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Exosomes are membrane-bound extracellular vesicles released following the
fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes
transport diverse molecules, including proteins, lipids, DNA and RNA, and
regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried
by exosomes regulate cell-cell communication in tissues, including adipose
tissue. This review summarizes the action mechanisms of ncRNAs carried by
exosomes on adipocyte differentiation and modulation of adipogenesis by
exosomal ncRNAs. This study aims to provide valuable insights for developing
novel therapeutics.
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1 Introduction

Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins. ncRNAs
act as regulators of gene expression at various levels, including the transcriptional, post-
transcriptional and translational levels. ncRNAs include micro-RNAs (miRNAs), long-chain
non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) (Kapranov et al., 2007).
miRNAs are highly conserved small ncRNAs (Holoch and Moazed, 2015). On the other
hand, lncRNAs are poorly conserved ncRNAs with a length above 200 nt. LncRNAs act as
competitive endogenous RNA (ceRNA) by binding to complementary binding sites on
miRNA, thus regulating target gene expression by binding to the 3′UTR region (He et al.,
2020). circRNAs are highly conserved ncRNAs with a circular structure formed by covalent
binding of the 3′ end and the 5′ end after back-splicing. circRNAs also regulate gene and
protein expression by serving as miRNA and RNA-binding protein sponges (Aufiero et al.,
2019). ncRNAs are associated with various diseases and have diagnostic and therapeutic
value (Wang et al., 2021). Genomic DNA can be transcripted into coding RNA or non-
coding RNA. Approximately two percent of the human genome is made up of protein-
coding genes (Kaikkonen and Adelman, 2018). Non-coding RNAs are not translated into
proteins (Adams et al., 2017). Non-coding RNAs can be divided into long-chain noncoding
rNA (lncRNAs, >200 nucleotides), medium-chain ncRNAs (20-200 nucleotides), and short-
chain ncRNAs (<20 nucleotides). Short-chain ncRNAs can be further divided into piwi-
interacting RNA, small interfering RNAs (siRNAs), and miRNAs. Medium-chain ncRNAs
include small-nuclear RNA involved in transcript splicing in protein synthesis, nucleolar
RNA involved in ribosomal RNA modification, transcription start site (TSS)-related RNA,
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and promoter-related miRNA. miRNAs play an important
regulatory role at different stages of lipid metabolism (Aryal
et al., 2017).

Studies have demonstrated that lncRNAs regulate various
physiological and pathological processes, including growth and
development, hematopoietic processes, cell proliferation and
apoptosis, tumorigenesis, cell metabolism, genomic imprinting,
chromatin modification, infection, and immune response
(Karreth et al., 2015; Wang et al., 2016; Kasagi et al., 2017).
lncRNAs interact with the target protein-coding genes through a
highly complicated RNA regulatory network. Mutations or
abnormal expressions of lncRNAs are closely linked to various
diseases.

Valadi et al. demonstrated that exosomes could transport
miRNAs and mRNAs into other cells (Valadi et al., 2007).
Furthermore, miRNAs, lncRNAs, and circRNAs were shown to
be encapsulated and transported intercellularly. When exosome
ncRNAs undergo tissue-specific changes due to stimulation from
various internal and external factors, they can cause organ
dysfunction, aging, and disease. Previous studies have shown that
exosomal ncRNAs participate in the pathogenesis and development
of infectious, autoimmune, metabolic, neurodegenerative,
cardiovascular, and neurodegenerative diseases. Exosomal
ncRNAs also show differential expression in different cells or
under different physiological or pathological conditions.
Therefore, exosome ncRNAs serve as potential diagnostic and
therapeutic biomarkers.

On the other hand, different biological processes, such as
differentiation, proliferation, apoptosis, metabolism, immune
responses, and tumorigenesis, are influenced by miRNAs
(Alvarez-Garcia and Miska, 2005; Schickel et al., 2008). Yan et al.
(2016) showed differential expression of miRNAs between the
plasma of patients with diabetes and controls. miRNAs are
differentially expressed in different organs related to metabolism,
including the liver, pancreatic islets, and adipose tissue. In recent
years, significant advances have been made in understanding the
regulation of adipocyte differentiation (Esau et al., 2004; Kajimoto
et al., 2006; Cheung et al., 2008; Lin et al., 2009). Several protein-
coding genes, mRNAs, and microRNAs are associated with lipid
metabolism and adipocyte differentiation.

However, gene expression profiles and functions of lncRNAs
during adipocyte differentiation remain to be fully analyzed. Sun
et al. (2013) identified 175 lncRNAs which were significantly
dysregulated during adipocyte differentiation by profiling
transcriptomes of primary brown and white adipocytes, precursor
adipocytes and mature adipocytes. They found that C/EBPα and
PPARγ could bind to the promoter regions of many lncRNAs. It was
also revealed that inhibition of ten lncRNAs by RNAi significantly
inhibited lipid droplet formation. Few studies have investigated the
expression profile of non-coding RNAs in human adipose-derived
stem cells (hADSCs). The regulatory mechanisms and pathways of
adipocyte differentiation by ncRNAs remain unstudied. A recent
study revealed that adipose tissue-derived exosomes could regulate
physiological signal transduction and metabolism in adipose tissue
and other peripheral tissues (Wang et al., 2022). Adipose tissue-
derived exosomes could contribute to the development of obesity
and related metabolic syndromes. Adipose tissue can regulate the
metabolic homeostasis of various tissues and organs by secreting

exosomes (Mathieu et al., 2019). Furthermore, exosomes derived
from various tissues can disproportionately affect lipid
accumulation and metabolism in adipose tissue. Previous studies
demonstrated that ncRNAs regulate cell differentiation, epigenetics,
and cell cycle regulation. In addition, ncRNAs can modulate
adipocyte differentiation and adipogenesis by targeting
transcription factors and signaling molecules. In this review, we
outline the exosome production pathways and the molecular
regulatory mechanisms of ncRNAs carried by adipogenic
exosomes. The review aims to provide valuable insights for
treating metabolic diseases by targeting exosome production.

2 Exosomes in regulating adipocyte
differentiation and lipid metabolism

After fusion of intracellular multivesicular bodies (MVBs) with
the cell membrane, exosomes are discharged into the extracellular
environment (Simpson et al., 2009; Mathivanan et al., 2010).
Exosomes are crucial to maintaining human health. Therefore,
understanding their role in diseases can provide valuable insights
for developing effective therapies. Recent studies have shown that
exosomes regulate human diseases by regulating immune responses,
oxidative stress, autophagy, gut microbiome, and cell cycle (Baixauli
et al., 2014; Muller et al., 2016; Real et al., 2018; Anel et al., 2019;
Elashiry et al., 2020; Xu et al., 2020; Liu et al., 2021; Shen et al., 2021;
Wang et al., 2021; Xing et al., 2021; Jahangiri et al., 2022; Yan et al.,
2023). Exosomes form through the inward budding of early
endosomal membranes (Figure 1), which mature into
multivesicular bodies (MVBs). Multivesicular bodies are involved
in endocytosis and transport of cellular material (Borges et al., 2013;
Bebelman et al., 2018). Multivesicular bodies have two possible fates,
including fusion with lysosomes, resulting in acidification and
degradation of their contents, and fusion with the cytoplasmic
membrane, releasing the endoluminal vesicles outside the cell
and eventually forming exosomes (Raposo and Stoorvogel, 2013).
Understanding the yield and protein composition of exosomes will
improve our understanding of the molecular mechanisms
underlying their formation. The exosomal formation mechanism
involves two pathways, including the ESCRT (endosomal sorting
complex required for transport) dependent pathway and the ESCRT
independent pathway (Figure 2) (Dreyer and Baur, 2016). The
ESCRT-dependent pathway comprises four protein complexes
(ESCRT-0, -I, -II, -III), which regulate exosome formation and
transport, with ESCRT-0 mediating substrate recognition and
sorting, ESCRT-I and ESCRT-II mediating inward budding of
endosomal membranes, and ESCRT-III shearing the bud neck to
form MVB (Figure 3) (Hurley and Hanson, 2010; Hanson and
Cashikar, 2012; Zeng et al., 2018).

