
Gene-agnostic approaches to
treating inherited retinal
degenerations

Lindsey A. Chew1,2 and Alessandro Iannaccone1*
1Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of
Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States,
2Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States

Most patients with inherited retinal degenerations (IRDs) have been waiting for
treatments that are “just around the corner” for decades, with only a handful of
seminal breakthroughs happening in recent years. Highlighting the difficulties in
the quest for curative therapeutics, Luxturna required 16 years of development
before finally obtaining United States Food and Drug Administration (FDA)
approval and its international equivalents. IRDs are both genetically and
phenotypically heterogeneous. While this diversity offers many opportunities
for gene-by-gene precision medicine-based approaches, it also poses a
significant challenge. For this reason, alternative (or parallel) strategies to
identify more comprehensive, across-the-board therapeutics for the
genetically and phenotypically diverse IRD patient population are very
appealing. Even when gene-specific approaches may be available and become
approved for use, many patients may have reached a disease stage whereby these
approaches may no longer be viable. Thus, alternate visual preservation or
restoration therapeutic approaches are needed at these stages. In this review,
we underscore several gene-agnostic approaches that are being developed as
therapeutics for IRDs. From retinal supplementation to stem cell transplantation,
optogenetic therapy and retinal prosthetics, these strategies would bypass at least
in part the need for treating every individual gene or mutation or provide an
invaluable complement to them. By considering the diverse patient population
and treatment strategies suited for different stages and patterns of retinal
degeneration, gene agnostic approaches are very well poised to impact
favorably outcomes and prognosis for IRD patients.
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1 Introduction

For years, seminal breakthroughs to restore vision have been “just around the corner,”
yet most patients with inherited retinal degenerations (IRDs) find themselves continuing to
wait. More than 2 decades have passed since the first large animal, Lancelot the Briard dog,
was successfully administered gene therapy for Leber’s congenital amaurosis type 2 (LCA2),
and his vision was restored (Veske et al., 1999; Lorenz et al., 2000; Bainbridge et al., 2008;
Hauswirth et al., 2008; Maguire et al., 2008; Russell et al., 2017). However, this treatment
(voretigene neparvovec/Luxturna by Spark Therapeutics in the United States (United States)
and Novartis outside the United States) required 16 years before completing extensive trials;
Luxturna finally obtained approval from the United States Food and Drug Administration
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FIGURE 1
The landscapeof treatment strategies for inherited retinal degenerations (IRD).Rapid acceleration of research since the 1980s has led to the discovery of
317 disease-causing genes with 281 of these genes now cloned, highlighting genotypic heterogeneity previously described by the RetNet project (hosted
by the University of Texas-Houston Health Science Center) (A). The immense phenotypic heterogeneity of IRDs is further illustrated by fundus images
(B, a–k). Patients with retinitis pigmentosa (RP) can present with good central retinal preservation (a–b)with mild to moderate vision loss and good
preservation of the central photoreceptors exemplified by a partially detectable ellipsoid zone (EZ) and retained outer nuclear layer (ONL). However, RP
can also induce significant inflammatory complications like cystoid macular edema (CME) (c). In other instances of RP, the macular area may be partially
compromised (d), with minimal central EZ preservation (e). In macular, cone, and cone-rod dystrophies, central disruptions are most common, but some
present with significant foveal atrophic changes and partial foveal EZ preservation (f–h); others present with global changes marked by central retinal
thinning and complete EZ loss (J–K). Gene-specific therapy (C, a) is unlikely to benefit patients with severe degeneration (d–k), but gene-agnostic
strategies (C, b) may still offer these patients a path to recovering vision.
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(FDA) and its international equivalents in 2017 (Maguire et al.,
2008; Ledford, 2017; Russell et al., 2017). IRDs, are enormously
heterogeneous from a genetic standpoint, with over 280 genes
cloned to date and over 300 mapped (Figure 1, top). This
represents both a great opportunity to deliver gene-by-gene
precision medicine-based approaches as it could never be
envisioned before, and a major challenge. If genetic heterogeneity
was not sufficient, phenotypic heterogeneity adds significantly to the
challenge as well (Figure 1B, a-k). Patients with retinitis pigmentosa
(RP), the most common form of IRD, can present with good central
retinal preservation (Figure 1B, a-b) with mild to moderate vision
loss and good preservation of the central photoreceptors exemplified
by a partially detectable ellipsoid zone (EZ) and retained outer
nuclear layer (ONL) but exhibit important inflammatory
complications such as cystoid macular edema (CME, Figures
1B,C), or they can be affected much earlier and more severely in
life, whereby the macular area is also partially compromised (Figures
1B,D) and there is minimal central EZ preservation (Figures 1B,E).
In macular dystrophies and cone and cone-rod dystrophies,
therapeutic help is needed mostly centrally, but a patient could
present either with significant atrophic changes around the fovea but
partial foveal EZ preservation (Figures 1B,F-H) or could have a more
widespread phenotype and, crucially, marked central retinal
thinning with complete EZ loss (Figures 1B,J-K). For these
patients with exceedingly rare exceptions, gene therapy would be
expected to provide no meaningful benefit.

Given the recent advances in our understanding of the
mechanisms underlying IRD pathobiology, can we approach
IRDs more broadly? Can we use gene-agnostic strategies
(Figure 1B) to identify therapeutics that could target a wide
range of causative genotypes, therefore bypassing the
development of therapies for every individual gene known to
impair vision? Where gene-specific therapies already exist, can
gene-agnostic strategies still provide complementary support to
protect the retina and ultimately preserve vision? While others
have tackled similar topics (John et al., 2022), we uniquely
explore these questions in the context of IRD progression,
examine the intersection of treatment strategies with disease
severity, and assess broadly applicable approaches for restoring
retinal health—especially those already in or at the cusp of
clinical trials.

Several groups have explored this possibility through a wide
variety of approaches and ongoing efforts. For example,
supplementation with Rod-derived Cone Viability Factor
(RdCVF) holds promise for preventing secondary cone demise in
primary rod dystrophies (Yang et al., 2009; Aït-Ali et al., 2015;
Clérin et al., 2020). Advances in understanding the retina’s
neuroimmune interactions and oxidative stress tolerance provide
alternative avenues for maintaining retinal health (Wang et al., 2020;
Wu et al., 2021), especially in the context of microglial maintenance
and antioxidant cocktails (Yu et al., 2004; Shen et al., 2005; Komeima
et al., 2006; Komeima et al., 2007; Punzo et al., 2012; O’Koren et al.,
2019). Given that the vast number of disease-causing mutations are
in genes selectively or primarily expressed by photoreceptors
(Rosenfeld et al., 1992; McLaughlin et al., 1993), photoreceptor
transplantation has garnered enthusiasm as a therapeutic solution
(Comyn et al., 2010; Garita-Hernandez et al., 2021; Chiang and
Chern, 2022), especially in combination with induced pluripotent

stem cells (iPSCs) (Zhong et al., 2014; Takagi et al., 2019; Watari
et al., 2023), embryonic stem cells (ESCs) (Da Cruz et al., 2018),
mesenchymal stem cells (Bartsch et al., 2008; Gasparini et al., 2019;
Mahato et al., 2020; Sharma and Jaganathan, 2021; Zerti et al., 2021)
(MSCs), chemically-induced photoreceptor-like cells (CiPCs)
(Mahato et al., 2020) or neural stem cells (Liu et al., 2003; Coles
et al., 2004; Frøen et al., 2013). Transplanting retinal pigmented
epithelial (RPE) cells also warrants consideration, given the critical
role of the RPE in providing the photoreceptors with the necessary
support for maintaining the visual cycle and recycling metabolites.

