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Febrile seizures (FSs) are convulsions caused by a sudden increase in body
temperature during a fever. FSs are one of the commonest presentations in
young children, occurring in up to 4% of children between the ages of about
6 months and 5 years old. FSs not only endanger children’s health, cause panic and
anxiety to families, but also have many adverse consequences. Both clinical and
animal studies show that FSs have detrimental effects on neurodevelopment, that
cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to
epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However,
the mechanisms of FSs in developmental abnormalities and disease occurrence
during adulthood have not been determined. This article provides an overview of
the association of FSs with neurodevelopmental outcomes, outlining both the
underlying mechanisms and the possible appropriate clinical biomarkers, from
histological changes to cellular molecular mechanisms. The hippocampus is the
brain region most significantly altered after FSs, but the motor cortex and
subcortical white matter may also be involved in the development disorders
induced by FSs. The occurrence of multiple diseases after FSs may share
common mechanisms, and the long-term role of inflammation and γ-
aminobutyric acid (GABA) system are currently well studied.
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1 Introduction of febrile seizures

1.1 Definition and symptoms of febrile seizures

Febrile seizures (FSs) refer to convulsions induced by a sudden increase in body
temperature (>38°C) in the absence of other underlying causes or disorders that induce
convulsions, such as central nervous system (CNS) infections, electrolyte abnormalities,
withdrawal, trauma, genetic predisposition or known epilepsy (Xixis et al., 2022). Children
between the ages of about 6 months and 5 years old are the most likely to experience FSs. FSs
are extremely common, occurring in up to 4% of children in this age group. Some children
have a single FS event, and others have multiple events over early childhood. Approximately
30–40 percent of children who experience one FS will have a recurrence (Patel et al., 2015;
Smith et al., 2019).
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According to National Institutes of Health, symptoms of FSs are
described as following: lose consciousness, both arms and legs will
shake uncontrollably, eye rolling and rigid limbs. Sometimes during
a FS, a child may lose consciousness but will not noticeably shake or
move. FSs are categorized as either simple FSs or complex FSs: 1)
simple FSs last no more than 15 min and this type does not recur
within a 24-h period; 2) complex FSs last longer than 15 min, occur
more than once within 24 h.

In recent years, the pandemic caused by 2019 coronavirus
disease (COVID-19) has aroused widespread concern. One of the
commonest clinical manifestations of COVID-19 is fever, and
COVID-19 has become a common cause of FSs. As of April
2022, 13 million cases of COVID-19 have been reported among
children and adolescents in the United States, accounting for nearly
20% of all cases in the United States. Among 15,137 children
hospitalized for COVID-19, the most common neurological
complication was FSs (3.9%) (Antoon et al., 2022). Although the
incidence of seizures in children with fever during the COVID-19
pandemic has significantly increased (Iijima et al., 2022; Joung et al.,
2023), in the latest retrospective case-control study, the risk of FSs
secondary to COVID-19 did not increase compared to other causes
(Hanlon et al., 2023). Meanwhile, a retrospective observational
cohort study showed an increased frequency of complex FSs
diagnoses during the COVID-19 pandemic (Cadet et al., 2023).
Further analysis of the clinical features of FSs in patients with and
without COVID-19 revealed that patients with FSs in COVID-19
tended to be predominantly male and had a later age of onset
compared with non-Covid-19 patients (Seo et al., 2023). Because of
the atypical age of onset and the greater likelihood of multiple
convulsive episodes, patients (especially males) with COVID-19
require vigilance for FSs.

1.2 Therapeutics of FSs

Since the 1990 s, hundreds of articles have been published on
the drug management of FSs. However, this has been a
controversial area, and there are various views on drug
management. This controversy reflects, in part, the fact that it
is uncertain whether prophylactic medications with
antiepileptics and antipyretics are effective without important
adverse effects. There is no specific treatment for simple or
complex FSs other than appropriate management of
underlying etiologies driving the persistent febrile illness.
Antipyretic drugs do not reduce the recurrence of FSs in
children with a history of FSs (Lux, 2010). Diazepam in
combination with acetaminophen reduced more seizure
recurrences without serious adverse events compared with
acetaminophen alone (Tanaka et al., 2022). In most patients in
whom a febrile illness leads to frequent recurrence of FSs, studies
have evaluated the use of benzodiazepines as a bridging measure
during a subsequent febrile episode for several days (Printz et al.,
2016; Guedj et al., 2017; Renda et al., 2020). Febrile status
epilepticus can occur in less than 10% of children during the
first FS. Rectal diazepam is used to abort this disorder if it lasts
more than 5 min. There are also recommendations for intranasal
midazolam. However, such treatment may have adverse effects
on the child’s behavior and cognitive development (Xixis et al.,

2022). The decision to treat thus requires assessment of the
potential risks and benefits to children. Phenobarbital at times
of fever has been proven to be ineffective, probably because of the
delay in achieving appropriate serum and tissue levels (Farwell
1990; Herranz 1988). To avoid the side effects of continuous
antiepileptic drugs (AEDs), rapid-acting antiepileptics given only
during fever periods have been used in an attempt to reduce the
risk of recurrent FSs. To date, only prophylactic diazepam
(administered orally or rectally) has been studied in placebo-
controlled trials. Intermittent diazepam reduces the recurrence
rate in children with FSs, but the incidence of adverse effects is as
high as 30% (Offringa et al., 2017; Offringa et al., 2021). Current
reports have confirmed the exact efficacy of levetiracetam with an
extremely low incidence of adverse effects. If this effect is
repeated in other studies, levetiracetam may be considered as
a prophylactic treatment option in selected families where
anxiety over potential FSs recurrence is high. Melatonin
treatment had a similarly low incidence of adverse events, and
further studies are needed to demonstrate its effectiveness versus
placebo (Xixis et al., 2022).