Exosomes have been found in various body fluids, including
blood, urine, cerebrospinal fluid, joint effusion, breast milk, and
saliva (Nafar et al., 2022). Exosomes carry various molecules,
including DNA, mRNA, non-coding RNA, lipids, cytokines, and
proteins, and are crucial for cellular communication and
information transfer (Mathieu et al., 2019). One previous study
revealed that exosomes play an important role in modifying the
extracellular microenvironment, immune regulation, homeostasis,
and are incorporated into a variety of physiological and pathological
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processes (Raposo et al., 1996). Exosomes are mediators of
intercellular communications as they deliver miRNA and other
contents to recipient cells, and miRNA-containing exosomes can
be absorbed by neighboring cells via endocytosis, thus influencing
the phenotype of neighboring cells (Bruns et al., 2017). Exosomes
can promote tumor progression and drug resistance in cancer by
inhibiting the host immune response. Of note, exosomes released by
tumor cells are implicated in resistance-associated secretory
phenotype (RASP) by which immune escape is established. Heat
shock proteins (HSPs) carried by exosomes can be co-transported
with oncogenic factors to promote tumor development and escape
to the immune system resulting in immunostimulatory effects (Taha
et al., 2019). On the other hand, exosomes derived from platelets
activated by thrombinmay promote the survival, multiplication, and
chemotaxis of hematopoietic cells as well as the release of pro-
inflammatory cytokines (such as myeloperoxidase and superoxide
dismutase) from monocytes, thus triggering local and systemic
inflammation (Yasaka et al., 1981). Exosomes can be used as
drug delivery vehicles as they are non-immunogenic, have good
biocompatibility, and have efficient transport (Kim et al., 2018; Hou
et al., 2019).

Exosomes have different biological characteristics and may exert
different effects depending on their contents, tissue micro-
environment, and recipient cells. Mature adipocyte-derived
exosomes show a greater capacity for adipocyte differentiation
than adipose stem cell-derived exosomes. Furthermore,
adipocyte-derived exosomes can promote the differentiation of
adipose-derived stem cells (ADSCs) (Dai et al., 2017). The repair
and regenerative functions of adipose stem cell-derived exosomes
mainly rely on the delivery of self-packaged proteins, lipids, mRNAs
and miRNAs, and the required nutrients and inflammatory
mediators (Cabral et al., 2018). Adipocyte-derived exosomes can
promote insulin resistance and type II diabetes by affecting immune

cells through paracrine pathways (Deng et al., 2009; Connolly et al.,
2015; Ying et al., 2017). Studies have demonstrated that adipocyte-
derived exosomes can influence foam cell formation and
polarization, resulting in atherosclerosis (Kranendonk et al., 2014;
Li X et al., 2019).

2.1 Negative regulation of adipocyte
differentiation by exosomes

Wang et al. (2017) revealed that tumor-derived exosomes
decrease the formation of lipid droplets and lower the mRNA
expression of the adipogenic transcription factor, peroxisome
proliferator-activated receptor γ (PPARγ, an adipocyte-specific
marker), and lipoprotein lipase. They also demonstrated that
pulmonary tumor-derived exosomes suppress adipogenic
differentiation of ADSCs via the TGFβ signaling pathway.

2.2 Positive regulation of adipocyte
differentiation by exosomes

Exosomes can induce their differentiation into mature
adipocytes and cause lipid deposition (Wan et al., 2019).
Adipocyte-derived exosomes (Ad-Exo) contain miRNA, RNA,
and proteins that determine the lineage of human bone marrow
mesenchymal stem cells (hMSCs). Ad-Exo can enhance ECM-
induced differentiation of hMSCs to adipocytes. Narayanan
revealed that the combination of osteoblast/adipocyte ECM and
exosomes induced the expression of lineage-specific genes at the
early differentiation stage. Their findings also showed that hMSCs
differentiated on ECM of osteoblasts with adipogenic exosomes
could express adipogenic genes (Narayanan et al., 2018).

FIGURE 1
The forming process and structure of the exosomes. Donor cells secrete exosomes into the extracellular space, and exosomes can carry various
cargos and interact with recipient cells through endocytosis, or direct membrane fusion, or receptor-ligand interfaces [Reprinted by permission from
John Wiley and Sons Ltd. Journal of cellular and molecular medicine, Xing et al. (2021), copyright 2021].
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Interfering ADSCs with adipose tissue-derived exosomes caused
upregulated expression of PPARγ, adipocyte-specific fatty acid
binding protein 2 (aP2), and lipocalin and an increase in the
number of mature cells (Dai et al., 2017). However, exosomes
released by lipopolysaccharide-activated macrophages did not
affect the final maturation and differentiation of preadipocytes
and fat storage (De Silva et al., 2018).

2.3 Regulation of lipid metabolism by
adipose-derived exosomes

ADSCs-derived exosomes activateM2macrophage polarization,
express high levels of tyrosine hydroxylase, and enhance the
expression of related thermogenic genes through a signal
transduction and transcriptional activator 3-related pathway.

Thus, they promote white adipose tissue browning, restore
uncoupling protein 1 (UCP1)-dependent energy expenditure and
ultimately reduce the effects of insulin resistance, dyslipidemia and
hepatic steatosis caused by obesity (Zhao et al., 2018). A high
expression of miRNA-155 in adipose tissue macrophages
collected from obese mice effectively inhibit white fat browning
and thermogenesis, reduce brown adipose tissue, as well as inhibits
its function (Chen et al., 2013; Zhang et al., 2019).

A previous study showed a higher expression of Ad-Exo, in
obese mice compared with non-obese mice (Lazar et al., 2016).
Ad-Exo promotes fatty acid oxidation. Ad-Exo can increase the
lipid content in adipose tissue macrophages (ATMs), and deliver
triglycerides to macrophages, resulting in lipid accumulation in
macrophages. Ad-Exo can induce the expression of lipid
metabolism-related genes (Flaherty et al., 2019). Furthermore,
mature adipocyte-derived exosomes are necessary for

FIGURE 2
Mechanisms for biogenesis and secretion of exosomes. Exosome-producing MVBs travel along the secretory pathway, move to the cell periphery,
fuse with the plasma membrane, and release their ILVs into the extracellular environment. MVBs can interact dynamically with other organelles or
compartments. The exosome formation from MVBs proceeds via ESCRT-dependent and ESCRT-independent pathways [Reprinted by permission from
Macmillan Publishers Ltd. Nature Reviews Immunology, Robbins and Morelli (2014), copyright 2014].