There have been notable achievements in the application of
optogenetics via adeno-associated viral vectors (AAV) to restore
vision to patients, while bypassing photoreceptors entirely (Batabyal
et al., 2021a; Gauvain et al., 2021; Sahel et al., 2021). Optogenetic
strategies take advantage of opsins, light-sensitive proteins often
derived from bacteria, to repurpose them for scientific and medical
applications. Depending on the particular opsin, this strategy can
require partnership with an active stimulative device (such as
goggles) (Gauvain et al., 2021; Sahel et al., 2021). For some
patients, this additional equipment may be cumbersome. For this
reason, exploration of opsins activated by ambient light is desirable
and has been proposed in combination with gene therapy targeting
ON bipolar cells (Batabyal et al., 2021b). Fusing optogenetics with
photoreceptor transplantation has also generated interest, with some
progress made by expressing microbial opsins in neonatal murine
photoreceptors, which are then transplanted into a mouse model of
retinal degeneration (Garita-Hernandez et al., 2019; 2021). The host
immune response following both transplantation and AAV delivery
remains a concern. However, an adjacent method employing laser
assistance for nano-enhanced optical delivery appears capable of
similarly facilitating gene delivery to targeted cell populations
without instigating an undesirable immune response (Batabyal
et al., 2019; Batabyal et al., 2021b). This reduces the likelihood of
adverse events while maximizing the therapeutic potential.

These strategies sharply contrast with artificial vision mediated
by retinal and cortical prosthetics (Zhou et al., 2013; Farvardin et al.,
2018; Niketeghad and Pouratian, 2019; Pio-Lopez et al., 2021).
Requirements for successful application of these prosthetics
include surgical implantation and multiple pieces of equipment,
such as a specialized camera attached to glasses and a video
processing unit. As we approach 10 years since the first
implantation of the Argus II retinal prosthetic device, clinical
outcomes and patient tolerability of this system vis-à-vis limited
benefits have represented a barrier to its continuation alongside cost
considerations and the complexities of subsequent training and
rehabilitation protocols (Vaidya et al., 2014; Berger et al., 2016;
Ghodasra et al., 2016; Ostad-Ahmadi et al., 2021). Thus, simpler
systems are required, and continued development of retinal and
cortical prosthetics remains ongoing and very important.

As IRD patients continue to experience progressive vision loss,
we must adopt a sense of urgency and aspire to a research landscape
where the next-generation of therapeutics is five instead of 16 years
away. While important, tackling IRDs on an individual, mutation-
by-mutation or gene-by-gene basis is unlikely to be the most
expedient path forward. With the approval of Luxturna, the field
is well-poised to tackle these challenges. By centering our
commentary on gene-agnostic approaches to treating IRDs, we
focus on more broadly applicable treatment strategies that will
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expedite and increase treatment access for diverse IRD patients
across the globe.

2 A photoreceptor survival guide

Patients in early and intermediate stages of IRD progressionmay
still retain intact photoreceptors. For these individuals, minimally
invasive treatments (Figure 2) that can rescue vision or reduce the
risk of further vision loss are especially desirable and feasible. We
discuss several promising developments that may support patients’
existing rod and cone photoreceptors to limit further cell death (Aït-
Ali et al., 2015; Lobanova et al., 2018; Vighi et al., 2018) and
deterioration of visual function. While supporting retinal health
may be insufficient to improve patients’ visual acuity, maintaining
photoreceptor survival prevents critical and significant declines in
visual function. To this end, each of the following approaches aim to
reduce the likelihood of photoreceptor cell death. Although we do
not provide an exhaustive list, these strategies have reached the
clinical trial stage, or will imminently achieve that status, and
therefore warrant consideration additional consideration.

2.1 Rod-derived cone viability factor (RdCVF)

IRDs involving primary rod photoreceptor death and secondary
cone demise have a unique presentation. At times, even patients
experiencing late stages of disease with advanced cone loss may
continue to retain substantial visual acuity (Cideciyan et al., 1998;
Iannaccone et al., 2006). For this reason, supporting the health and
function of cone photoreceptors is an extraordinary opportunity for
vision preservation in the many such patients worldwide (Wright,
1997).

In vitro observations of significantly higher cone photoreceptor
survival in the presence of rod photoreceptors, as compared to
cultures deprived of rods, have given basis for the idea of a “diffusible
trophic factor . . . released from . . . rod cells” (Mohand-Said et al.,
1998). Rod photoreceptors are approximately 20 times more
numerous than cones in many mammalian species (Rodieck,
1998). However, the hypotheses of rod death simply resulting in
structural collapse of cones, or causing cone death by toxic
byproduct release are contravened by a lack of widespread cone
demise immediately following rod death (Hicks and Sahel, 1999).
Furthermore, the insoluble glycocalyx surrounding each cone

FIGURE 2
Mechanisms for enhancing photoreceptor survival in early retinal degeneration. Introducing Rod-derived Cone Viability Factor (RdCVF) (A) through
use of AAVs represents one potential strategy for promoting cone photoreceptor survival. The working model for this mechanism includes activation of
the Basigin-1/GLUT1 complex to increase transport of glucose and potentially other similar metabolites. Proteasomal enhancement ((B), right) to clear
excess misfolded proteins represents another possible approach. This strategy could be harnessed through the discovery of small molecules or
through gene augmentation for proteasomal machinery. These approaches could also be used for augmenting certain nuclear hormone receptors (like
NR2E3) ((B), left). Oral supplementation with antioxidants like N-Acetylcysteine (NAC) (C) may also support photoreceptor health, with NAC as a known
scavenger of reactive oxygen species. Alternative strategies include limiting activation of microglia (D), by inhibiting excessive phagocytosis (i.e., inhibiting
the TGFβ receptor), while harnessing their role in maintenance of the retina.
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provides significant structural integrity and a link to the nearby RPE
cells (Hicks and Sahel, 1999). Eventually the existence of Rod-
derived Cone Viability Factor (RdCVF) was discovered
(Léveillard et al., 2004).