2 Etiology of FSs

2.1 Generation of FSs

Any fever of adequate height may cause FSs. Some clinical
studies found that upper respiratory tract infection was
determined the commonest disease (81.6%) in FSs followed by
acute gastroenteritis (15.4%) and urinary tract infection (3%),
respectively (Gunes et al., 2021), but no specific febrile cause was
more likely to cause FSs. A large number of clinical and
preclinical studies have uncovered the pathological features
and possible etiological factors of FSs, such as mutation of
fever response genes and γ-aminobutyric acid (GABA) gene,
ion channel activity and inflammation (Hessel et al., 2014;
Chen et al., 2019). However, there is no generally
acknowledged mechanism of FSs.

Briefly, mutation in SCN1A gene, encoding the voltage-gated
sodium channel (VGSC) NaV1.1, is widely recognized as a leading
cause of genetic FSs, due to the decrease in the Na+ current density,
mainly affecting the inhibitory neuronal transmission
(Kasperaviciute et al., 2013; Scalise et al., 2020; Scalise et al.,
2022). However, failure to detect association between
polymorphisms of SCN1A and FSs in Chinese patients suggests
that the correlation between SCN1A mutation and FSs may just
consist in specific races (Zhang et al., 2010). Mutation in Na+

-channel beta1 subunit gene SCN1B, which usually leads to loss
of function, is also associated with FSs (Wallace et al., 1998;
Audenaert et al., 2003; Steinlein, 2004). SCN2A is a well-
established epilepsy gene, encoding the neuronal sodium channel
NaV1.2, may also contribute to the generation of FSs (Saitoh et al.,
2015; Berseem et al., 2022; Skotte et al., 2022). GABRG2 mutation
associated with FSs has been elucidated (Audenaert et al., 2006;
Todd et al., 2014; Haerian et al., 2016). Some other gene mutations
are also identified, such as SRP9, ADGRV1 and the fever response
genes PTGER3, IL-6 and IL-10 (Shahrokhi et al., 2017; Chen et al.,
2019). Last year, the largest genetic study of FSs to date further
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identified several novel loci strongly associated with FSs. Variants at
two loci were functionally associated with altered expression of the
fever responsive genes PTGER10 and IL-2, and the other four loci
contained genes (BSN, ERC2, GABRG1, HERC1) influencing
neuronal excitability by regulating neurotransmitter release and
binding, vesicular transport or membrane trafficking at synapses
(Hessel et al., 2014; Han et al., 2020; Skotte et al., 2022). Mutations in
several genes strongly associated with fever related epilepsy
syndromes are also notable, such as STX1B, encoding a
presynaptic protein, and CELF4 haploinsufficiency mutations,
encoding a splicing regulator (Halgren et al., 2012; Schubert
et al., 2014). FSs are serious adverse events following measles,
mumps and rubella (MMR) vaccination. A genome-wide
association scan identified two loci clearly associated with MMR
related febrile seizures, harboring the interferon stimulated gene
IFI44L and the measles virus receptor CD46. Two loci associated
with FSs in general, ANO3 (also known as TMEM16C), and locus
associated with serum magnesium levels have also been identified
(Feenstra et al., 2014; Sisodiya, 2014).

Similar to epilepsy, the onset of FSs is also closely associated with
neural excitation-inhibition imbalance. Ion channels are key gating
channels that control intra and intercellular ion currents as the
important regulators of neuronal network excitability. The direct
effect of heat on ion channels localized to the site of action potential
initiation potentially causes a profound increase in neuronal excitability,
which is likely to contribute to FSs genesis (Thomas et al., 2009). At
present, several ion channels are known to be involved in FSs, including
KCC2 (K+ -Cl− co-transporter, the chloride exporter), NKCC1(Na+-K+-
2Cl− cotransporter, the chloride importer) (Asisipo et al., 2020), TRPV1
(transient receptor potential vanilloid-1) (Barrett et al., 2018) and TRPC3
(a member of canonical transient receptor potential channel) (Sun et al.,
2018).

Inflammatory elements have major roles in FSs pathogenesis. A
meta-analysis showed that IL-6 (−572, −174, −597) polymorphisms
were significantly associated with susceptibility to FSs (Chen et al.,
2019). At the protein level, several meta-analyses and researches on
animal models suggest that cerebrospinal fluid (CSF) cappase-1/IL-
1β level, and serum high mobility group box protein 1 (HMGB1),
tumor necrosis factor-α (TNF-α), IL-1β, IL-6 level are associated
with an increased risk of FSs in children (Choi et al., 2011; Kwon
et al., 2018; Tang et al., 2020; Carman et al., 2021). These
inflammatory cytokines impact FSs through changing neuronal
excitability, regulating GABAergic transmission, inhibiting
BDNF-TrkB signaling or enhancing the NF-κB pathway (Wang
et al., 2019; Sun et al., 2020; Tang et al., 2020).

There are other hypotheses about FSs, for instance, respiratory
alkalosis induced by hyperthermia (Schuchmann et al., 2006; Barrett
et al., 2018), iron deficiency (Vaswani et al., 2010; Papageorgiou
et al., 2015), and the role of immunoreactive-arginine vasopressin
and immunoreactive-somatostatin (Nagaki et al., 1996)
(Supplementary Table S1).

2.2 Recurrence of FSs

According to some follow-up studies, the risk of FSs recurrence
decreased linearly with increasing age (−2% per month) and the risk
was higher among patients with abnormal electroencephalogram

(EEG) (Cappellari et al., 2018). Younger age at first seizure, short
duration of fever before the onset of first FS, lower temperature at
onset, and family history of FS are risk factors of recurrence of FSs in
children (Patel et al., 2015; Kumar et al., 2019).