Frontiers in Cell and Developmental Biology frontiersin.org04

Liu et al. 10.3389/fcell.2023.1173904

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1173904


adipogenesis and rely on transient receptor potential mucolipin 1
(TRPML1) mediated lysosomal cytokinesis. Mature adipocyte-
derived exosomes stimulate adipogenesis in a paracrine and
autocrine manner. The expression of endogenous
TRPML1 increased during the maturation and differentiation
of preadipocytes. Notably, lipid synthesis reduced in the absence
of TRPML1 (Kim et al., 2019).

In patients with obesity-related cardiovascular disease, Zhang
found increased levels of cystatin C and CD14 (Zhang et al., 2016).
Exosomes with high concentrations of cystatin C and CD14 have
been linked to a higher risk of myocardial infarction and mortality.
The expression of cystatin C in plasma exosomes was also
positively associated with low-grade inflammatory response, low
HDL-cholesterol levels and metabolic syndrome. Contrarily, a
negative correlation was noted between the expression of
CD14 and adipose tissue abundance, dyslipidemia, and a lower
risk of type 2 diabetes (Zhang et al., 2016). Exosomes contribute to
the onset of diabetes and its associated complications. Therefore,
exosomes can act as novel therapeutic targets as well as biomarkers
for early detection and staging of diabetes (Cianciaruso et al.,
2017).

3 Regulation of adipogenic
differentiation by exosome-derived
ncRNAs

3.1 Regulation of adipogenic differentiation
by miRNAs in exosomes

Mature miRNA can mediate mRNA degradation or suppress
protein translation by binding with specific ribonucleoprotein AGO
(Argonaute) to generate RNA-induced silencing complex (RISC).
RISC recognizes target genes via complementary binding of miRNA
seed sequences to mRNA 3′UTR or ORF regions (Bartel, 2004;
Shenoy and Blelloch, 2014). miRNA can regulate mRNA expression
by competitively binding to RNA-binding proteins (Wilczynska and
Bushell, 2015). In the study by Son et al., it was found that miRNA
can regulate adipogenesis by interacting with adipocyte
differentiation-related transcription factor and key signaling
molecules (Son et al., 2014). Table 1 shows various miRNAs and
target genes that regulate adipocyte differentiation.

The three different types of adipocytes are referred to as white
adipose tissue (WAT), brown adipose tissue (BAT), and beige

FIGURE 3
Global protein/ncRNA regulatory networks during brown/beige adipogenesis. Brown and beige adipocytes have different progenitors and are
affected differently either by intrinsic factors or extrinsic factors that indirectly regulate key transcription factors [Reprinted by permission from Elsevier
Inc. Advances in clinical chemistry, Zeng et al. (2018), copyright 2018].
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TABLE 1 The miRNAs associated with adipogenesis.

microRNA Target Function Experiment model References

miR-8 TCF Proadipogenic MSCs, ST2 Kennell et al. (2008)

miR-14 P38MAPK Antiadipogenic Adipose tissue Xu et al. (2003)

miR-17-5p BMPR2, BMP2 Proadipogenic ADSCs Li et al. (2013)

miR-17-92 Rb2/p130 Proadipogenic 3T3L1 Wang et al. (2008)

miR-21 TGFBR2 Proadipogenic MSC, 3T3-L1, hASCs Kim et al. (2009)

miR-22 HDAC6 Antiadipogenic ADSCs Huang et al. (2012)

miR-27a PPARγ Antiadipogenic 3T3L1 Kim et al. (2010)

miR-27b PPARγ Antiadipogenic hMADS Karbiener et al. (2009)

miR-29 AKT Antiadipogenic 3T3L1 He et al. (2007)

miR-31 C/EBPα Antiadipogenic MSCs Tang et al. (2009)

miR-33b EBF1 Antiadipogenic PSPA Taniguchi et al. (2014)

miR-103 MEF2D Proadipogenic 3T3L1 Li et al. (2015)

miR-106a BMP2 Proadipogenic ADSCs Li et al. (2013)

miR-128 ABCA1, ABCG1 Proadipogenic HEK293T, HepG2, MGF7 Adlakha et al. (2013)

miR-135a-5p APC Antiadipogenic 3T3L1 Chen et al. (2014a)

miR-137 CDC42 Antiadipogenic ADSCs Shin et al. (2014)

miR-138 EID-1 Antiadipogenic MSCs Yang et al. (2011)

miR-139-5p NOTCH1, IRS1 Antiadipogenic 3T3L1 Mi et al. (2015)

miR-143 ERK5 Proadipogenic 3T3L1, MSCs Esau et al. (2004); Oskowitz et al. (2008); Takanabe et al. (2008)

PTN, ORP8 Glucose homeotatsis ↓ 3T3L1, MSCs Jordan et al. (2011); Yi et al. (2011)

miR-146b SIRT1 Proadipogenic 3T3L1 Ahn et al. (2013)

miR-155 CREB Antiadipogenic 3T3L1 Liu et al. (2011)

C/EBPβ Antiadipogenic Adipose tissue Liu et al. (2011)

miR-183 LRP6 Proadipogenic 3T3L1 Chen et al. (2014b)

miR-204-5p DVL3 Proadipogenic ADSCs He et al. (2015)

miR-210 TCF7L2 Proadipogenic 3T3L1 Qin et al. (2010)

miR-224 EGR2, ACSL4 Antiadipogenic 3T3L1 Peng et al. (2013)

miR-302 CDKN1A Proadipogenic ASDCs Kim et al. (2014)

miR-320 PI3K Antiadipogenic 3T3L1 Ling et al. (2009)

miR-326 C/EBPα Antiadipogenic MSCs Tang et al. (2009)

miR-335 MEST Proadipogenic 3T3L1, MSCs Zhu et al. (2014)

miR-363 E2F3 Antiadipogenic ADSCs Chen et al. (2014)

miR-375 ERK1/2 Proadipogenic 3T3L1 Ling et al. (2011)

miR-378a-3p MAPK1 Proadipogenic 3T3L1 Huang et al. (2015)

miR-448 KLF5 Proadipogenic 3T3L1, MSCs Kinoshita et al. (2010)

miR-486-5p SIRT1 Antiadipogenic ADSCs Kim et al. (2012)

miR-540 PPARγ Antiadipogenic ADSCs Chen et al. (2015a)

miR-548d-5p PPARγ Proadipogenic hBMSCs Sun et al. (2014)

(Continued on following page)
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adipose tissue. The WAT has increased white adipocytes. Mature
white adipocytes contain a large lipid droplet that secrets some
adipocytic factors, including leptin and adiponectin) (Cristancho
and Lazar, 2011). Brown adipose tissue contains brown adipocytes.
Classic brown adipocytes contain several small lipid droplets and
mitochondria in the cytoplasm (Cristancho and Lazar, 2011). On the
other hand, beige adipose tissue was discovered in recent years. Beige
adipocytes develop in WAT under certain conditions, including
long-term cold stimulation or following treatment with β3-
adrenergic agonists (Harms and Seale, 2013).