RdCVF shares 33% similarity with thioredoxin but does not
have detectable oxidoreductase activity (Léveillard et al., 2004).
Evidence suggests that RdCVF binds to a complex formed by the
photoreceptor-specific transmembrane protein Basigin-1 and
glucose transporter GLUT1 (Figure 2A) (Aït-Ali et al., 2015).
This binding appears to promote cone survival by stimulating
intracellular glucose uptake and increasing aerobic glycolysis
(Aït-Ali et al., 2015). A redox-sensitive interaction between
RdCVF and Basigin-1 might even serve as a prerequisite for full
activation of GLUT1 transport activity in photoreceptors (Cepko
and Punzo, 2015). Complementary findings indicate that lactose
supports photoreceptor health in vitro and point to a supportive role
of glucose, lactose, and other similar metabolites (Jablonski et al.,
2001; Wang et al., 2003). Demonstrating functional RdCVF-
mediated cone rescue in a rhodopsin P23H rat model of retinitis
pigmentosa served as another critical milestone (Yang et al., 2009;
Léveillard et al., 2014). Understanding RdCVF’s mechanism of
action has underscored its salient role in retinal physiology in
health and disease, ultimately reinforcing the potential for
RdCVF’s use in therapies for IRDs (Sahel et al., 2001; Chalmel
et al., 2007). At this time, SparingVision is leading multiple
preclinical studies to translate these findings into clinical
solutions, with advancement to clinical trials in the near future.

2.2 Cellular stress management

2.2.1 Oxidative stress, N-Acetylcysteine (NAC), and
antioxidant supplementation

There is growing clinical interest across many disciplines in the
management of oxidative stress to restore cellular homeostasis
(Ferrante et al., 1997; Gilgun-Sherki et al., 2001; Ildefonso et al.,
2016; Pinilla et al., 2022). Several clinical trials for retinal
supplements (i.e., vitamin A, lutein, zeaxanthin, docosahexaenoic
acid) have explored their capacity to slow the progression of retinitis
pigmentosa (RP) (Iannaccone et al., 2021a). These initial trials paved
the way to continued clinical interest across many disciplines in the
management of oxidative stress to restore cellular homeostasis in
IRDs (Ildefonso et al., 2016; Pinilla et al., 2022). Identification of the
Nrf2 pathway and its role in regulation of oxidative stress responses
has generated significant attention (Lee et al., 2003; St-Pierre et al.,
2006). Consequently, efforts to enhance Nrf2 signaling have been
attempted as a mechanism for inhibiting the cellular oxidative stress
response. In rd1 and rd10 mouse models, AAV-mediated
overexpression of Nrf2 in the RPE demonstrated measurable
benefits, preserving RPE morphology and increasing survival,
improving photoreceptor health, and boosting visual function as
measured by optomotor responses (Wu et al., 2021). Given the high
baseline metabolic activity of rod photoreceptors, their death in
IRDs may lead to an unfettered hyperoxic microenvironment in the
outer nuclear layer, thereby inducing oxidative stress in the
surviving photoreceptors (Punzo et al., 2012; Wu et al., 2021). To
counteract this imbalance, increasing photoreceptor mitochondrial
expression of antioxidant proteins, like glutathione peroxidase and

superoxide dismutase 2, resulted in delays in retinal degeneration
(Lu et al., 2009; Usui et al., 2009).

A well-established antioxidant agent and reactive oxygen species
(ROS) scavenger, N-acetylcysteine (NAC) has been studied for over
a decade (Lee et al., 2011; Schimel et al., 2011; Raghu et al., 2021),
and there is special interest in its therapeutic use as an oral
antioxidant supplement) (Iannaccone et al., 2021b). In both the
rd1 and rd10 mouse models of retinitis pigmentosa, oral NAC
reduced cone cell death and preserved cone function by
mitigating oxidative damage (Lee et al., 2011). Evidence also
suggests that NAC acts mechanistically by scavenging existing
ROS and reversing lipid peroxidation to limit further ROS
production (Figure 2C) (Schimel et al., 2011). In a human RPE
culture model, the degenerative state is known to correlate with
reduced glutathione and glutathione peroxidase levels. NAC
treatment increased the expression of both of these enzymes,
suggesting its capacity to mitigate the overall redox state of cells
and reduce oxidative stress (Schimel et al., 2011; Nuhu et al., 2020).
In a mouse model of phototoxic retinal degeneration, oral NAC
treatment protected the outer nuclear layer and preserved
photoreceptor function on electroretinography (Schimel et al.,
2011). Preclinical success has advanced this strategy into clinical
trials, where oral NAC has already been reported to improve cone
function in retinitis pigmentosa patients in a phase I trial
(Campochiaro et al., 2020). While this study primarily focused
on validating NAC’s safety profile, patients’ best correct visual
acuity significantly improved during a 24-week oral NAC
treatment period across all cohorts (Campochiaro et al., 2020). In
this regimen, patients received 600, 1,200, or 1800 mg of NAC twice
daily for 3 months, followed by a 3 times/day regimen for another
3 months (Campochiaro et al., 2020; Kong et al., 2021). Additional
retrospective analysis of this study revealed that the higher NAC
dosing regimens reduced the risk of macular sensitivity loss (Kong
et al., 2021). In the context of RP, there is an ongoing multicenter,
randomized, placebo-controlled trial to determine whether oral
NAC treatment can improve cone function (NAC-Attack;
NCT05537220).

In parallel efforts toward oxidative stress reduction, other
investigations have focused on the potential of multiple other
exogenous antioxidants, alpha-tocopherol, ascorbic acid, Mn(III)
tetrakis (4-benzoic acid) porphyrin, and alpha-lipoic acid (Komeima
et al., 2006). Findings suggested that these compounds could also
limit oxidative stress to improve cone photoreceptor survival in
models of both slowly- and quickly-progressing retinal degeneration
(the Q433ter RHO and rd10mouse models, respectively) (Komeima
et al., 2007; Lu et al., 2009; Usui et al., 2009). While global reduction
of reactive oxygen species would likely bear significant side effects,
given their important signaling functions (Finkel, 2003), tissue
specific regulation of oxidative stress could be adapted for use in
IRD treatments (Qi et al., 2007; Koilkonda et al., 2010).

2.2.2 Microglial maintenance
Long-standing dogma dictated that microglia in the retina are

always detrimental (Itagaki et al., 1989; Yamasaki et al., 2014;
Krasemann et al., 2017), with microglial overactivation causing
an excessive oxidative stress response and metabolic
dysregulation (Block et al., 2007; Smith et al., 2012; Peng et al.,
2014; Zhao et al., 2015; Subhramanyam et al., 2019). In the context

Frontiers in Cell and Developmental Biology frontiersin.org05

Chew and Iannaccone 10.3389/fcell.2023.1177838

https://clinicaltrials.gov/ct2/show/NCT05537220
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1177838


of the rd1 and rd10mouse models of retinal degeneration, treatment
with the anti-inflammatory cytokine transforming growth factor
beta (TGF-β) rescued degenerating cones and protected against loss
of visual function (Wang et al., 2020). These results suggested broad
benefits of TGF-β on cone survival through a mechanism dependent
on microglial activation (Wang et al., 2020). However, recent
evidence suggests that microglia also occupy a purposeful
physiological niche in the healthy retina (Keren-Shaul et al.,
2017; O’Koren et al., 2019). In mice, depleting native microglia
from the inner plexiform layer of the retina led to a selective
reduction in scotopic and photopic b-wave responses without
gross changes in synapse number (O’Koren et al., 2019).
Evidence also demonstrated that eliminating retinal microglia
failed to augment cone survival by a separate CD47-dependent
mechanism, which had been previously hypothesized to be
mediated by microglia (Wang et al., 2021). This collection of
work highlights the complexity of microglia (Figure 2D) and
their various roles in the retinal landscape. Further research to
selectively promote their role in maintenance while avoiding excess
activation may prove fruitful in the development of treatments.

