated fatty liver disease.
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dendritic cells, effector memory CD8+ T cells, eosinophils,
immature dendritic cells, macrophages, mast cells, myeloid-
derived suppressor cells (MDSCs), memory B cells, natural
killer T cells, neutrophils, plasmacytoid dendritic cells,
regulatory T cells, T follicular helper cells, and Type 1 T
helper cells. Among them, the infiltration abundance of
activated dendritic cells, eosinophils, immature dendritic cells,
MDSCs, and neutrophils differed between the MAFLD subtypes,
with substantial significance (p < 0.01).

We calculated the correlation between the infiltration
abundance of 28 immune cells in the cluster1 and
cluster2 samples and six selected immune cells (eosinophils,
effector, and memory CD8+ T cells, Type 1 T helper cells,
MDSCs, neutrophils, and activated dendritic cells), with high
correlations (Figures 9B, C). The results for the cluster1 and
cluster2 subtypes are shown in Figures 9B, C, respectively. The
greatest correlation was observed between the infiltration
abundance of neutrophils and activated dendritic cells
(Figures 9B, C).

We also calculated the correlation between the infiltration
abundance of 28 immune cells and the expression of six FRDEGs
(ACSL4, ENO3, FADS2, FNDC5, NR4A1, and SCD) in the patient
samples of cluster1 (Figure 9D) and cluster2 (Figure 9E). The results
showed a significant correlation between immune cell abundance and

the expression of the six FRDEGs in both subtypes. Among the
FRDEGs, NR4A1 expression showed a significant positive
correlation with the infiltration abundance of most immune cells in
both MAFLD subtypes.

The ESTIMATE package used the unique transcriptional profiles
of cancer samples to infer the content of tumor cells and different
infiltrating normal cells, mainly through RNA-seq data, to calculate
the immune and mechanistic score. We then evaluated the purity of
the tumor. Subsequently, we assessed the collated MAFLD dataset
expression profile data using the R ESTIMATE package and obtained
the immune andmatrix scores for samples from theNAFLD subtypes,
cluster1, and cluster2, in the MAFLD dataset. After processing the
results, we obtained the ESTIMATE, Immune, and Stromal scores of
these samples. We showed the score results by group comparison
diagram (Figures 10A, B, Supplementary Figure S1A), the ESTIMATE
(Figure 10A) and Immune (Figure 10B) scores differed significantly
between the MAFLD subtypes (p < 0.05), whereas the Stromal score
(Figure 10C) did not differ significantly between subtypes (p > 0.05).

We analyzed the correlation between the ESTIMATE and
Immune Scores of the two MAFLD disease subtype groups and
the expression levels of six FRDEGs (ACSL4, ENO3, FADS2, FNDC5,
NR4A1, and SCD) and displayed the specific analysis results using a
correlation scatter plot (Figures 10C–H; Supplementary Figure S2B-
G). The MAFLD disease subtype, cluster1, cluster2, and the grouped

FIGURE 11
Differential analysis of FRDEG expression in clinical subgroups. Group comparison diagram of the analyses of the differences in FRDEG expression
with regard to different clinical characteristics (sex, BMI) in the MAFLD dataset. ns, p ≥ 0.05, not significant; *p < 0.05, significant; **p < 0.01, highly
significant; ***p < 0.001, very highly significant. FRDEGs: ferroptosis-related differentially expressed genes. The validation of the expression of candidate
genes in the cell MAFLD model.
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sample ESTIMATE and Immune Scores compared with the
expression levels of FADS2, NR4A1, and SCD were statistically
significant (p < 0.05). We discovered negative correlation and
moderate positive correlation between the expression levels of
SCD (−0.3 > r > −0.5) and the NR4A1 (0.5 < r < 0.8) and
ESTIMATE and Immune Scores, respectively. However, the
expression levels of ACSL4, ENO3, and FNDC5 were negatively
correlated with the ESTIMATE and Immune Scores, but this did not
reach statistical significance (r < 0, p > 0.05).