PPARγ and C/EBPs are significant transcriptional regulators
involved in adipocyte differentiation. miRNAs can interact with
these transcription factors to regulate cell differentiation (Son et al.,
2014). Adipose tissue macrophage-derived exosomes, miR-155 and
miR-27, can prevent adipocyte differentiation by suppressing the
expression of PPAR-γ. BAT mass decrease in mice upon
overexpression of miR-155 (Chen et al., 2013). MiR-155
contained in milk exosomes may therefore reduce BAT
differentiation. The miR-155 and miR-27 can regulate in vivo
and in vitro insulin sensitivity (Ying et al., 2017). Furthermore,
miR-27a and miR-130a can bind to the 3′UTR of PPARγ, resulting
in the downregulation of PPARγ (Kang et al., 2013; Liu et al., 2021).
The expression of miR-27a and miR-130a was downregulated
during the differentiation of 3T3-L1. Upregulated expression of
miR-27a and miR-130a is associated with downregulated expression
of PPARγ and decreased adipocyte differentiation. In summary,
miR-27a and miR-130a could inhibit adipocyte differentiation by
targeting PPARγ. MiRNA-29b, another signature miR of cow’s milk
exosomes, is also involved in adipogenesis (Bian et al., 2015). The C/
EBPs transcription factor family is essential for the differentiation of
adipocytes. C/EBPβ and C/EBPδ are induced early following
exposure of preadipocytes to differentiation culture media,
followed by induction of C/EBPα expression. C/EBPα acts as a
transcriptional activator of multiple adipocyte genes and promotes
adipocyte differentiation (Gregoire et al., 1998). The 3′-UTR of
C/EBPα has two miR-326 binding sites (Feng et al., 2020). It has
been reported that miR-326 binds to C/EBPα, thereby
downregulating its expression and reducing adipogenic
differentiation of hASCs. miR-31 can inhibit adipocyte
differentiation by targeting C/EBPα, during differentiation of
human mesenchymal stem cells (MSCs) into adipocytes (Sun
et al., 2009; Tang et al., 2009).

miRNAs are involved in the regulation of adipocyte
differentiation by the PI3K/Akt signaling pathway. In the PI3K/
Akt signaling pathway, Akt is known as a downstream effector of

c-Met. The miRNA-206 can prevent adipocyte differentiation by
suppressing c-Met expression and reducing Akt phosphorylation
(Tang et al., 2017). Additionally, by specifically targeting IRS1, miR-
139-5p may have an adverse regulatory effect on adipocyte
differentiation, which is a key member of the IRS1/PI3K/Akt
insulin signaling pathway (Mi et al., 2015).

Adipocytes are derived from Mesenchymal stem cells (MSCs).
MSCs first differentiate into adipoblasts, which then form
precursor adipocytes that undergo clonal proliferation, growth
arrest and terminal differentiation to form mature adipocytes.
During the differentiation of MSCs into mature adipocytes, the
pRB-E2F, MAPK, SMAD/TGFβ, WNT signaling pathways, and
CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome
proliferator-activated receptors (PPRs) are activated. Esau
discovered that the gene mitogen-activated protein kinase 5
(MAP2K5) is a target of miR-143, which can facilitate
adipocyte differentiation (Esau et al., 2004). A previous study
showed that miR-143 promoted adipocyte differentiation by
inhibiting the expression of Pleiotrophin (PTN) (Yi et al.,
2011). A study by Chen showed that transfection of miR-143
into hADSCs at different stages of differentiation induced varied
effects (Chen et al., 2015b). Transfection during the mitotic
proliferation phase prevented adipocyte differentiation, whereas
transfection that occurred during the growth arrest or terminal
differentiation stage facilitated differentiation. Additionally, miR-
143 can regulate adipocyte differentiation by targeting the MAPK
signaling pathway. Adipose tissues from obese people and mice
given a high-fat diet had higher levels of exosome-derived miR-
148a (Shi et al., 2015). miR-17-92 promotes adipocyte
differentiation, whereas miR-363 inhibits adipocyte
differentiation via the pRB-E2F signaling pathway (Wang et al.,
2008; Chen et al., 2014). A previous study showed upregulated
expression of miR-17-92 and downregulated expression of Rb2/
P130 in hormone-stimulated 3T3L1 precursor adipocytes. The
downregulated expression of Rb2/P130 caused reduced
dimerization with the transcription factor E2F (E2F), thereby
increasing free E2F4 and E2F5. Further, the free E2F4 and
E2F5 activated the pRB-E2F signaling pathway, thus promoting
the cells entry into the next cycle (Wang et al., 2008). Another
study (Chen et al., 2014), exploring the miRNA expression profile
of rat ADSCs during differentiation into mature adipocytes
showed that miR-363 activated the retinoma-forming signaling
pathway pRB-E2F by post-transcriptionally suppressing the
translation of its target gene E2F3. This suppressed the
expression of cyclin E (CYCE) and prevented the transition of

TABLE 1 (Continued) The miRNAs associated with adipogenesis.

microRNA Target Function Experiment model References

miR-561 HSD11B1 Antiadipogenic A549, HepG2 Han et al. (2013)

miR-579 HSD11B1 Antiadipogenic A549, HepG2 Han et al. (2013)

Note: MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MSC, mesenchymal stem cell; PI3K, phosphoinositide 3-kinase; BMPR, bone morphogenetic protein

receptor; HDAC, histone deacetylase; EBF1, early B-cell factor 1; MEF2,Myocyte Enhancer Factor 2; ABCA, ATP-binding cassette transporter A1; CDC, cell division cycle; NOTCH, neurogenic

locus notch homolog protein; SIRT, silent information regulator; LRP, low density lipoprotein receptor related protein; DVL, dishevelled segment polarity protein; EGR, early growth response

protein; CDKN, cyclin-dependent kinase inhibitor; PTN, pleiotrophin; ORP, oxysterol-binding protein-related protein; MEST, mesoderm specific transcript; HSD11b1, 11-Beta-

Hydroxysteroid Dehydrogenase Type 1; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; CREB, cAMP, response element-binding; TCF, T-cell-specific transcription factor;

TGF-β, transforming growth factor β; TGFBR2, TGF-β, receptor 2; hASC, human adipose tissue-derived stem cell; HMGA2, high mobility group AT-hook2; PPAR, peroxisome proliferator-

activated receptor; hMADS, humanmultipotent adipose-derived stem; C/EBP, CCAAT/enhancerbinding protein; EID, EP300 interacting inhibitor of differentiation 1; KLF, Kruppel-like factor;

BMSC, bone marrow stromal cell.
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cells from G1 to S phase, thereby inhibiting the clonal
proliferation. The study showed downregulated expression of
C/EBPα, which suppressed terminal cell differentiation.