2.2.3 Proteasomal enhancement
Proteasome overload is another common factor in cellular

stress, and evidence points to this being a significant contributor
to photoreceptor degeneration in IRDs (Tzekov et al., 2011;
Lobanova et al., 2013; 2018). This natural sequela follows the
accumulation of misfolded and mistrafficked proteins driven by
various disease-causing mutations (Kosmaoglou et al., 2008). In
the context of retinitis pigmentosa, the frequently diagnosed
rhodopsin P23H mutation causes rhodopsin misfolding and
accumulation in the endoplasmic reticulum (Illing et al., 2002;
Saliba et al., 2002). Ultimately, these stressors induce the
unfolded protein response and photoreceptor death (Lin et al.,
2007; Gorbatyuk et al., 2010).

In a Gγ1 knockout mouse model of photoreceptor degeneration
(Lobanova et al., 2008; Kolesnikov et al., 2011), the degenerative
phenotype features the misfolding of proteins like Gβ1, which
appears to require Gγ1’s chaperone-like activity for correct
folding. Cellular stress in this model is derived from
accumulation of Gβ1 and other misfolded proteins. Promising
evidence from this work demonstrated that preventing this
accumulation, by reducing Gβ1 expression, led to a complete
reversal in the degenerative phenotype of the Gγ1−/− mouse
(Lobanova et al., 2013). Furthermore, the severity of
photoreceptor retinal degeneration correlated with the misfolded
protein levels (Lobanova et al., 2013). Subsequent studies have
indicated that increasing photoreceptor proteasomal activity can
significantly delay retinal degeneration, with the most substantial
benefits conferred by overexpression of the 11S proteasome cap
subunit PA28α to enhance ubiquitin-independent protein
degradation (Lobanova et al., 2018). In a rhodopsin P23H
heterozygous mouse model of retinitis pigmentosa, this strategy
quadrupled the number of surviving photoreceptors in the inferior
retina of 6 month-old mice (Lobanova et al., 2018). Repeating this
approach in a mouse model of Bardet-Biedl Syndrome (Zaghloul
and Katsanis, 2009; Liu et al., 2014), a multisystemic disorder
affecting photoreceptors alongside other ciliated cells, similarly
demonstrated a delay in retinal degeneration (Wang, 2022).

Alternatively, phosphorylation of specific downstream targets in
the mammalian target of rapamycin complex 1 (mTORC1) pathway
also appears to be a viable strategy for increasing proteasomal
activity (Wang et al., 2003). By contrast, reducing the proteolytic
capacity of photoreceptors through genetic manipulation in
otherwise normal retinas induced retinitis pigmentosa-like
pathology (Ando et al., 2014). Altogether, this combination of
findings heavily emphasizes the critical role of proteostasis in
retinal physiology, with significant degenerative consequences
stemming from proteasomal overload. The presence of
proteasomal machinery in all photoreceptors also augments their
attractiveness as therapeutic targets for IRDs, and evidence strongly
supports the pursuit of proteasomal enhancement (Figure 2B) as a
gene-agnostic treatment strategy.

2.3 Nuclear hormone receptor
enhancement

Nuclear hormone receptor enhancement (Figure 2B) is another
potential strategy for preserving visual function in IRDs. Mutations
in the human nuclear hormone receptor gene NR2E3 (Haider et al.,
2000) with two rather different conditions, a recessive one due to
insufficient NR2E3, resulting in a disorder of photoreceptor cell fate
known as the Enhanced S-Cone Syndrome (ESCS) in which rods are
replaced by S-cones that remain preserved for extended periods of
time (Roman et al., 2019; Iannaccone et al., 2021a), and in a
dominant disorder in which abnormal gain of function mutations
cause instead a form of RP without enhanced function or selective
preservation of the S-cones (S. Li et al., 2021a). In the rd7 mouse
model, which lacks Nr2e3 and we have shown that faithfully
replicated human ESCS (Roman et al., 2019; Batabyal and Kim,
2021), augmenting expression of the nuclear hormone receptor
NR1D1 led to histological and molecular restoration of the rd7
retina (Cruz et al., 2014). However, due to the pleiotropic effects of
this gene on photoreceptor health, NR2E3 has been studied beyond
these two conditions and shown to act also as a genetic modifier that
can rescue also other forms of RP (Gire et al., 2007). In pursuit of this
strategy for restoring vision, Ocugen has initiated an ongoing
clinical trial (NCT05203939) in an effort to test the safety and
initial efficacy ofNR2E3-based gene therapy. This trial aims not only
to treat ESCS patients and dominant forms of RP linked to NR2E3
mutations, but is also trying to harness NR2E3’s potential to
promote homeostasis in the degenerating retina with other forms
of RP (S. Li et al., 2021b). If successful, this therapy could become
available for not only patients with ESCS, but also for other forms of
RP not linked to NR2E3 mutations.

3 Stem Cell Transplantation and
Regeneration

As illustrated in Figure 1, patients with end-stage IRDs, who
have lost virtually all of their photoreceptors, are outside of the
treatment window wherein protective therapies could make a
substantive impact. Such patients require restorative approaches
that aim to replace rather than protect photoreceptors, or otherwise
circumvent their loss. This includes patients with macular
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dystrophies such as Stargardt disease or related conditions in whom,
despite good peripheral retinal functional preservation, central
visual loss may be associated with irreparable photoreceptor loss
and restorative approaches are needed as well. To this end,
numerous stem cell research (Figure 3) efforts have focused on
photoreceptor differentiation and transplantation. Harnessing stem
cell transplantation technologies has the potential to play a key role
in the treatment of patients with advanced IRDs.

3.1 Photoreceptors and RPE derived from
embryonic stem cells (ESCs) or induced
pluripotent stem cells (iPSCs)

Early efforts to direct embryonic stem cells into retinal
precursors with the competence for photoreceptor
differentiation (Ikeda et al., 2005) provided the basis for
subsequent development of transplantable retinal sheets
(Zhong et al., 2014; Han et al., 2022). Further optimization of
these protocols shortened the minimum time to maturation, with
expression of putative photoreceptor markers like OPN1SW (the
blue cone pigment) and rhodopsin (Mellough et al., 2012). The
development of murine ESC- or iPSC-derived 3D retinal sheets
(Figures 3D,E) for transplantation into the rd1 mouse and other
models of retinal degeneration advanced these approaches
further (Assawachananont et al., 2014; Jayakody et al., 2015;
Ribeiro et al., 2021). Evidence from these studies indicated
successful establishment of synaptic connections between host-
graft bipolar cells and photoreceptors (Assawachananont et al.,
2014; Jayakody et al., 2015; Ribeiro et al., 2021), and provide
crucial validation for photoreceptor replacement therapy and its
potential to rescue cone-mediated vision. Others have identified
the capacity of human iPSCs to autonomously proliferate and

spontaneously organize themselves into three-dimensional
retinal cups containing properly arranged retinal cell types
(Zhong et al., 2014). More recently, efforts have identified
three-dimensional retinal organoids as a promising graft
source for transplantation therapy (Watari et al., 2023).
Evidence also points to preclinical stage success storing
associated tissue-sheets for 3, 4 days using a novel
preservation method, with functional light responses following
retinal transplantation in a rodent model (Watari et al., 2023).