Currently, however, the recurrence of FSs cannot be effectively
predicted, and reliable biomarkers and diagnostic evidence are
lacking. Current researches on the mechanisms of recurrence are still
progressing. A case-control study in a Romanian pediatric population
reported that recurrent crises and repeated episodes of seizures are more
frequent in the GABRG2 Asn196Asn TT genotype polymorphism, with
8 times higher risk of developing recurrent FSs (Butila et al., 2018).
TRPV1 is a nonselective cation channel, as a key component implicated
several inflammatory diseases. A massive amount of evidence has
demonstrated that TRPV1 is extensively expressed in the CNS and
there might be a close relationship between TRPV1 and
neuroinflammation (Kong et al., 2014; Yang et al., 2019; Zhang et al.,
2021). It is found that TRPV1 promotes recurrent FSs by increasing pro-
inflammatory cytokines (Huang et al., 2015), and TRPV1 was mainly
derived from microglia to participate in neuroinflammatory response
and recurrent FSs (Kong et al., 2019). There are also several blood
analyses. C-reactive protein level, blood glucose level, serum sodium
level, serum zinc level and vitamin D were indicated significant
association with recurrent FSs (Hugen et al., 1995; Kiviranta and
Airaksinen, 1995; Lee and Kim, 2012; Waqar Rabbani et al., 2013;
Arul et al., 2020; Bhat et al., 2020; Kubota et al., 2021;Miyagi et al., 2022).
To be noted, there is evidence from meta-analysis and cross-sectional
studies that hyponatremia and hypozincmay be strongly associated with
the recurrence of FSs. However, there is a lack of direct evidence to show
whether sodium or zinc supplementation can effectively prevent or treat
recurrence of FSs, and it is also unclear whether monitoring blood
sodium or zinc in children after first FS is effective in predicting
recurrence of FSs. At present, only randomized clinical trials with few
sample sizes have found that zinc supplementation can effectively reduce
the recurrence rate of FSs (Fallah et al., 2015). The association of
hyponatremia with FSs recurrence may be related to mutations in
sodium channels in the etiology of FSs, but the evidence is weak
(Supplementary Table S2).

3 The long-term adverse outcomes
associated with FSs

Electroencephalographic and biochemical long-lasting
abnormalities have been reported both in clinical cases and
animal models of FSs (Leaffer et al., 2013; Mohammed et al.,
2017). At the outset, scholars focused on the association between
infant FSs and epileptogenesis in adulthood. More and more data
suggest that FSs may also contribute to damage of cognition, motor
skills and mental diseases (Leaffer et al., 2013; Rajab et al., 2014;
Crespo et al., 2018; Lin et al., 2021; Harris et al., 2022).

3.1 Diseases or pathological manifestations
after FSs

3.1.1 Epileptogenesis
In 1997, a study of 44 adult patients suggests that a history of FSs

is associated with the subsequent temporal lobe pathology (Barr
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et al., 1997). The association between temporal lobe epilepsy (TLE)
and the history of FSs has since gradually come into public view.
There have been numerous cohort studies designed one after
another to investigate the association of FSs with epilepsy in
adult, with numbers of patients involved ranging from hundreds
to millions and time span more than 10–20 years. Although the
proportions varied from 5 to 18 folds, these data suggest a significant
increase in the incidence of epilepsy after FSs (Vestergaard et al.,
2007; Neligan et al., 2012; Chiang et al., 2018; Tsai et al., 2018).
Further, of those individuals who experienced FSs, the frequency of
subsequent development of epilepsy was 2.15-fold greater in
females, 4.846-fold greater in patients with recurrent FSs (Chiang
et al., 2018). Researchers assessed predictive value of epileptiform
discharges for subsequent epilepsy after FSs and found that patients
with normal EEGs were unlikely to develop epilepsy (Kavcic and
Rener-Primec, 2018). The important impact of FSs on subsequent
epileptogenesis has been recognized, but over a large time span, it is
clinically difficult to validate directly. Therefore, animal models of
FSs are well-established and the research achievements are
considerable.

Although there are some data showing that prolonged
experimental FSs lead to adult-onset TLE (Dube et al., 2006),
most data suggest that a single episode of prolonged FSs may not
induce per se, but accelerates epileptogenesis, and increases seizure
susceptibility and severity (Dai et al., 2014; Hamelin et al., 2014;
Dutton et al., 2017; Alese et al., 2020). Notably, in animal models,
FSs were found to cause interictal epileptifom EEG abnormalities,
which is consistent with clinical studies, suggesting detection of EEG
may serve as an important means of predicting epileptogenesis after
FSs. These data were obtained in adulthood, and whether FS also has
alterations in EEG during development requires more evidence.
Current studies only found that the seizure susceptibility decreased
in 35-day-old (P35) FS rats but increased in P60 FS rats (Feng et al.,
2015), but the EEG changes during neurodevelopment until adult
were not examined. Dai’s findings provide direct evidence of sex-
dependent acquired seizure susceptibility after complex FSs (Dai
et al., 2014). Female FSs rats were more susceptible to
pentylenetetrazol and maximum electric shock than male FSs
rats. The protein expression of interleukin-1β (IL-1β), an
inflammatory factor associated with seizure susceptibility, was
higher in adult FSs females than in males, which may reflect a
gender-specific phenomenon of seizure susceptibility.

3.1.2 Cognitive and memory impairments
Recognition memory is impaired in children after FSs and this

memory impairment can persist for at least 10 days to 1 year
(Martinos et al., 2012). Cognition impairment, including
perceptual reasoning and working memory defects, were
identified in patients aged 6–12 years with FSs onset at the age of
2–2.5 years old (Tsai et al., 2015). A generation R study suggested
that children with recurrent FSs might be at risk for delayed
language development around 6 months after FSs (Visser et al.,
2012). Similarly, 4-year-old children with FSs had been identified at
child healthcare centers in Gothenburg. One-third of the children
had at least one neurodevelopmental disorder diagnosis or marked
developmental problems within areas of attention, speech and
language or general cognition. No differences were found
between children with single vs. recurrent FS or simple vs.

complex FSs (Nilsson et al., 2019). These clinical studies did not
analyze the key brain regions or molecular targets affected. In
addition, reports on whether these cognitive and language
impairments extend into adulthood are lacking.