Adipocyte differentiation is affected by miR-21, a miRNA that is
a component of milk exosomes (Kim et al., 2012; Kang et al., 2013;
Mei et al., 2013; Guglielmi et al., 2017). Kim showed that upregulated

FIGURE 4
White and brown adipogenesis are affected by pro- and anti-adipogenic lncRNAs. LncRNAs regulate the fate of adipocytes derived from pluripotent
stem cells. Brown adipocytes havemany small lipid droplets and are abundant inmitochondrion compared tomature white adipocytes that contain TG in
a solitary lipid droplet. Besides, LncRNAs modulate the browning of white adipocytes [Reprinted by permission from Elsevier Inc. Cellular signaling, Chen
et al. (2018), copyright 2018].
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expression of miR-21 promoted adipogenic differentiation in
hADSCs. In contrast, the inhibition of miR-21 suppressed
adipogenic differentiation (Kim et al., 2009). The upregulation of
miR-21 inhibited transforming growth factor beta receptor 2
(TGFβR2), which decreased the phosphorylation of Mothers
against decapentaplegic homolog 3 (SMAD3), a downstream
signaling molecule of the TGFβ/SMAD signaling pathway. miR-
21 modulates the TGFβ/SMAD signaling pathway by inhibiting
TGFβR2, a positive regulator of white adipocyte differentiation.

miRNAs can also bind to mRNAs of key molecules in signal
transduction pathways and indirectly regulate adipocyte
differentiation by modulating cell signaling. The Wnt/β-catenin
signaling pathway is a key regulator of adipocyte differentiation.
Activating Wnt pathway can inhibit adipocyte differentiation
(Prestwich and Macdougald, 2007). miR-450a-5p promoted
adipogenic differentiation of ADSCs in mice by targeting Wnt1-
inducible signaling pathway protein 2 (WISP2) (Zhang et al., 2017).
Chen et al. (2014) revealed that miR-344 could activate the Wnt
pathway and inhibit adipocyte differentiation by binding to the
3′UTR region of GSK3-β (Glycogen synthase kinase 3-β), leading to
the downregulation of GSK3-β expression and upregulation of β-
catenin expression, the downstream effectors of GSK3-β. Chen
showed that miR-183 promotes the differentiation of 3T3-L1
precursor adipocytes by targeting LRP6 (Low-density lipoprotein
receptor-related protein 6), a Wnt signaling pathway molecule
(Chen et al., 2014b).

A recent study showed that treating 3T3-L1 preadipocytes with
TNF-α upregulated miR-155, which inhibited adipocyte
differentiation by binding to the 3′UTR region of CREB (cAMP-
response element binding protein) (Liu et al., 2011; Mi et al., 2015
also showed that miR-139-5p might prevent adipocyte
differentiation by reducing Notch1 and IRS1 expression as well
as preventing 3T3-L1 differentiation.

The transcriptional activation of adipocyte-specific function
genes is closely related to adipocyte differentiation. Multiple
transcription factors are decisive in the differentiation of
precursor adipocytes to mature adipocytes and gene transcription
(Prestwich andMacDougald, 2007). PGC-1α, PRDM16, PPARγ and
C/EBPs are essential transcription factors for brown adipogenesis
(Figure 4) (Prestwich and MacDougald, 2007; Chen et al., 2018).
miR-133 downregulation by cold stimulation was shown to promote
brown adipocytes differentiation as miR-133 can downregulate
PRDM16 expression by binding to its 3′UTR region (Trajkovski
et al., 2012; Yin et al., 2013). Sun et al. demonstrated significantly
upregulated expression of miR-193b-365 during brown adipocyte
differentiation. miR-193b-365 can bind to myogenesis-related
cytokines, Igfbp5 (Insulin-like growth factor binding protein 5)
and Cdon to promote brown adipocyte differentiation and
inhibit muscle formation (Sun et al., 2011).

miR-17-92 promotes preadipocyte differentiation by targeting
Rb2/p130 mRNA. As preadipocytes undergo cell fusion and growth
inhibition, the cell reenters the cell cycle under the stimulation of
hormones. The cell begins to differentiate upon clonal expansion
(Wang et al., 2008). In this process, cell transition fromG1 to S phase
depends on transcription factor E2F. The binding of Rb2/p130 to
E2F protein inhibits the function of E2F, thereby promoting cell
differentiation. miR-17-92 binds to Rb2/p130 mRNA and reduces
the expression of Rb2/p130 protein by blocking its translation, thus

promoting adipocyte differentiation. Additionally, miR-27a and
miR-27b also inhibit adipocyte differentiation by targeting
PPARγ expression (Kim et al., 2010).

Evidence show that miRNAs can regulate the browning of white
adipocytes, thereby affecting beige fat formation (Fu et al., 2014; Hu
et al., 2015). Lentivirus-mediated diet-induced downregulation of
miR-34a in obese mice was shown to reduce blood lipid levels,
increase mitochondrial copy number, and oxidative function in
adipose tissue, as well as significantly increase the expression of
beige fat marker proteins, CD137 and UCP-1 (Fu et al., 2014). miR-
34a could increase the expression of fibroblast growth factor-1
receptor (FGFR1) by binding to its 3′UTR region.
Downregulated expression of miR-34a was associated with
upregulated expression of FGFR1 and enhanced signaling
through the MAPK signaling pathway, causing increased
phosphorylation of the extracellular regulated kinase (ERK) and
increased beige fat formation. Downregulation of miR-34a can
inhibit beige adipocyte differentiation by increasing PGC-1α
deacetylation and improving the transcriptional activity of PGC-
1α (Fu et al., 2014).

miR-122 is an abundantly expressed miRNA in the liver, and is
engaged in the maintenance of liver homeostasis and lipid
metabolism. Esau discovered that miR-122 deletion is associated
with downregulation of several genes related to lipid metabolism,
including acetyl-CoA carboxylase alpha (ACACA) and fatty acid
synthase (FASN) (Esau et al., 2006). Additionally, Krützfeldt et al.
(2005) found decreased plasma cholesterol levels in mice treated
with antagomir-122. Overexpression of miR-122 was associated
with increased transcription of several genes related to cholesterol
biosynthesis and enhanced cholesterol synthesis. Exosomes from
adipose tissue have considerably high levels of miR-122 (Huang
et al., 2022), miR-103 (Li et al., 2015), miR-146b (Ahn et al., 2013),
and miR-148a (He et al., 2018), which modulate adipogenesis.

MiRNA-33 is a crucial post-transcriptional regulator of
intracellular cholesterol homeostasis and affects multiple
pathways of lipid metabolism. miR-33 inhibits fatty acid β-
oxidation by post-transcriptionally repressing the target genes,
Carnitine O-octanoyltransferase (CROT), Trifunctional protein,
beta subunit (HADHB) and Carnitine palmitoyltransferase 1A
(CPT1A). The miR-33 regulates cholesterol efflux by targeting
the ATP-binding cassette transporter A1 (ABCA1) (Esau et al.,
2006; Iliopoulos et al., 2010). Also, miR-33 can inhibit negative
regulation of SREBP proteins such as insulin receptor substrate 2
(IRS2), AMP-activated protein kinase alpha 1 subunit (AMPKA1)
or AMP-activated protein kinase alpha 1 catalytic subunit
(PRKAA1) and deacetylase 6 (SIRT6) (Ramirez et al., 2011).
Cancer-associated cachexia patients exhibit elevated expression
levels of miR-410-3p in their subcutaneous adipose tissues and
serum exosomes, leading to significant suppression of
adipogenesis and lipid synthesis (Sun et al., 2021). Exosomal
miR-425-3p in tumor cells inhibit preadipocyte proliferation,
prevent adipogenic differentiation, and promote adipocyte
lipolysis and browning of white adipocytes (Liu et al., 2022).
Furthermore, miR-27 (Ling et al., 2009; Yi et al., 2011; Zhu et al.,
2014), miR-30c (Irani and Hussain, 2015), miR-122 (He et al., 2015),
miR-144 (Ling et al., 2011), miR-168a (Zhang et al., 2012), miR-223
(Vickers et al., 2014a), miR-302a (Meiler et al., 2015), miR-370
(Iliopoulos et al., 2010), miR-378 (Gerin et al., 2010) and miR-758
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(Ramirez, et al., 2011) can also exert regulatory effects on lipid
metabolism.