In theory, iPSC-derived RPE bears similar potential for
clinical application, particularly when differentiation methods
generate and maintain the apical-basolateral polarity
characteristic of native RPE structure and function
(Miyagishima et al., 2016). Donor-to-donor variability impacts
iPSC-derived RPE quality and elevates the requirement for
validation of individual graft features prior to consideration
for clinical application. Select clinical trials have achieved
incremental success for this field, and subretinally
transplanted ESC- and iPSC-derived RPE improved visual
acuity in some patients (Mandai et al., 2017; Da Cruz et al.,
2018; Takagi et al., 2019; Li et al., 2021a), including a cohort with
Stargardt macular dystrophy. Intravitreal injection of retinal
progenitor cells have also been investigated by jCyte, with a
Phase 3 trial that is in the planning phase is required to make
determinations beyond safety and efficacy (NCT03073733;
NCT04604899; NCT02320812). Multiple clinical trials
focusing on stem cell-derived RPE for treating IRDs remain
ongoing (ReNeuron Limited, NCT02464436; Southwest
Hospital, China, NCT02941991, NCT02749734; Centre
d’Etude des Cellules Souches, France, NCT03963154). Further
evidence from emerging trials will be required to demonstrate
that this strategy can be successful in practice and yield
significant improvements for patients’ vision.

FIGURE 3
Stem Cell Transplantation and Regeneration. Many stem cells sources are being explored, and research efforts are focusing on streamlining
regeneration methods to convert these stem cells (B) into healthy photoreceptors that can survive subretinal transplantation (scissors) while retaining
light-responsive properties. Here, we highlight the origin and conversion of the following cells into photoreceptors, mesenchymal stem cells (MSCs) (A),
retinal stem cells (C) from the ciliary margin (shown by i & ii), embryonic stem cells (ESCs) (D), human induced pluripotent stem cells (hiPSCs) (E), and
chemically-induced photoreceptor-like cells (CiPCs) (E) derived from fibroblasts.
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3.2 Mesenchymal stem cell (MSC)
transplantation

Multiple characteristics of mesenchymal stem cells (MSCs)
make them suitable for clinical use, including their anti-
inflammatory properties derived from extracellular vesicle release
(Kou et al., 2022) or their enhancement of autophagy pathways (Liu
et al., 2020). The latter was highlighted by a study of rat bone
marrow-derived MSC rescue (Figure 3A) of outer nuclear layer
thickness in an in vitro photoreceptor model (Liu et al., 2020). In a
sodium iodate model of retinal degeneration, intravitreal injection of
human dental pulp-derived MSCs improved retinal function on
electroretinography (Alsaeedi et al., 2019). A proteomic study in a
N-methyl-N-nitrosourea injury model of retinal degeneration
demonstrated that MSC transplantation conferred a protective
effect on photoreceptors, which was attributed to attenuated
activation of Pdcd4-mediated programmed cell death pathways
(Deng et al., 2021). These rudimentary models provide important
insight into the potential of MSC transplantation and establish the
basis for subsequent advancement to translational models and
clinical trials.

In a non-randomized clinical trial for RP patients, intravitreal
injection of autologous bone marrow-derived MSCs improved the
best-corrected visual acuity of all participants for several months
after the procedure (Tuekprakhon et al., 2021). Unfortunately, the
improvements were not sustainable, as their visual acuity reverted to
baseline within 12 months of treatment (Tuekprakhon et al., 2021).
However, subsequent clinical trials in retinitis pigmentosa patients
have reported much success following bone marrow-derived MSC
transplantation (Adak et al., 2021). A phase III clinical trial involving
suprachoroidal injection of umbilical cord-derived MSC also
improved patients’ visual acuity through the 6-month follow-up,
without changes in average visual field sensitivity or visual evoked
potentials (Kahraman and Oner, 2020; Zhao et al., 2020). Sub-tenon
injection of Wharton’s jelly-derived MSCs led to improvements in
patients’ visual acuity as well, although this study remains ongoing
(Özmert and Arslan, 2020). These advances point to the promise of
MSC technologies for vision restoration, although long-term efficacy
studies will be required to validate the potential of these treatments.

3.3 Chemically-induced photoreceptor-like
cells (CiPCs)

Recent seminal work has identified a set of five small molecules
capable of chemically inducing transformation of fibroblast into
photoreceptor-like cells (CiPCs) (Figure 3E) without first reverting
them into pluripotent states or employing transcription factors
(Mahato et al., 2020). In the rd1 mouse model, which is
characterized by rapid onset retinal degeneration akin to RP,
CiPC transplantation into the subretinal space partially restored
the pupillary reflex and visual function, as measured by the light-
aversion behavioral paradigm (Mahato et al., 2020). In some tests,
this effect was detected under scotopic illumination conditions
assessing rod-mediated vision (Mahato et al., 2020). Evidence
suggests that CiPC development relies on translocation of
AXIN2 to the mitochondria to promote reactive oxygen species
production and subsequent activation of NFkB and

Ascl1 upregulation (Shin et al., 2016; Mahato et al., 2020). While
larger preclinical and clinical studies of CiPC will be required to fully
assess the potential of this strategy, more efficient conversion of
fibroblasts into photoreceptor-like cells may play a key role in
lowering costs and increasing patient access to regenerative
medicine.

3.4 Neural stem cells of the retina

Reports of true retinal stem cells in the adult human eye raise the
possibility of an endogenous source for cellular regeneration (Coles
et al., 2004; Frøen et al., 2013). Adult neural stem cells do not require
reprogramming, and a retinal stem cell population would fall into
this category (Liu et al., 2003). A study of human ocular cell types
showed that the human eye contains a small population of
approximately 10,000 multipotent, retinal stem cells (Figure 3C)
with the potential for proliferation and self-renewal (Coles et al.,
2004). Capitalizing on this population in the ciliary margin (Figure
3C, i and ii), the biotechnology company Endogena Therapeutics
has focused on a regenerative medicine approach to stimulate
proliferation and migration of these retinal stem cells as a
therapeutic alternative. While this technology remains
proprietary, ongoing clinical trials are evaluating the efficacy of
several cocktails of intravitreally delivered small molecules
(NCT05392751). Activating endogenous retinal stem cell
populations for development into photoreceptors would be
exciting; however, any genetic defects would persist in this
reactivated stem cell population. These cells might mature into
photoreceptors and function normally for some time, but the
genetic basis for degeneration would remain. Eventually,
degeneration would likely occur at the same rate experienced by
the patient prior to any intervention. For early onset IRDs, such as
LCA2, this strategy may not be viable; however, slower progressing
IRDs, like RP, may be well-suited for treatment by this approach.
Further studies will be required to assess the feasibility of repeating
treatment to activate retinal stem cells multiple times over a patient’s
lifetime. Extended-release formulations could also play a role in
long-term activation of patients’ retinal stem cells.