In experimental FSs model, most agree that FSs cause moderate
memory impairment, which focus on spatial, working and reference
memory (Chang et al., 2003; Dube et al., 2009; Kloc et al., 2022). FSs
had transient effects on spatial learning in immature rats in a few
days (Yagoubi et al., 2015). But spatial memory problems were
identified in male adult rats following experimental prolonged FSs.
Remarkably, possible mechanisms underlying these deficits may
involve hippocampal impairments of dendritic filtering of cortical
inputs discoordination of entorhinal-hippocampal circuit, as well as
neuron restrictive silencing factor mediated aberrant generation of
excitatory synapses in the dentate gyrus, that results in dendritic loss
in the hippocampus (Rajab et al., 2014; Patterson et al., 2017; Kloc
et al., 2023). It was interesting that sex seemingly had a remarkable
effect on spatial cognitive outcome where adult males with FSs fared
worse than adult females with FSs (Kloc et al., 2022). At the same
time, there are some reports that FSs also resulted in adult memory
deficits in novel object recognition task, inhibitory avoidance task,
and contextual fear conditioning task and inhibition of
TRPV1 receptors during FSs in part prevented learning deficits
in adult (Dai et al., 2019; Harris et al., 2022). Interestingly, prolonged
FSs in infant rats caused adult memory deficits that could be
transmitted to the next-generation, mainly through the mother,
and may be associated with DNA methyltransferase (DNMT)
1 upregulation (Dai et al., 2019). These animal findings pinpoint
that FSs may cause cognitive impairment that persists into
adulthood. Mechanisms of sex differences and inheritance to the
next-generation are insufficiently studied and will be research
directions with great clinical significance.

3.1.3 Psychiatric disorders
It was showed the most common psychiatric diagnoses after FSs

were anxiety, attention-deficit/hyperactivity, and personality
disorders (Dreier et al., 2020). The cohort studies that found the
association between FSs and epilepsy also identified a 11.26-fold
higher frequency of comorbid autism after FSs compared with
controls (Chiang et al., 2018). To exclude the disturbances of
epilepsy and focused on analyzing the contribution of FSs per se
to psychiatric disorders, one evaluation of long-term risk of
psychiatric disorders among 2103232 children with recurrent FSs
from Denmark at Aarhus University was conducted. A history of
recurrent FSs appears to be associated with a risk of psychiatric
disorders, including organic mental disorders, affective mental
disorders, schizophrenia, mood disorders, somatoform disorders,
intellectual disability, disorders of psychological development, etc.
(Dreier et al., 2019). In animal studies, the results of depression-like
behavior in rats after FSs showed that FSs significantly reduced the
sucrose consumption in the sucrose preference test and increased
the immobility time in the forced swim test in P37 and P60. This
study also demonstrated that FSs caused depression-like behavioral
changes that may be inherited to the next-generation of rats and
leaded to increased mGluR3 mRNA expression and mGluR1 gene
hypermethylation in two generations of rats (Alese and Mabandla,
2019). But there is no direct evidence that mGluR3 and
mGluR1 regulate the inheritance of this depressive phenotype.
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3.1.4 Attention deficit hyperactivity disorder
(ADHD)

After comparison of relation between ADHD in children with
and without FSs, it was concluded that hyperactivity has a significant
relation with FSs in male gender (Salehi et al., 2016). After 11 years
of follow-up and identified 1,081 children with FSs as the case
cohort, Ku et al. found that FSs may increase the risk of subsequent
ADHD occurrence in children (Ku et al., 2014). It is reported that
the overall risk of ADHD in the FSs+/preterm + group was higher
than that in the FSs+/preterm-group. Preterm birth may be a risk
factor for subsequent ADHD in children with FSs (Lin et al., 2021).
A population-based cohort of 906,379 children born in Denmark
were followed up for 22 years. The findings indicated an association
between FSs and subsequent development of ADHD, after adjusting
for socioeconomic and perinatal risk factors, and family history of
epilepsy, or psychiatric disorders (Bertelsen et al., 2016).

3.1.5 Mortality
In current research, the presence or absence of a history of FS

episodes had little effect on long-term mortality. 132 of
100 000 children died within 2 years of FSs compared with
67 deaths per 100 000 children without a history of this disorder
(Vestergaard et al., 2008). In the nested case-control study, children
with simple FSs had a mortality rate similar to that of the
background population, whereas mortality was increased for
those with complex FSs. This finding can be partially explained
by pre-existing neurological abnormalities and subsequent epilepsy.
In aforementioned study from Denmark at Aarhus University,
increased mortality was found in individuals with a history of
FSs who later developed epilepsy (Dreier et al., 2019). In
summary, long-term mortality is not increased in children with
FS, but there seems to be a small excess mortality after complex FS
(Vestergaard et al., 2008). So, we should be reassured that death after
FSs is not increased.

3.2 Long-term alterations on tissues or cells
after FSs

3.2.1 Temporal abnormalities: hippocampus and
amygdala

At the time of the observation of increased epilepsy
susceptibility, researchers found substantial hippocampal and
amygdala changes after FSs. The abnormalities of hippocampus
are the most clinically reported. There are some case reports, which
found development of hippocampal sclerosis after FSs (Sokol et al.,
2003; Merkenschlager et al., 2009). When magnetic resonance
imaging (MRI) was done immediately (a few days after FS), it
was showed that T2 weighted signal and the volume of
hippocampus increased (swelling) (Sokol et al., 2003; Yokoi et al.,
2019). In children with FSs from 3 to 23 months later, MRI imaging
found a markedly hyperintense hippocampus (Provenzale et al.,
2008). In their teens 2-3 years after FS onset, hippocampal subfield
volumes were reduced (Grunewald et al., 2001; Finegersh et al., 2011;
Peng et al., 2021), and these abnormalities were probably more
pronounced in men (Auer et al., 2008). These suggest that FSs cause
parenchymal lesions in the hippocampus, which may have
undergone complex lesions during development. A more

nuanced analysis noted an increase of hippocampal calretinin-
immunoreactive neurons after FSs (Blumcke et al., 1999).
Additional clues found that sulfur dioxide (SO2) content is
overproduced during the development of FSs and related brain
injury (Yang et al., 2018). Still, it remains to be elucidated, how these
changes contribute to the pathogenesis of TLE and when is the key
time nodes for intervention and treatment.