3.2 LncRNA from exosome regulate
adipogenic differentiation

To date, lncRNAs have been implicated in the regulation of
various biological processes including growth and development, and
other metabolic processes in the form of inducible, signaling, and
scaffold molecules from epigenetic, transcriptional, and post-
transcriptional regulation (Schmitz et al., 2016). Table 2 and
Figure 2 present the lncRNAs which exert different functions
during adipogenesis. The exosome acts as a transport mediator,
encapsulating lncRNAs, and promoting their transit and function in
target cells. Exosome-derived lncRNAs may influence adipocyte
growth via pre- and post-transcriptional regulation of epigenetic
regulation, competitive binding of miRNAs, and lipid metabolism
by targeting inflammatory responses.

Gene imprinting is an epigenetic regulatory mechanism (Patten
et al., 2014; Tucci et al., 2019), and lncRNA-H19 is a newly
discovered lncRNA that inhibits adipogenic differentiation of
BMSCs, and functions via epigenetic modification of histone
deacetylases (Huang et al., 2016). lncRNA H19 overexpression

inhibits obesity, improves insulin sensitivity, and promotes
mitochondrial biosynthesis (Schmidt et al., 2018).

Insulin-like growth factor 2 (IGF 2) is an important imprinting
gene, highly conserved in vertebrates (Smits et al., 2008), and is
closely related to individual lean meat percentage, backfat thickness
as well as other productive properties. Methylation occurs in the ICR
region, one of the key pathways responsible for controlling gene
imprinting. Additionally, exosome lncRNA may affect the
adipogenic capacity of an individual by modulating
IGF2 expression, thereby disrupting lipid accumulation (Hark
et al., 2000; Smits et al., 2008).

Recent studies have shown that exosome lncRNA competitively
binds with miRNA and circRNA to co-regulate gene expression
(Jalali et al., 2013), ensuring a stable expression of lipid metabolism-
related target genes. The sponge effect of lncRNA has now been used
to bind miRNA in order to analyze its molecular structure and
regulatory mechanism (Tong et al., 2019; Yao et al., 2019).
Additionally, MALAT1 is linked to the occurrence of metabolic
diseases and is involved in lipid metabolism in the liver (Liu JY et al.,
2014; Yan et al., 2014).

Silencing MALAT1 in ob/ob mice abolishes the palmitate-
induced increase in nuclear SREBP-1c protein and hepatic lipid
accumulation by inhibiting stearoyl-Coenzyme A desaturase 1
(SCD1), FAS, Acetyl-CoA carboxylase 1 (ACC1) and ATP citrate

TABLE 2 The long noncoding RNA associated with adipogenesis.

LncRNA Target Function Experiment model References

HOTAIR PPARγ Proadipogenic Primary preadipocytes from Human Rinn et al. (2007); Gupta et al. (2010); Divoux et al. (2014)

ADINR C/EBPα Proadipogenic Human MSCs Xiao et al. (2015)

SRA PPARγ Proadipogenic 3T3L1 Xu et al. (2010); Liu S et al. (2014)

ADNCR miRNA-204 Antiadipogenic 3T3L1, ADSCs Li et al. (2016)

NEAT1 PPARγ2 Proadipogenic 3T3L1, ADSCs Cooper et al. (2014); Gernapudi et al. (2016)

HoxA-AS3 Ezh2, Runx2 Proadipogenic BMSCs Zhu et al. (2016)

PU.1 AS PU.1 mRNA Proadipogenic 3T3L1 Pang et al. (2013)

SlincRAD PPARγ Proadipogenic 3T3L1 Yi et al. (2013)

Lnc RNA H19 miR-188 Antiadipogenic BMSCs Huang et al. (2016)

Lnc RAP-1 HnRNP-U Proadipogenic Primary predipocytes from mice Quinn and Chang (2016)

U90926 PPARγ2 Antiadipogenic 3T3L1 Chen et al. (2017)

Blinc1 EBF2 Proadipogenic Primary predipocytes from mice Zhao et al. (2014), Mi et al. (2017)

Gm15290 miR-27b, PPARγ Proadipogenic Murine primary Preadipocytes, HEK293 Liu et al. (2017)

MIR31HG Fabp4 Proadipogenic ADSCs Huang et al. (2017)

Paral1 RBM14 Proadipogenic 3T3L1 Firmin et al. (2017)

MEG3 miR-140-5p Antiadipogenic ADSCs Li et al. (2017)

PVT1 PPARγ Proadipogenic 3T3L1 Zhang et al. (2020)

Note: SRA, steroid receptor activator; NEAT1, nuclear-enriched abundant transcript 1; ADINR, adipogenic differentiation induced noncoding RNA; ADNCR, adipocyte differentiation-

associated long noncoding RNA; Blnc1, brown fat enriched lncRNA, 1; ATGL, adipose triglyceride lipase; MSC, mesenchymal stem cell; PI3K, phosphoinositide 3-kinase; HOTAIR, HOX,

transcript antisense intergenic RNA; BMPR, bone morphogenetic protein receptor; HDAC, histone deacetylase; EBF1, early B-cell factor 1; MEF2, Myocyte Enhancer Factor 2; ABCA, ATP-

binding cassette transporter A1; EZH2, Enhancer of Zeste homolog 2; NOTCH, neurogenic locus notch homolog protein; SIRT, silent information regulator; LRP, low density lipoprotein

receptor related protein; DVL, dishevelled segment polarity protein; EGR, early growth response protein; CDKN, cyclin-dependent kinase inhibitor; hnRNP, heterogeneous nuclear

ribonucleoprotein; FABP4, Fatty Acid-Binding Protein 4; RBM14, RNA, Binding Motif Protein 14; PPAR, peroxisome proliferator-activated receptor; C/EBP, CCAAT/enhancer binding

protein; BMSC, bone marrow stromal cell.
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lyase (ACLY), which are the major targets of SREBP-1c (Lee et al.,
2013). MALAT1 may enhance lipid accumulation via a mechanism
involving contact with SREBP-1c to increase the level of nuclear
SREBP-1c protein. Notably, lncHR1 is implicated in the
transcriptional inhibition of SREBP-1c expression (Li D et al.,
2017). Similar to lncHR1, lncRNA Gm16551 suppresses SREBP1c
in the mouse liver (Yang et al., 2016). Gm16551 in the liver has been
found to inhibit lipid biosynthesis. The increased triglyceride
circulation and adipogenic gene expression caused by SREBP1c
are inhibited by Gm16551 overexpression, which increases the
possibility that Gm16551 might interfere with SREBP1c functions.