4 Optogenetic strategies for restoring
vision

Optogenetic therapy provides an unparalleled opportunity for
restoring vision to patients who have experienced significant
photoreceptor cell death. Through AAV-mediated expression of
opsins (i.e., channelrhodopsin, ChrimsonR and Opto-mGluR6) in
bipolar cells and retinal ganglion cells, direct stimulation of these
secondary and tertiary cell types of the neural retina can bypass
photoreceptors while maximizing the activation of typical visual
circuits of the brain.

4.1 Targeting retinal ganglion cells

A series of non-human primate studies established the proof of
concept for optogenetic gene therapy targeting retinal ganglion cells
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(Figures 4A, i) and demonstrated the capacity for AAV-mediated
opsin expression without a deleterious immune response (Picaud
et al., 2019; Gauvain et al., 2021). Importantly, this work overcame

differences in murine and primate immunology, and collaborative
efforts identified an AAV-variant (AAV2.7m8) that could effectively
transduce retinal ganglion cells following intravitreal injection
(Dalkara et al., 2013; Sahel et al., 2021). Translating this strategy
into clinic has been enormously successful and restored significant
visual perception in a patient with RP, whose visual acuity had been
limited to light perception for over a decade (Sahel et al., 2021). By
pairing intravitreal injections with active stimulation goggles
designed exclusively for converting camera inputs into opsin
stimulation, this therapy maximizes the functionality of the
newly expressed opsins in patients’ retinal ganglion cells
(Gauvain et al., 2021; Sahel et al., 2021; Kralik et al., 2022).
Physiotherapy also forms a key component of the therapeutic
process, and patients must train themselves to interpret the new
format of visual information transmitted by optogenetic goggles
(GenSight Biologics; NCT03326336). For patients with severe
photoreceptor loss, optogenetic therapy represents hope of
regaining some level of vision.

Further advances in optogenetic therapy may be capable of
improving the best visual acuity that treatment can offer. For
example, rather than achieving vision at the level of object
localization within arm’s length (Sahel et al., 2021), future
therapies may be able to allow for counting fingers at several
feet. These seemingly modest improvements would lead to
significant practical possibilities for patients.

4.2 Amplifying optogenetic signals in bipolar
cells

Following severe photoreceptor degeneration, many retinal
interneurons remain physiologically and metabolically stable.
Imbuing bipolar cells (Figure 4A, ii) with light sensitivity could
maximize the utility of native retinal circuits and restore visual
function. Inducing the expression of light-sensitive G-protein
coupled receptors, such as vertebrate rhodopsin, in bipolar cells
represents another attractive alternative for restoring vision (Gaub
et al., 2018). Expanding on this concept, Vedere Bio II is also
developing a library of intravitreally injectable small molecules to
augment the sensitivity of rhodopsin and increase its signal
amplification. Together, AAV-mediated delivery of rhodopsin to
bipolar cells followed by intravitreally injectable small molecules
that can act as a “molecular switch” has the potential to restore
patient’s visual function using ambient light.

Protein engineering to improve the kinetics of opsins used in
optogenetic therapy may also facilitate improved outcomes. AAV-
mediated delivery of Opto-mGluR6, a chimera of melanopsin with
the intracellular domains exchanged for those of mGluR6,
represents an early foray into this space (Kralik et al., 2022). This
design aimed to optimize activation of the Gαo signaling pathway,
the G-protein pathway traditionally activated by mGluR6 at the
photoreceptor-ON bipolar cell synapse (Nawy, 1999). Harnessing
the natural signal amplification capacity of metabotropic receptors
makes GPCR opsins approximately 1000-fold more light sensitive
compared to traditional channelrhodopsins (Kralik et al., 2022).
Targeting bipolar cells also maximizes the capacity of light signals to
naturally propagate to diverse retinal ganglion cell populations and
their inherently varied receptive fields (Hulliger et al., 2020). The

FIGURE 4
Optogenetic strategies for restoring vision. In the degenerating
retina (A), dying photoreceptors (iii) fail to detect light or provide the
retinal interneurons with signals about visual input. Solutions include
targeting retinal ganglion cells (i) with channelrhodopsins (such
as ChrimsonR, blue). Another option is to target bipolar cells (ii) with
GPCR opsins (purple) or to combine this approach with small
molecules (red circles) that further increase light sensitivity. (B)
Administration of therapy requires intravitreal delivery of AAVs
mediating opsin expression in the bipolar cells and retinal ganglion
cells. Use of optogenetic goggles convert digital images from a
camera into light stimulation of the treated retina to support patients’
restoration of vision (C) Another possible solution is to replace dying
photoreceptors with a graft of human iPSC-photoreceptors that have
been transduced with optogenetic proteins like halorhodopsin.
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immense potential of this strategy is highlighted by the encouraging
results demonstrating improved visual function and contrast
sensitivity in optogenetically stimulated rd1 mice (Kralik et al.,
2022).

4.3 Optogenetic photoreceptor
transplantation

Combining optogenetic therapy with photoreceptor
transplantation may represent a viable strategy for restoring
function of the entire retinal circuit, even in patients who have
experienced significant photoreceptor loss (Garita-Hernandez et al.,
2021; Sakai et al., 2022). Optogenetic transduction of human iPSC-
photoreceptors with halorhodopsin eNpHR2.0 has shown success in
preclinical studies, following transplantation into rd1 mice,
optogenetic stimulation of eNpHR2.0-expressing photoreceptors
led to robust activity in downstream retinal ganglion cells
(Garita-Hernandez et al., 2019). Furthermore,
immunofluorescence studies from treated rd1 mice revealed the
development of synaptic connections between transplanted
photoreceptors and host bipolar cells (Garita-Hernandez et al.,
2019). These advances may pave the way toward new treatments
for patients with late-stage IRDs.

4.4 Evolution of gene therapy

Despite the ocular immune privilege, immune consequences of
AAV-mediated therapies remain a consideration in the translational
vision research community (Taylor, 2016). Attempts to enhance the
transduction of retinal cells by increasing viral loads will likely result
in higher toxicity (Khabou et al., 2018), as seen in certain studies
involving non-human primates (Vandenberghe et al., 2011;
Ramachandran et al., 2017; Hinderer et al., 2018). Selection of
the ideal promoter based on its activity and cell-type-specific
tropism is a key factor in reducing gene therapy-associated
toxicity and optimizing its therapeutic effect. For this reason,
promoters with activity restricted to specific cell types (such as
human rhodopsin (Allocca et al., 2007; Busskamp et al., 2010)
[rods], cone arrestin [cones] (Zhu et al., 2002), and bestrophin-1
(Snodderly et al., 1992; Zhu et al., 2002; Xiong et al., 2019) [RPE]
promoters) are typically preferred to globally active potent
promoters (such as cytomegalovirus immediate-early (Boshart
et al., 1985) [CMV] and chicken beta actin (Hitoshi et al., 1991)
[CAG] promoters). Cell-specific promoters eliminate the
physiologic stress of indiscriminate expression across cell types
that leads to treatment toxicity. These findings highlight the need
for more detailed examination of tropism and immune responses
associated with viral constructs intended for therapeutic use.