Preclinical studies have also found that FSs led to a temporal
morphological disturbance. MRI histology showed increased fiber
density and anisotropy in the hippocampus, and reduced neuronal
surface area in the amygdala of rats. Diffusion tensor imaging (DTI)
abnormalities were detected in the amygdala and persisted up to
8 weeks (Jansen et al., 2008). The cell numbers decreased by 10% in
the CA1 and hilus but did not reduce in the CA3 or dentate gyrus
areas, suggesting that the temporal abnormalities after FSs not only
changed over time, but possibly also differed by brain regions.
Meanwhile, functional impairments were more robust. Shortly
after FSs, long-term potentiation (LTP) in CA3-CA1 synapses
was strongly reduced (Postnikova et al., 2021). FSs reduced
thresholds to chemical convulsants in the immature rat model
and electrical stimulation in vitro, suggesting FSs enhanced
hippocampal excitability long term during development (Dube
et al., 2000). The modification of neuronal excitability of limbic
circuits in the developing brain induced by FSs may last into
adulthood (Chen et al., 1999). Thus, alterations in temporal lobe
tissue morphology after FSs may stem from neuronal excitotoxicity
that provoke more long-lasting signals or effects persisting into
adulthood.

To identify molecular candidates, which entrain this structural
and functional re-organization, Bart C Jongbloets et al. investigated
temporal changes in mRNA expression profiles 1 h to 56 days after
FSs. They screened 931 regulated genes and profiled several
candidates using in situ hybridization and histology at 3 and
14 days after FSs. Temporal regulation of multiple processes was
identified, such as stress-, immune- and inflammatory responses,
glia activation, glutamate-glutamine cycle and myelination
(Jongbloets et al., 2015), indicating the complex short- and long-
term changes of hippocampus after FSs. More studies on specific
molecules at specific developmental stages need to be further
promoted to deconstruct the long-term effects of FS on the
temporal lobe and subsequent epileptogenesis.

3.2.2 Alterations of cortex
The effects on the hippocampus after FSs are probably the most

profound and thoroughly studied (Nazem et al., 2012; Raijmakers
et al., 2016), but the role of FSs on other brain regions should not be
ignored, especially we note that FSs not only cause alterations of
hippocampus related disease in adulthood, but also similarly affect
the occurrence of disorders related to cortex, such as ADHD and
other psychiatric disorders. Moreover, in the previously mentioned
study in Gothenburg, FSs children had motor functioning
impairment (Nilsson et al., 2019). Experiment FSs caused fine
motor coordination impairment and gait disturbances (Crespo
et al., 2018). These suggest that motor related motor cortex and
other brain regions may have been affected by FSs.

The vast majority of hippocampal recorded seizures were
preceded by a drop in cortical EEG amplitude that began half a
minute before hippocampal spasms and was sustained after seizure
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termination (Dube et al., 2006). This suggests that the limbic
spontaneous seizures exert a substantial disturbance to normal
cortical neuronal activity. A significant increase in A1 receptor
density and mRNA coding A1 was observed in cerebral cortical
area 48 h after FSs. In contrast, a significant decrease in A2A
receptor density and 5′-nucleotidase activity was detected 48 h
after FSs (Leon-Navarro et al., 2015). These results illustrated
that long-term alterations after FSs may also exist in the cortex.
Whether these cellular molecular abnormalities detected in the
cortex are maintained to a longer time and thus provide an
explanation for functional abnormalities in adulthood also awaits
more in-depth studies.

3.2.3 White matter tract reorganization
MRI studies have demonstrated acute and long-term subcortical

white matter changes following FSs (Takanashi et al., 2006; Pujar
et al., 2017). Between 3 and 9 days after FSs, white matter lesions
were observed and the diffusion abnormality disappeared between
days 9 and 25 (Takanashi et al., 2006). In a homogeneous,
population-based sample, fractional anisotropy in early maturing
central white matter tracts and mean and axial diffusivity in several
late-maturing peripheral white matter tracts were found to increase
8 years post-FSs (Pujar et al., 2017). Drug resistant TLE is
increasingly recognized as a system level disorder affecting the
structure and function of large-scale gray matter networks, while
the superficial white matter, close to neocortical regions, plays a key
role in maintaining cortical connectivity, which is associated with
seizure outcome (Liu et al., 2016). Long lasting abnormalities of
white matter after FSs therefore need to be paid more attention and
may be one of the etiologies of drug-resistant TLE.

3.2.4 Activation of microglia
In the identification of mRNA expression profiles following FSs

described above, glia was activated (Jongbloets et al., 2015). Among
these, modulation of microglia in the structure and function of the
hippocampus after early-life FSs received much attention (Andoh
et al., 2020; Weninger et al., 2021). Massive microgliosis after FSs
was found (Weninger et al., 2021). The microglial expression levels
of Iba1 and ED1 (lysosomal markers) and the proportion of
microglia with amoeboid morphology increased, indicating that
microglia were activated after FSs (Kong et al., 2019). The
expression levels of microglial cytokines like inflammatory
cytokines such as TNF-α and IL-1β were elevated 4 h after FSs
(Kim et al., 2015). In addition, microglial synaptic displacement in
motor cortex is a protective event during the pathological process of
complex FSs. There is a significant increase of perisomatic
GABAergic synapses around neuronal soma after complex FSs.
So, complex FSs caused enhanced neuronal GABA transmission
and increased neuronal excitability, as GABAergic synaptic
transmission plays an excitatory role in juvenile stage. Microglia
extensively associated with glutamatergic neuronal soma, displacing
but not engulfing GABAergic synapses around neuronal soma to
reduce the GABA transmission and neuronal excitability through
P2Y12 receptors. These studies provide a rationale to elucidate the
protective role of microglia and may be a potential future treatment
for complex FSs (Wan et al., 2020). Microglial displacement of
GABAergic synapses also provides neuroprotection in the adult
brain (Chen et al., 2014). In addition, microglia can also secrete