3.10 Differential analysis of FRDEG
expression in clinical subgroups

To explore the difference in the expression levels of the 13 FRDEGs
(ACSL4, CHAC1, ENO3, ENPP2, FABP4, FADS2, FAT1, FNDC5,
ITIH3, NR4A1, SCD, and SQLE) in the GSE48452 of the MAFLD
dataset, we first compiled the clinical information from the 32 samples
of the GSE48452 dataset and drew the clinical information table
(Supplementary Table S8). We combined specific clinical
characteristic-associated grouping information (sex, age, BMI, leptin,

FIGURE 13
Technical roadmap. GO: Gene Ontology; GSEA: gene set enrichment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; LASSO: least
absolute shrinkage and selection operator; MAFLD: metabolic dysfunction-associated fatty liver disease; DEGs: differentially expressed genes; ROC:
receiver operating characteristic curve; ssGSEA: single-sample gene set enrichment analysis; TF: transcription factors.

FIGURE 12
Expression of candidate genes in the cell MAFLD model. (A) The
expression of NR4A1, FADS2, and SCD in a cell model of MAFLD. *p <
0.05, statistically significant. MAFLD: metabolic dysfunction-
associated fatty liver disease.
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adiponectin) and analyzed the expression levels of the 13 FRDEGs in
GSE48452 samples of the MAFLD dataset and the difference in
expression levels between different groups. We showed the results of
the expression difference analysis through the group comparison
diagram (Figure 11; Supplementary Figure S2). According to
Figure 11, only the expression level of NR4A1 was statistically
significant (symbol * equivalent to p < 0.05) among the
13 FRDEGs, with different clinical information sex groups (male/
female) of the MAFLD samples, and only SCD was statistically
significant between different clinical information BMI groups (≤45/>
45) (symbol * equivalent to p < 0.05). However, in different groups of
clinical information (Supplementary Figure S2), including the age (≤45/
> 45), leptin (≤30/> 30), and adiponectin groups (≤6/> 6), no genes had
statistically significant expression (symbol ns equivalent to p > 0.05).

3.11 Validation of the expression of
candidate genes in the cell MAFLD model

NR4A1, FADS2, and SCD were important in ferroptosis-related
immune infiltration of MAFLD. We validated the above genes in a
cell model of MAFLD using RT-qPCR. The PCR results showed that
compared with the Control group, the expressions of these three
genes were higher in the SHC groups than in the Control groups,
which were statistically significant (Figure 12).

4 Discussion

MAFLD has become a major public health concern (Younossi
et al., 2016) that affects one-third of adults in western nations and is
more prevalent in Asian countries (Li et al., 2019). Limited
pharmacological therapy is available for patients with MAFLD.
Ferroptosis was recently identified as a nonapoptotic form of cell
death (Dixon et al., 2012). Modulation of ferroptosis may have
therapeutic potential in some ferroptosis-related diseases. However,
the pathological process of ferroptosis in MAFLD remains unclear.
Previous reports have stated that the pathological process of
ferroptosis in MAFLD could be directly induced by iron overload
or ferroptosis-related pathways involving selenium and
selenoproteins (Jia et al., 2021; Wu et al., 2021; Zhou et al.,
2022). In this study, we focused on the role of ferroptosis in the
development of MAFLD. We analyzed ferroptosis-related genes
using bioinformatics methods, constructed diagnostic and
prognostic models, and explored the immunologic characteristics
of MAFLD (Figure 13), and provided clues in the search for novel
therapeutic targets for MAFLD, particularly for therapeutic
strategies targeting the ferritin and ferroptosis pathways, which
might have a positive impact on improving the health of the
MAFLD patients.

Our findings revealed that ferroptosis-related genes were
closely related to the DEGs of MAFLD. A total of 13 MAFLD
FRDEGs were obtained: ACSL4, CHAC1, ENO3, ENPP2, FABP4,
FADS2, FASN, FAT1, FNDC5, ITIH3, NR4A1, SCD, and SQLE.
Among them, ENO3, FABP4, FADS2, FAT1, and ITIH3 were
expressed at different levels between the different groups in the
MAFLD dataset, with a high degree of statistical significance.
Eight FRDEGs (ACSL4, CHAC1, ENO3, ENPP2, FABP4, FAT1,