Peroxisome proliferators-activated receptors (PPARs) can
regulate lipid metabolism, including subtypes PPAR α, β, and γ.
Among them, PPARγ is primarily expressed in the immune system
and modulates glucose and lipid metabolism. Ligand of PPARγ not
only improves insulin resistance and blood lipid, immune regulation
and anti-inflammation, but also induce anti-tumor cell proliferation
and promotes cell differentiation. It has been reported to alter
various biological behaviors of tumor cells such as metastasis and
invasion. By influencing the signaling pathway regulated by NFκB
and activator protein-1, PPARγ can effectively inhibit the activation
and transcription of target gene promoters, achieving its intended
purpose. Genes containing peroxisome proliferator responsive
element (PPRE) structure include caproyl coenzyme A
synthetase, lipoprotein lipase (LPL), insulin receptor substrate-2
(IRS-2), leptin and tumor necrosis factor-α (TNF-α) (Lapsys et al.,
2000). PPARγ is related to the incidence and progression of multiple
diseases, including diabetes, obesity, and hypertension. Specifically,
PPARγ is a key factor in adipocyte differentiation and has attracted
much attention in recent years.

Steroid receptor RNA activator (SRA) was the first lncRNA
implicated in adipogenesis to be discovered (Xu et al., 2010). By
binding to PPARγ, SRA in adipose tissue increases its transcriptional
activity and promotes the differentiation of 3T3-L1 preadipocytes. It
can regulate the adipocyte cell cycle, insulin-related signaling
pathway, and TNF-α signaling pathway (Xu et al., 2010). In the
liver, SRA can also promote lipid metabolism via promoter activity
suppression of adipose triglyceride lipase (ATGL) by targeting
transcription factor FoxO1, thereby downregulating ATGL
expression to promote hepatic steatosis (Chen et al., 2016).
During the maturation and differentiation of preadipocytes,
NEAT1 expression is upregulated, and its activation is necessary
for adipogenesis; this suggests that it is a positive regulator of
lipogenic differentiation (Pang et al., 2013). Cooper et al. (2014)
reported that lncRNA NEAT1 expression temporally fluctuates
during the differentiation of 3T3-L1 adipocytes into adipocytes
and modulates multiple splicing of PPARγ mRNA, a major
transcription factor in adipogenesis. Similarly, other lncRNAs,
U90926, Paral1, Gm15290, and Plnc1, also regulate adipogenesis
by targeting key adipogenesis transcription factor PPARγ (Chen
et al., 2017; Firmin et al., 2017; Liu et al., 2017; Zhu et al., 2019).

LncRNA U90926 is a class of adipose tissue-specific lncRNAs
whose expression is downregulated with 3T3-L1 differentiation,
its overexpression reduces 3T3-L1 adipogenic differentiation
capacity, whereas its knockdown has the opposite effect
(Chen et al., 2017). lncRNA-U90926 knockdown in 3T3-L1
cells inhibits the transcriptional activity of the PPARγ
promoter, thereby suppressing 3T3-L1preadipocyte

differentiation (Chen et al., 2017). Gm15290 overexpression
significantly promotes adipocyte differentiation, whereas its
interference significantly suppresses adipocyte differentiation;
lnc RNA Gm15290 upregulates PPARγ expression level to
promote adipogenic, thereby affecting lipid accumulation in
the mouse model (Liu et al., 2017). Firmin et al. (2017) found
upregulated Paral1 expression during adipogenic
differentiation, which increased the transcription activity of
PPARγ by synergistically activating RNA binding motif
protein 14 (RBM14). In turn, PPARγ upregulated
Paral1 expression and its binding level to RBM14. This
feedback loop mechanism promotes adipogenesis.

LncRNA IMFNCR promotes adipogenic differentiation of
adipocytes in muscle by regulating PPARγ expression through
competitively repressing miRNA-128-3p and miRNA-27b-3p
(Khalil et al., 2009). Of note, lncRNA-GAS5 is an important gene
that regulates adipocyte proliferation and growth. GAS5 can regulate
the expression level of cAMP via PDE4B and function on DNL-
related enzymes (e.g., ACC1, FAS) and those related to
mitochondrial function (e.g., PGC-1α) through phosphorylation
of CREB downstream of Camp; thus, this enhances lipid de novo
synthesis, inhibits mitochondrial oxidative function, and eventually
promotes lipid accumulation in hepatocytes (Xu et al., 2022). The
lncRNA GAS5 suppresses the inhibitory effect of miR-18a on
connective tissue growth factor (CTGF), thereby reducing
adipogenic differentiation of MSCs (Li M et al., 2018).

Adipocyte differentiation-associated long noncoding RNA
(ADINR) is a newly discovered ncRNA that regulates
adipogenesis (Xiao et al., 2021). ADINR could specifically bind to
PA1 during adipocyte differentiation, recruiting methylates lysine
and MLL3/4 histone methyltransferase complex, increasing H3K4
(histone H3 lysine4) methylation levels at the C/EBPα site,
promoting C/EBPα expression and accelerating adipogenesis.
Labeled genes related to adipocyte differentiation were
downregulated after ADINR silencing, resulting in reduced lipid
accumulation, and suppressed adipogenic differentiation (Xiao et al.,
2021).

ADNCR is a lncRNA that is reported to be significantly
downregulated during adipocyte adipogenic differentiation (Li
et al., 2016). ADNCR, as a competing endogenous RNA (ceRNA)
of miR-204, can dependently and competitively upregulate the
expression of a target gene, a silent information regulator of
transcription 1 (SIRT1), suppressing adipocyte differentiation.

Adiponectin AS is another negative regulator is, whose
expression is upregulated during adipose differentiation and plays
a negative regulatory role. It forms RNA double-stranded aggregates
during the translocation from the nucleus to the cytoplasm, which
inhibit the translation of AS mRNA and cause a reduction of body
weight, adipose tissue content, and hepatic triglycerides in DIO
(diet-induced-obese) mice, thus acting as a barrier in adipogenic
differentiation (Cai et al., 2018).

HOTAIR, a lncRNA is involved in preadipocyte differentiation
and can promote adipocyte differentiation in abdominal
preadipocytes (Divoux et al., 2014). When HoxA-AS3 expression
is suppressed in bone marrowmesenchymal stem cells (BMSCs), the
formation of fat and fat marker gene expression decreases, implying
that HoxA-AS3 is important in adipogenesis (Zhu et al., 2016).
LncRNA MIR31HG decreases the enrichment of active histone
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markers H3K4me3 and AcH3 in the promoter of adipogenesis-
related genes FABP4, thereby inhibiting its expression and
adipogenesis (Huang et al., 2017).

3.3 Regulation of adipogenic differentiation
by circRNAs in exosomes

circRNA is a type of RNA with a covalent closed-loop structure;
circRNA from adipose tissue exosomes can function in an autocrine
pathway (Shah et al., 2018). circRNA, which is enriched in
exosomes, is important for inter-cell communication (Shang
et al., 2020). Due to the absence of a 5′ or 3′ end, circRNA is
resistant to nuclease-mediated degradation and is thought to be
more stable than linear RNA (Salzman et al., 2012). Current studies
on the mechanism of exosome circRNA focus on its capacity to
effectively act as a miRNA sponge (Zhang et al., 2020; Zhang et al.,
2020). Since circRNA is abundant in miRNA binding sites, it can
reduce the repressive effect of miRNA on target genes and increase
the expression level of those genes via competitive binding to
miRNA (Ebert et al., 2007). circRNA can also regulate pre-
mRNA by targeting alternative splicing or transcription (Ashwal-
Fluss et al., 2014). Table 3 presents the circular RNAs which exert
different functions during adipogenesis.

circH19 secreted by hADSCs can bind to polypyrimidine tract-
binding protein 1 (PTBP1), suppressing the translocation of sterol
regulatory element-binding protein 1 (SREBP1) from the cytoplasm
to the nucleus, consequently inhibiting cell differentiation and lipid
accumulation (Park et al., 2012; Oliva-Olivera et al., 2016; Zhu et al.,
2020). Adipose tissue exosome circRNA realizes its function through
paracrine. Patients with obesity often have a slower rate of wound
healing, than healthy individuals, and circRNA Circ_0075932,
which is a single exon exosome secreted by his/her adipose
tissues, can bind to pumilio homolog 2 (PUM2), promoting the
expression of serine/threonine protein kinase, activating nuclear
factor kappa beta (NF-kB) pathway to induce inflammation and
apoptosis, eventually accelerating healing (Zhang X et al., 2019).