numerous neurotrophic factors to elaborate repair of injured
neurons after FSs (Parkhurst et al., 2013; Araki et al., 2021). The
induction of brain-derived neurotrophic factor (BDNF) mRNA was
firstly observed in the dentate gyrus at 30 min after FSs, peaked at 3 h
and returned to basal level at 24 h. It was also observed in the CA3 of
hippocampus from 2 to 3 h (Kim et al., 2001). BDNF play critical
role in neuronal survival, synaptic plasticity and cognitive functions
and is known to mediate its action through various intracellular
signaling pathways triggered by activation of tyrosine kinase
receptor B (TrkB) (Pandya et al., 2013). These observation times
did not last into adulthood, and the long-term role of microglia after
FSs remains to be explored.

4 Possible mechanisms for long-term
neurodevelopmental outcomes of FSs

Clinically, it is somewhat difficult to find targets that
dynamically change over prolonged periods after FSs. Most of
the mechanistic studies are based on animal models of
experimental FSs and often lack clinical proof of correspondence.
But these studies remain valuable. Overall, the current mechanistic
hypotheses for neuropsychiatric damage from FS are summarized
(Figure 1).

4.1 Endocannabinoid system

Feng’s work identified prolonged increase of endocannabinoid
signaling in adult seizure susceptibility following FSs, as a potential
therapeutic target for preventing the development of epilepsy after
infantile FSs (Feng et al., 2016). In a study of long-term plasticity
following FSs induced endocannabinoid signaling, the activity
dependent retrograde inhibition of endogenous cannabinoids on
GABA release continued to increase in the hippocampus of rats
(Chen et al., 2003). Endogenous cannabinoid system has been
reported to be associated with depression, ADHD and other
diseases. Targeting the endocannabinoid system has the potential
to alleviate depression (Bright and Akirav, 2022). Clinical
randomized experiments found reduced symptoms and cognitive
impairment in some ADHD patients after cannabinoid use (Cooper
et al., 2017). Recent evidence suggests that modulation of
endocannabinoid tone has anxiolytic or antipsychotic effects
(Navarrete et al., 2020). This undoubtedly suggests that
endocannabinoid signaling may not only be involved in
hippocampal related epilepsy and functional alterations after FSs,
but may also play a key role in other disease courses.

4.2 Inflammation

In examination of the molecular changes in the rat brain after
FSs throughout the latent period, the largest changes were for genes
involved in inflammation signaling. Reduction of early
inflammatory responses after FSs reduced the risk of subsequent
spontaneous seizures (Jung et al., 2011). An important role for
caspase-1/IL-1β inflammatory signaling pathway was identified in
the increased susceptibility to seizures induced by FSs. Caspase-1/
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IL-1β expression was upregulated transiently at the onset of FSs. In
neonatal mice, caspase-1 inhibitor CZL80 markedly reduced
neuronal excitability and incidence of FSs, and, in adult mice,
relieved later enhanced epileptogenic susceptibility (Tang et al.,
2020). When IL-1β was given after FSs, the incidence of
spontaneous seizures in rats will be significantly increased
(Fukuda et al., 2015). Increased GluN2B phosphorylation at
Tyr1472 site mediated by the transient increase of IL-1β was
involved in the enhanced adult seizure susceptibility after FSs
and showed a 3-day therapeutic time-window for reversing the
enhanced seizure susceptibility after FSs (Chen et al., 2016). It is
interesting that FSs or early-life IL-1β treatment increased the
expression of cannabinoid type 1 receptor (CB1R) for over
50 days, which was blocked by IL-1Ra or was absent in IL-1R1
knockout mice (Tang et al., 2020). Knockdown and synthesis
inhibitor of endocannabinoid abolished FSs or IL-1β-enhanced
seizure susceptibility. So, the long-term effects of FSs on IL-1β
and endocannabinoid may have crosstalk. Furthermore, IL-6 and
IL-8 in the IL-1 cytokine system are closely associated with FSs.
Compared to children without hippocampal signal abnormalities,
children with T2 hippocampal hyperintensity on MRI after FSs had
significantly higher IL-8 and IL-6 levels and lower IL-1Ra/IL-6 and
IL-1Ra/IL-8 ratios. The lower IL-1Ra/IL-6 ratio was highly
predictive of T21 hyperintensity in hippocampus after FSs
(Gallentine et al., 2017; Vezzani et al., 2019), suggesting that IL-
1Ra and IL-6 may also be powerful biomarkers and potential
therapeutic targets for hippocampal injury after FSs.

4.3 GABAergic and glutamatergic system

Within the molecular examined in the rat brain after FSs
throughout the latent period, the largest changes were the genes
involved in inflammation signaling, then were (GABA signaling and
glutamatergic system (Jung et al., 2011). We know that the neural
network is overexcited during the onset of FSs, and this excitement
may last for some time after the onset (Reid et al., 2013). Swijsen
et al. evaluated BrdU-labeled Devil Gundam (DG) cells for co-
expression with GABA A receptors [GABA (A)Rs] and N-methyl-
D-aspartate receptors (NMDARs). The number of BrdU-GABA (A)
R co-labeled cells not BrdU-NMDAR co-expressing cells was
increased in adult after FSs. The results demonstrate that
developmental seizures cause a long-term increase in GABA (A)
R expression in newborn DG cells (Swijsen et al., 2012b). In other
research, increased adult hippocampal protein expression of NR2B
was found after early life inflammation and FSs. The inflammation +
FSs group had also decreased protein expression of GluR2 and
GABAA α1 receptor subunits and mRNA and protein expression of
KCC2 (Reid et al., 2013). In the adult sensorimotor cortex,
significantly lower levels of the GABA (A) receptor α1 subunit,
higher levels of the α2 subunit, and a higher NKCC1/KCC2 ratio
were reported in FSs rat (Reid et al., 2012), but the functional
outcome and disease occurrence during adulthood due to these
alterations remain to be investigated. Therefore, the GABAergic
system may be more markedly altered after FSs, while the
glutamatergic system may be more likely to change
concomitantly in expression due to other factors such as
inflammation and different brain regions. It is also found that