ITIH3, and SQLE) were used to construct diagnostic models. The
results showed that the FRDEG diagnostic model could
effectively predict the occurrence of steatohepatitis in patients
with MAFLD (AUC = 0.922, Figure 6D). The diagnostic
effectiveness of FRDEGs in MAFLD has not previously been
investigated, despite being widely acknowledged as diagnostic
and/or prognostic indicators in various tumor types, such as
hepatocellular carcinoma (Liang et al., 2020), breast cancer (Lu
et al., 2022), pancreatic adenocarcinoma (Yang et al., 2022),
cholangiocarcinoma (Wang et al., 2022), and lung
adenocarcinoma (Li F. et al., 2021). To our knowledge, this
study is the first to investigate the diagnostic use of FRDEGs
in MAFLD. Eight FRDEGs were analyzed using multivariate Cox
regression analysis, and a diagnostic model was constructed.
Furthermore, a nomogram was successfully constructed to
predict the risk of steatohepatitis. Finally, we used a DCA to
evaluate the clinical utility of the constructed Cox regression
model (Figure 6G). Therefore, the prognostic signature could
determine the risk of steatohepatitis in patients with MAFLD and
contribute to therapeutic guidelines.

The results of GO analysis, KEGG pathway analysis, and GSEA
of the 13 FRDEGs indicated that the pathways were related to fatty
acid biosynthesis and metabolism, PPAR signaling, and cholesterol
biosynthesis. This is consistent with previous studies that confirmed
ferroptosis-related gene participation in MAFLD progression
through these signaling pathways (Lu et al., 2021; Yao et al.,
2023). We used the STRING database for PPI analysis, and seven
hub genes were identified: ACSL4, CHAC1, ENO3, ENPP2, FABP4,
FAT1, and SQLE. An mRNA-miRNA interaction network
comprising five hub genes (FRDEGs: ACSL4, CHAC1, ENPP2,
FAT1, and SQLE) and 72 miRNA molecules, forming 76 mRNA-
miRNA interaction pair relationships, were constructed. Future
research can explore this mRNA-miRNA interaction network
further, like investigating miRNA alteration or DNA methylation
(Anuraga et al., 2021; Modhukur et al., 2018; Xing et al., 2021).
Furthermore, we constructed mRNA-TF interaction networks and
discovered that the key gene ENO3 had the most interactions with
TFs, forming 26 mRNA-TF interaction pair relationships. A study
has shown that ENO3 promoted the progression of NASH by
negatively regulating ferroptosis (Lu et al., 2021). A recent review
(Jia et al., 2021) summarized ferroptosis-related drugs, whose
inhibition targets were System xc-, GPX4, PUFAs, HMG-CoA
reductase, ACSL4, HO-1, and NRF2. Through the CTD, our
study identified 41 potential drugs or molecular compounds
corresponding to seven key genes, including ACSL4, which
represented potential drugs or molecular compounds. A study
(Tsurusaki et al., 2019) used rosiglitazone, an ACSL4 inhibitor, to
investigate ferroptosis in patients with MAFLD. We aim to conduct
a more in-depth study of this gene.

Innate immunity is highly involved in MAFLD development.
Increasing evidence supports the significant immunological
contribution to the pathology of steatohepatitis (Carranza-Trejo
et al., 2021; Nati et al., 2022), and ferroptosis-related immune
infiltration has also been inferred. According to Linkermann
et al., cells undergoing ferroptosis emit damage-associated
chemical patterns that cause inflammation and activate the
innate immune system (Tang et al., 2011). Furthermore,
Tsurusaki et al. demonstrated that hepatic ferroptosis is crucial

Frontiers in Cell and Developmental Biology frontiersin.org20

Lian and Tang 10.3389/fcell.2023.1199846

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1199846


for triggering inflammation in people withMAFLD (Tsurusaki et al.,
2019).