To this end, Vedere Bio (whose assets have now been acquired
by Novartis) and Vedere Bio II have initiated recent advances
harnessing in vivo-directed evolution of new AAV capsids
significantly expand the therapeutic potential and applications of
AAV gene therapy for IRDs (Dalkara et al., 2013). AAV variants
capable of delivering gene cargo to the outer retina following
intravitreal injection are especially sought after, with dense tissue
of the inner limiting membrane posing a major barrier to successful

gene therapy for naturally-occurring AAV serotypes (Snodderly
et al., 1992; Fischer et al., 2009). By contrast, in vivo-directed
evolution of new AAV serotypes appears to have partially
overcome these obstacles, and in mouse models of X-linked
retinoschisis and LCA2, novel AAV2.7m8 mediated highly
efficient gene delivery across retinal layers (Dalkara et al., 2013).
Furthermore, AAV2.7m8 facilitated successful transduction of
primate photoreceptors following intravitreal injection (Dalkara
et al., 2013). Spearheading a segment of these efforts, GenSight
Biologics is already invested in ongoing clinical trials
(NCT03326336) to integrate this technology with optogenetic
approaches.

Continued improvement of AAVs toward increasingly efficient
transduction of the outer retina and RPE will be fundamental to the
future of gene therapy for IRDs. In combination with selective
promoters to achieve minimal toxicity, these novel AAV
serotypes will also increase treatment accessibility by enabling
patients to receive injections in-office as opposed to in the
operating room. Multiple surgical steps that carry significant
risks will also be avoided, such as vitrectomy and retinotomy
associated with subretinal injections.

4.5 Gene therapy without AAV, without
goggles, and without immune rejection

For some patients, cytotoxicity may eliminate AAV-mediated
gene therapy as an option. A novel method for nano-enhanced
optical delivery may alleviate these concerns and serve as a laser-
assisted gene therapy alternative (Batabyal et al., 2021a). Known
as optoporation, this strategy depends on a pulsed femtosecond
near-infrared laser microbeam to facilitate high-efficiency,
transient perforations in the cell membrane; this leads to
spatially localized transfection of cells with the desired genetic
material (Matsuda and Cepko, 2004; Lagali et al., 2008;
Doroudchi et al., 2011; Mohanty, 2012). In several optogenetic
studies utilizing this method, the neural retina of rd10 mice
remained healthy following optoporation of
multicharacteristics opsin (MCO1), a broad-band activatable
white-opsin that can be reliably stimulated by ambient light
(Batabyal et al., 2015; 2019). In previous work, MCO1-treated
mice also showed improvements in visually guided behaviors like
the Morris water maze (Wright et al., 2017). This was true even
under illumination levels ten times lower than the thresholds
typically required for channelrhodopsin stimulation in
traditionally optogenetically modified mice (Wright et al.,
2017; Batabyal et al., 2021a; Batabyal et al., 2021b).
Furthermore, chronic ambient light exposure for 8 h per day
did not induce photobleaching in the treated mice (Batabyal
et al., 2021b). Nanoscope Therapeutics has launched subsequent
clinical trials based on this technology (NCT05417126;
NCT04945772). These promising studies may lead to novel
therapies that do not require active stimulation goggles, while
nano-enhanced optical delivery may obviate the need for AAV
and reduce immune response concerns. Immunogenic risks
associated with introducing synthetic opsins will remain, but
eliminating the introduction of AAV particles will remove the
major exacerbating factor.
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5 Artificial vision and prosthetics

Developments in artificial vision over the last few decades
illustrate significant advances in retinal and cortical prosthetic
devices. Creative approaches harness reprogramming of other
sensory systems for prosthetics as well. The impressive success of
several implantable and wearable prosthetic designs (summarized in
Figure 5) warrants particular attention and will be especially
valuable for the diverse IRD patient population. In the case of
retinal and cortical prosthetics, patients with IRDs often experience
a complex conglomeration of symptoms, which makes them
candidates for only some of the surgical implantation techniques.
The parallel pursuit of multiple prosthetic options will better serve
the visually impaired community overall.

5.1 Retinal prosthetics

Significant progress in artificial vision research led to approval of
Second Sight’s Argus II retinal prosthetic system by the European
Union and FDA in 2011 and 2013, respectively (Fernandes et al.,
2012; Ghodasra et al., 2016). Argus II, and other similar retinal
prosthetics (Figure 5A) required surgical implantation of a receiving
coil to the lateral rectus muscle and placement of an electrode array
over the macula (Farvardin et al., 2018). As of 2018, four patients
had been treated by this strategy and re-gained the ability to perceive
hand motions and to perform vague pattern recognition (Farvardin
et al., 2018). In addition to the implanted components, these patients

used complementary goggles equipped with a sensor-containing
camera, a video processing unit, and a transmitting coil (Farvardin
et al., 2018). While Argus II featured an array with only
60 electrodes, a next-generation implant in development could
incorporate 240 central and peripheral electrodes to improve the
resolution of vision (Duncan et al., 2017). Ultimately, electrodes
with sizes comparable to that of a retinal ganglion cell would provide
optimal vision for the patient (Duncan et al., 2017). However, low
resolution of visual restoration has not been the only problem
confronting Argus II users. Patients have reported poor battery
life for the Argus II system and other features that limit its user
friendliness. These are a few reasons why Argus II is no longer
available. To address these problems and further enhance this
technology, Second Sight (now a division of Vivani Medical) has
a new device, Orion II, which is currently in development. These
upgrades will be critical to make a retinal prosthetic implant
worthwhile for patients, especially given the additional
inconveniences posed by surgical implantation, vision
rehabilitation, equipment burden, and the associated high costs
(Ostad-Ahmadi et al., 2021).

Other prosthetics currently in development include Alpha
AMS (Edwards et al., 2018), the Intelligent Retinal Implant
System (IRIS V2; NCT02670980), Suprachoroidal Retinal
Prosthesis (SRP; NCT01603576), and the PRIMA high-
resolution photovoltaic retinal prosthetic system (PRIMA;
NCT03333954). The Alpha AMS implant successfully
improved visual performance in multiple participants for up
to 24 months (Edwards et al., 2018). As with other visual
prosthetics, surgical implantation remains challenging, but
ongoing improvements in real-time optical coherence
tomography microscope guidance and in surgical methods
continue to bolster this intervention as a promising option for
patients.

The SRP appears to have an acceptable safety profile, yet
limitations still exist in the quality of visual contrast
discrimination and object localization achieved by this device
(Ayton et al., 2014; Slater et al., 2015). Results appear especially
mixed in terms of the patients’ ability to use the SRP to identify
meaningful characters and localize objects (Shivdasani et al., 2017).