experimental FSs induce changes in GABA (A) R-mediated
neurotransmission in the dentate gyrus. Frequencies of
spontaneous inhibitory postsynaptic currents (sIPSCs) were
reduced in FS rats, whereas sIPSC amplitudes were enhanced
(Swijsen et al., 2012a). GABA (B)R1a and GABA (B)R2 subunits
and the binding of the 2 subunits decreased in hippocampus after
FSs in immature rats. To be noted, the decrease of GABA (B)R1a
lasted for 15 days but that of GABA (B)R2 persisted for more than
30 days. These changes may result in long-lasting imbalance of
excitation/inhibition function in hippocampus (Han et al., 2006).
Aberrant migration of neonatal-generated granule cells resulted in
granule cell ectopia that persists into adulthood. FSs induced an
upregulation of GABA (A) receptors [GABA (A)-Rs] in neonatally
generated granule cells, and hyperactivation of excitatory GABA
(A)-Rs caused a reversal in the direction of granule cell migration.
This abnormal migration was prevented by RNAi-mediated
knockdown of the NKCC1, which regulates the excitatory action
of GABA (Koyama et al., 2012). These all may be the
neuropathological basis for the subsequent FSs induced
excitation/inhibition imbalance in adulthood and holds promise
as potential intervention targets for disorders such as epilepsy.

Although NMDARs expression does not change obviously after
FSs, changes in its phosphorylation have been detected by several
groups. It is demonstrated that GluN2B phosphorylation at
Tyr1472 site was involved in the enhanced adult seizure
susceptibility after FSs (Chen et al., 2016). Furthermore, a
selective long-term deficit in NMDA receptor-mediated ERK1/
2 phosphorylation was observed in the hippocampus after FSs.
There was a specific alteration in NR2A, but not NR2B in
subunit tyrosine phosphorylation in adult (Chang et al., 2005).
LTP in CA3-CA1 synapses was strongly reduced, which
contributed to the insufficient activity of NMDARs. Whole cell
recordings found a greater desensitization of NMDAR currents in
teens after FSs, probably due to insufficient glycine site activation of
NMDARs, as application of D-serine (a glycine site agonist) allowed
LTP to return to control values of rats (Postnikova et al., 2021).
Taken together, intervening on specific phosphorylation sites of
NMDARs and downstream signals rather than directly regulating
their expression may be more helpful to prevent long-term
pathological changes after FSs. The dentate gyrus of rats showed
impaired paired pulse suppression and excitation ratio, and
increased VGLUT-1 (Vesicular Glutamate Transporter 1)
immunoreactivity 10–12 weeks after FSs (Kwak et al., 2008)).
Due to the importance of VGLUTs in maintaining low
extracellular glutamate concentrations and their association with
epilepsy syndromes (van der Hel et al., 2009; Santolini et al., 2017), it
is highly recommended to conduct more research to discover more
drug targets.

4.4 Genetics

Patients with SCN1A mutations often experience prolonged
early-life FSs, raising the possibility that these events may
influence epileptogenesis and lead to more severe adult
phenotypes. To test this hypothesis, Dutton et al. subjected
21–23-day-old mice expressing the human SCN1A GEFS +
mutation R1648H to prolonged hyperthermia, and then
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examined seizure and behavioral phenotypes during adulthood.
They found that early-life FSs resulted in lower latencies to
induced seizures, increased severity of spontaneous seizures,
hyperactivity, and impairments in social behavior and
recognition memory during adulthood (Dutton et al., 2017).
The underlying sodium current of this mutant exhibited a
significantly shifted hyperpolarizing inactivation threshold at
room temperature and elevated temperature (Roemmich et al.,
2021). Since this change is constitutive, it is likely to interact with
thermally induced changes in other cellular properties, leading to
sustained depolarization and thermally induced increases in
seizure activity. Meta-analysis also revealed a genome-wide
significant association for TLE and early-life FSs at the sodium
channel gene cluster on chromosome 2q24.3 within an intron of
the SCN1A gene (Kasperaviciute et al., 2013). Functional studies
of the mutations showed that it caused biophysical defects of Na
(V)1.2 and impaired its cell surface expression (Shi et al., 2012;
Orlando et al., 2022). But more direct evidence for the therapeutic
effect of intervention of SCN1A on adult diseases after FSs need to
be provided. Massive parallel sequencing of GABRB3 was
performed in 416 patients with a range of epileptic
encephalopathies and childhood-onset epilepsies. The results
indicated that GABRB3 mutations, which will reduce
GABAergic receptors functions, are associated with a broad
phenotypic spectrum of epilepsies and that reduced receptor
function causing GABAergic disinhibition represents the

relevant disease mechanism (Moller et al., 2017). Considering
the important role of the GABAergic system in the neurological
abnormalities induced by FSs, this mutation should receive more
attention. In addition, adhesion G protein-coupled receptor V1
(ADGRV1) is potentially associated with FS-related epilepsy as a
susceptibility gene, encoding a very large G protein-coupled
receptor-1 (VLGR1), which is localized at synaptic junctions
and cooperatively regulates synaptic function (Togashi et al.,
2002). The variation in ADGRV1 results in a significant loss of
major functional domains of the VLGR1 protein. ADGRV1
variants associated with FSs/epilepsy respond well to
antiepileptic drugs, implying a clinical significance (Zhou
et al., 2022).