In this study, two subtypes (cluster1 and cluster2) of MAFLD
were identified. The results showed that the infiltration
abundance of 15 immune cells differed significantly between
the two MAFLD subtypes (p < 0.05), and the infiltration
abundance of these immune cells was higher in cluster2 than
in cluster1 (Figure 10A). This finding suggests that cluster2 may
represent an “immunoactive” type, whereas cluster1 was the
“immunosuppressive” type, in which neutrophils and activated
dendritic cells (ADCs) appeared to be the two most abundant of
the 15 immune cell types (Figures 9B, C). According to previous
research, the neutrophil-to-lymphocyte ratio is significantly and
independently related to advanced inflammation and fibrosis
and may represent a valid diagnostic biomarker for
steatohepatitis and terminal fibrosis in patients with MAFLD
(Alkhouri et al., 2012; Khoury et al., 2019). Infiltrating
neutrophils in the liver release cytokines, which can alter the
progression of steatohepatitis (Wang et al., 2021); therefore,
neutrophils are strongly associated with the development of
fibrosis in patients with MAFLD. ADCs connect the innate
and adaptive immune responses by internalizing antigens and
transporting them to local lymph nodes (Jenne and Kubes, 2013;
Schuster et al., 2018). The function of ADCs in MAFLD remains
unclear and controversial. According to Henning et al., ADC
depletion worsens hepatic fibrosis and inflammation, indicating
that ADCs slow the progression of steatohepatitis (Henning
et al., 2013). In contrast, Connolly et al. suggested that ADCs
promote the progression of liver fibrosis and inflammation in
NASH (Connolly et al., 2009); this is consistent with our
findings.

We calculated the correlation between the infiltration
abundance of 28 immune cells and the expression of six
FRDEGs (ACSL4, ENO3, FADS2, FNDC5, NR4A1, and SCD)
in patient samples of cluster1 (Figure 9D) and cluster2
(Figure 9E) and showed a significant correlation between
immune cell content and the expression of three FRDEGs
(NR4A1, FADS2, and SCD). We validated the expression of
the three genes in the MAFLD cell model. The results showed
that the expression of the genes in the steatohepatitis group was
significantly higher than that in the Control group, which
matched the bioinformatics analysis. NR4A1 is a nuclear
receptor of the NR4A family, which primarily acts as a
transcription factor to regulate the expression of multiple
genes. In MAFLD development, hyperactivated NR4A1
preferentially drives DNA-PKcs/p53 signaling, resulting in
mitochondrial dysfunction (Zhou et al., 2018). FADS2 is a
crucial enzyme involved in the metabolism of n-3 and n-6
polyunsaturated fatty acids, which enable alpha-linolenic acid
and linoleic acid to generate long-chain polyunsaturated fatty
acids, contributing to MAFLD development. Numerous
investigations have indicated that increased FADS2 expression
may play a role in NAFLD pathophysiology (Arendt et al., 2015;
Chen et al., 2017; Walle et al., 2019). SCD is a key gene involved
in lipid metabolism and ferroptosis. Recent research has outlined
how SCD influences cancer progression through its effects on
lipid metabolism and cell proliferation, migration, invasion, and
metastasis (Wohlhieter et al., 2020). These studies are consistent

with our findings. Therefore, immunological mechanisms play a
key role in MAFLD pathogenesis. Future, we aim to target the
above genes to slow down the development of MAFLD through
immunotherapy.

This study had a few limitations. First, due to the
retrospective study design and the use of publicly available
data, we could not include additional demographic and
clinical variables, such as illness progress, complications, and
individual treatment, for more extensive longitudinal analyses.
Second, the public data for the current study MAFLD were all
obtained from NAFLD patients, which leaded to the analysis can
not fully explain the pathogenesis of MAFLD. Third, our list of
ferroptosis-related genes was not complete because it was
obtained from the constantly updated FerrDb. More research
is needed to evaluate the mechanisms of these ferroptosis-related
genes in MAFLD, like using Cancer Cell Line Encyclopedia
(CCLE) database (Barretina et al., 2012; Kao et al., 2021; Li
et al., 2021b) or Proteinatlas or cBioportal (Cerami et al.,
2012; Lamb et al., 2006; Wang et al., 2020)to validate the
results and investigate their role in fibrosis progression to
cancer stage.

5 Conclusion

Summarily, we identified eight hub genes (ACSL4, CHAC1,
ENO3, ENPP2, FABP4, FAT1, ITIH3, and SQLE) that are
potential ferroptosis-related biomarkers for disease diagnosis and
prognosis. The expression of three hub genes (FADS2, NR4A1, and
SCD) correlated with the infiltration abundance of most immune
cells in the two MAFLD subtypes. Therefore, a ferroptosis-related
gene signature was successfully constructed for the diagnosis and
prognosis of steatohepatitis in MAFLD and can promote the
establishment of novel therapeutic approaches and directly
tailored therapy, including immunotherapy.
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