The PRIMA system targets patients with dry age-related
macular degeneration (AMD) (Hageman et al., 2005; Toomey,
2015; Landowski et al., 2019), not IRDs; however, advances in
this system are likely to become applicable to IRD patients as
well. PRIMA has been shown in clinical trials to restore vision in
the central scotoma of several patients (Palanker et al., 2020).
Importantly, visual acuity correlated with the expectations
derived from the pixel pitch (20/420) of the PRIMA device, and
higher resolution of pixels in future versions of the implant will
likely further improve the maximum achievable visual acuity
(Palanker et al., 2020; 2022).

5.2 Cortical prosthetics

Cortical visual prosthetics have also been in development for
many decades (Dobelle and Mladejovsky, 1974; Dobelle et al.,
1976). Recent progress in electrode design, wireless power, and
data transmission has generated devices that can support much

FIGURE 5
Artificial visual prosthetic designs. Goggles with an integrated
camera and transmitter (black) connected to a battery and visual
processing unit (green, right side) are required for existing artificial
visual prosthetics. The goggles transmit stimulation signals to (A)
retinal prosthetic devices, surgical implantation (scissors) of an
electrode array with a receiving coil facilitates stimulation of retinal
ganglion cells (B) cortical prosthetic devices, surgical implantation of
an electrode array in the primary visual cortex (V1) with a receiving coil
facilitates stimulation of these cortical neurons (C) non-implanted
visual prosthetics, placed on the user’s tongue contains integrated
receiver for delivering electrical stimulation to the tongue (pink).
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higher resolution of vision and greater implant stability (Kim
et al., 2006; Rush and Troyk, 2012; PR, 2017; Niketeghad and
Pouratian, 2019; Pio-Lopez et al., 2021). Importantly, cortical
prosthetics implanted in the primary visual cortex (Figure 5B)
can also bring vision to patients who are not candidates for
retinal implants. This includes patients without functional retinal
tissue due to severe IRD progression, as well as those with
dysfunctional image forming corticothalamic pathways (i.e.,
optic nerve-lateral geniculate nucleus-visual cortex) due to
developmental and neurological disorders or ocular
malformations (i.e., microphthalmia).

5.3 Non-implanted visual prosthetics

Patients without any functional vision could also benefit
from tactile based visual sensory substitution (Figure 5C) using
devices like BrainPort Vision Pro, which remains in clinical
trials (Nau et al., 2013; Lee et al., 2014; Stronks et al., 2016;
Grant et al., 2018). BrainPort Vision Pro converts image
information from a video camera into electrical stimulation
patterns emitted from an oral device placed on the user’s tongue
(Nau et al., 2013; Lee et al., 2014; Stronks et al., 2016; Grant
et al., 2018). Users learn to interpret the electrical stimulation
patterns as visual stimuli including shapes, sizes, relative
location, and object motion over the course of multiple
training sessions, typically totaling 10 hours of one-on-one
training over 3 days (Nau et al., 2013; Lee et al., 2014;
Stronks et al., 2016; Grant et al., 2018). This strategy does
not require any surgical implantation, and the intraoral
device can be easily removed for cleaning (Lee et al., 2014;
Grant et al., 2018). BrainPort Vision Pro likely harnesses
synaptic plasticity in the brain to modulate the visual cortex
in a manner conceptually similar to tactile interpretation of
Braille lettering (Bola et al., 2017; Silson et al., 2022). BrainPort
Vision Pro is currently available in China, with an ongoing
clinical trial in the United States (NCT04725760) and expansion
efforts in the European Union following Conformité Européene
(CE) Mark approval. This technology augments visual
prosthetic devices and is currently intended for use alongside
traditional assistive technologies like the white cane or a
guide dog.

6 Discussion

There are many viable, gene-agnostic strategies for treating
IRDs. While most of them are best suited for treating patients at
a particular stage of disease progression, in combination, they could
constitute a powerful arsenal for maintaining or restoring vision
across the disease-stage spectrum.

For patients who remain early in their IRD diagnosis, oral
supplementation with NAC or other antioxidant cocktails
remains a very useful therapeutic option. Mounting evidence
in ongoing clinical trials suggests good efficacy for this strategy.
Given that NAC and many other supplements can be self-
administered by patients daily and at home, adherence to
these regimens will likely be high. Delivery of RdCVF or

proteasomal enhancers to patients with early disease
represents a more definitive opportunity to prevent or at least
delay otherwise inevitable visual impairment. Compliance with
these treatments is likely to be high for stand-alone delivery by
intravitreal injection, while extended-release formulations or
AAV-based approaches may limit the burden of frequent
repeat treatments.

For IRD patients with intermediate stage of disease
progression, combinatorial treatment is even more likely to
provide the necessary synergy to restore or protect visual
function. In some instances, subretinal surgical implantation
of ESCs, iPSCs, or CiPCs may be necessary to augment native
photoreceptors. However, surgical and immune rejection risks
can be significant, making some patients poor candidates for
these procedures. By contrast, intravitreal delivery of a small
molecule cocktail is much more accessible for most patients, and
activation of a patient’s own retinal stem cells eliminates immune
rejection concerns. For patients with early onset disease that
obliterates function of their own retinal stem cells, optogenetic
strategies targeting bipolar cells or retinal ganglion cells remain
gene-agnostic without relying on a patient’s degenerating
photoreceptors. Advances in AAV design may also allow the
field to transition from subretinal to intravitreal treatment
delivery. Optoporation or electro-transfection via a
proprietary injection system (ETIS) developed by Eyevensys
represent competing delivery strategies for both gene therapies
and pharmacological/neuroprotective approaches to IRDs.
Furthermore, improvements in the design of synthetic opsins
may eventually support IRD patients’ ability to regain vision
without relying on goggles, which are traditionally required by
optogenetic therapies.

For advanced-stage IRD patients with significant outer retina
loss, vision restoration will focus on bipolar cells, retinal ganglion
cells and the image-forming pathways in the brain. Optogenetic
technologies would be ideal for patients whose bipolar cells and
retinal ganglion cells remain responsive. By contrast, implantable
retinal and cortical visual prosthetics are best suited to create
artificial vision in patients whose inner retinal function is
compromised as well. Creative approaches using tactile devices,
like BrainPort Vision Pro, can also expand the population of patients
for whom vision restoration is possible.

From retinal supplementation and stem cell transplantation to
optogenetic therapy and retinal prosthetics, a variety of creative
strategies hold promise in the quest to protect or restore vision for a
broad population of people living with IRDs. Focusing on gene-
agnostic approaches to treating IRDs will expedite the development
of meaningful therapeutic solutions for patients. Distinct
approaches will be suited to IRD patients at various stages of
disease progression. Other aspects of health and financial access
may also contribute to the “best treatment” for a given patient. Gene
specific approaches represent the ultimate example of precision
medicine and remain highly desirable and critically important to
pursue. However, by investigating common targetable disease
pathways and putting sufficient parallel emphasis on the
development of gene-agnostic IRD therapeutics as well, we can
hope to achieve the long-promised “just around the corner”
treatments in time to make a difference for the vast majority of
IRD patients.
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