4.5 DNA methylation levels

A cross-sectional pilot study investigated whether global
DNA methylation levels (5-mC and 5-hmC markers) and
DNMT isoforms (DNMT1, DNMT3a1, and DNMT3a2)
expression would be different in hippocampal and neocortical
tissues between controls and TLE patients with or without a
history of FSs. Compared with the control group, the overall level
of DNA methylation and the expression of DNMT3a2 subtype in
the hippocampus of all TLE groups were lower, while the decline
in the TLE group with a history of FSs was greater. Interestingly,

FIGURE 1
The neurodevelopmental changes after FSs and underlying mechanisms over time. The upper part summarizes the histological changes over
time following FSs and the lower part summarizes the corresponding underlying mechanisms. Upward red arrows indicate increase or
enhancement, and downward blue arrows indicate decrease, attenuation, or loss. The contents on the white notes indicate lesions or gene
mutations that may span a long-time course throughout the developmental stage.
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compared with the control group and other TLE groups, the
expression of DNMT3a1 in the hippocampus of TLE patients
with FSs history was significantly reduced (de Nijs et al., 2019).
They did not investigate the epigenetic and functional changes
following the methylation changes. In addition, tri-methylation
of histone 3 at Lys9 and Lys27 was decreased in the FSs group,
suggesting a potential mechanism for the long-term effects of FSs
on energy metabolism via histone methylation (Heng et al.,
2016).

As previously mentioned, FSs caused adult memory deficits and
are transmitted to the next-generation, mostly through the mother.
For both generations, DNMT 1 is upregulated, leading to
transcriptional repression of the synaptic plasticity protein, coilin,
but not memory inhibitory protein phosphatase 1. DNMT inhibitors
prevented the high expression of DNMT1 and hypermethylation of
curly genes, reversing transgenerational memory deficits (Dai et al.,
2019). The above results suggest that the effects of DNAmethylation
levels not only persist long term but may also persist across
generations.

4.6 Ion channel

In the hippocampus of rats that had FSs, the long-lasting
enhancement of the widely expressed intrinsic membrane
conductance Ih converts the potentiated synaptic inhibition to
hyperexcitability in a frequency-dependent manner (Chen et al.,
2001). Kamal et al. determined long-term changes in neuronal
excitability of rat hippocampal CA1 pyramidal cells after FSs.
They showed that FSs induced an increase in the
hyperpolarization-activated current Ih and a reduction in the
amplitude of the slow afterhyperpolarization following FSs,
which is likely to contribute to the hyperexcitability of the
hippocampus 3–5 weeks after FS (Kamal et al., 2006). These
studies have not been able to identify an intervention
molecular target, but Harris et al. found that inhibiting
TRPV1 receptors during FSs prevented learning deficits in
young adult female rats (Harris et al., 2022). Whether
modulation of other ion channels can also alter the long-term
neurological effects caused by FSs and whether the downstream
series of signaling pathways resulting from these current
alterations are the true culprits remain unclear.

5 Conclusion

With FSs as one of the highest incidences in early childhood,
it is important to assess and prevent the adverse long-term
neurodevelopmental effects that FSs causes. In this review, the
long-term adverse effects of FSs on neurodevelopment and the
underlying mechanisms are systematically reviewed and
summarized, and some specific novel targets with therapeutic
value are specifically proposed. Overall, because the onset of FSs
is precisely at the stage of rapid infantile neural-glial
development, a series of neural-glial changes are triggered
after FSs. Some protein or molecular alterations are long-term,
even until disease onset in adulthood. Some alterations, although
transient in short term, cause long-term evolution of some

downstream signaling pathways, which may ultimately lead to
disease.

Long term follow-up of more patients after FSs may be
necessary, in conjunction with experimental animal models, to
elucidate the complex effects of FSs on neurodevelopment.
Indeed, several important questions remain open. First, is the
frequency and duration of FSs linked to the type and severity of
illness occurring later? Second, are there common lesions or
targets in different diseases caused by FSs? Third, is there optimal
time window for neuropsychiatric disorders resulting from FSs?
Is prophylactic treatment necessary? If these issues can be
addressed, they will undoubtedly better guide clinical
treatment and greatly benefit patients. Gene mutations will
have long-term stable effects in patients, which could be
important underlying mechanism to explain the occurrence of
adult disease after FSs. For example, SCN1A GEFS + mutations
cause FSs and genetic epilepsies. However, it remains unclear
how most individual mutations in SCN1A lead to seizures. Recent
studies have identified a significant depolarizing shift in action
potential threshold in parvalbumin expressing inhibitory
hippocampal CA1 interneurons but not in firing properties of
excitatory pyramidal neurons, suggesting that mutations in the
same gene on different cells may cause different consequences
(Das et al., 2021). Thus, if single-cell sequencing developed in
recent years is used in the future, it will help to identify more
specific molecules and also to explain shared mechanisms of
different diseases. A variety of intravital imaging techniques that
have revolutionized rapidly also offer more possibilities for long-
term observations in preclinical studies. A general genetic
strategy for precise control of copy number of fluorescently
labeled molecules in cells could help visualizing long-term
single-molecule dynamics in vivo (Liu et al., 2018). At the
same time, probes for long-term in vivo imaging without
autofluorescence have also been developed due to the
disadvantages that cannot be easily overcome by fluorescent
proteins, such as long maturation time, low brightness,
photobleaching, broad emission spectrum, and sample
autofluorescence. Although it can still only be applied to
transparent zebrafish (Cardoso Dos Santos et al., 2020), it is
also a new idea for long-term observation. Label free atraumatic
large-scale photoacoustic microscopy methods have also
emerged that can enable long-term imaging of angiogenesis in
an undisturbed environment (Rebling et al., 2021). The
application of these new methods can facilitate long-term
observation after FSs and the elucidation of mechanisms.
More powerful tools may also improve the situation in which
a hundred flowers bloom but the main line is unclear in the
current mechanism research. Based on that, future research
should be engaged in discovering biomarkers of disease after
FSs and critical drug targets, accelerating the development of
drugs with less side effects, and providing more effective
therapeutic strategies.
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