Circ FUT10 competitively represses the expression of target
gene let-7c and can inhibit adipogenic differentiation in adipocytes
by disrupting the expression of its target genes PPARγ coactivator-

1α (PGC1α) (Jiang et al., 2020). On the other hand, circ SAMD4A
promotes adipocyte differentiation by acting as a “sponge” for miR-
138-5p, thereby upregulating the expression of enhancer of zeste
homologue 2 (EZH2), whereas adipocyte differentiation becomes
significantly inhibited after circ SAMD4A knockdown (Liu et al.,
2020).

In high-fat diet (HFD)-induced obese mice, mmu_circ_0000529
(the homologous mouse circRNA for circSAMD4A) knockdown
alleviated weigh gain, lowered food intake, reduced body fat, and
increased energy consumption. Additionally, it improved insulin
sensitivity and glucose tolerance (Liu et al., 2020). In vitro tests
demonstrated that circSAMD4A can bind to miR-138-5p and
function as a miRNA sponge to subsequently regulate the
expression of EZH2 (Liu et al., 2020). circSAMD4A was
significantly upregulated in obese people compared to lean
people, and its expression level was associated with a poor
prognosis for obese patients (Liu et al., 2020). Functional analysis
revealed that circSAMD4A overexpression can regulate
preadipocyte differentiation and accurately forecast the
development of obesity in humans.

Exosomal plasma from osteoporotic patients demonstrated a
higher expression level of has_circ_0006859 than that from healthy
individuals, and has_circ_0006859 can act by inhibiting miR-431-5p
expression, subsequent upregulation of rock1 (rho-associated
coiled-coil containing protein kinase 1), as well as increasing the
probability of hBMSCs to differentiate into adipocytes rather than
osteoblast (Zhi et al., 2021). Guo et al. (2017b) constructed a
regulation network of circRNA-miRNA-mRNA to analyze the
mechanism of metabolism by applying high-fat stimulation to
build HepG2 fatty liver. Consequently, circRNA_021412 and
miR-1972 showed weakened inhibition on LPIN1.
LPIN1 induced down-expression of Long-chain-fatty-acid-CoA
ligase (ACSL), thus resulting in fatty liver. This evidence
confirms that circRNA is a key regulatory factor in fatty liver,
and transcription-dependent regulation in metabolic pathways is
partially caused by circRNA_021412/miR-1972/LPIN1 signal.

During in vivo and in vitro steatosis of hepatocytes, the
normalized expression of circRNA-0046367 can facilitate PPARs
to return to normal expression, furtherly improving lipid
metabolism disorder, thereby effectively preventing hepatocytes

TABLE 3 The circular RNA associated with adipogenesis.

circRNA Origin Target Function References

circARF3 Adipose tissue (mice) miR-103 Alleviate adipose inflammation Zhang et al. (2019)

circNrxn2 Adipose tissue (mice) miR-103 Promotes WAT browning Zhang et al. (2019)

circRNA_26852 Adipose tissue (pig) ssc-miR-486, ssc-miR-874 Regulates adipogenic differentiation Li A et al. (2018)

circSAMD4A Visceral adipose tissue miR-138-5p Regulates preadipocytes differentiation Liu et al. (2020)

circFUT10 Adipose tissue (bovine) miR-let-7c Inhibits adipocyte differentiation Jiang et al. (2020)

hsa-circRNA9227-1 HPA-v/adipocytes hsa-miR-665 Regulates adipogenesis Sun et al. (2020)

circRNA_0046367 HepG cells miR-34a, PPARα Regulates lipid metabolism Guo et al. (2017a)

circScd1 NAFLD mouse JAK2/STAT5 pathway Regulates lipid metabolism Li P et al. (2019)

Note: circARF3, ADP-ribosylation factor 3; circSAMD4A, sterile alpha motif domain containing 4A; BMI, body mass index; HPA-v, human preadipocytes from visceral fat tissue; ITIH5, inter-

alpha-trypsin inhibitor heavy chain; LPL, lipoprotein lipase; JAK, janus protein tyrosine kinases; STAT, signal transducer and activator of transcription; NAFLD, nonalcoholic fatty liver disease;

WAT, white adipose tissue.
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steatosis from lipid peroxidation (Guo et al., 2017a). Therefore,
circRNA-0046367 is a potential therapeutic intervention for
speroxidative damage.

Accumulating evidence suggests that circRNAs are strongly
connected to non-alcoholic fatty liver disease (NAFLD), a
condition characterized by a variety of factors including hepatic
lipid accumulation, insulin resistance (IR), adipose tissue,
mitochondrial dysfunction, a high-fat diet, obesity, a chronic
inflammatory state (Huang et al., 2017; Liu et al., 2017).

circRNA genome-wide abnormal regulation is responsible for
hepatocytes steatosis (Guo et al., 2017b). For instance,
CircScd1 downregulation could damage Janus kinase2/signal
transducer and activator of the transcription 5 pathway, causing
fatty steatosis in NAFLD (Li P et al., 2019). circRNA_021412/miR-
1972/LPIN1 signal might be a key factor in circRNA-related fatty
acid metabolic disorder, resulting in increased adipogenesis.
Meanwhile, circRNA_0046366 could help normalize the PPAR
signal to suppress hepatocyte fat steatosis. Bioinformatic and
functional analyses revealed that circRNA_0046366 is a miR-34a-
specific antagonist. Because of its multi-targeting characteristics,
miR-34 promotes an antagonistic effect on adipose-related miRNA/
mRNA interactions based on competitive binding (Li et al., 2011;
Dekkers et al., 2018; Gulsin et al., 2018; Lee et al., 2018). As the only
target of circRNA_0046366, miR-34a modulates the lipid
metabolism of hepatocytes. circRNA_0046366 expression
suppresses the level of hepatocytes TG, and circRNA_0046366 is
important in hepatocyte fat steatosis. Disruption of the circRNA_
0046366/miR-34a/PPARα signal may be a new epigenetic basis of
hepatocyte fat steatosis, suggesting that circRNA_0046366 is a
potential treatment target for hepatocytes steatosis (Guo et al.,
2018). Abnormal genomic regulation of circRNA is often thought
to cause hepatocytes steatosis (Dekkers et al., 2018). Transcriptional
regulation is thought to be involved in the metabolism pathway.
circRNA_021412/miR-1972/LPIN1 signal may be the key factor
affecting circRNA-related fatty acid metabolic disorder, resulting in
adipogenesis. As indicated, circTshz2-1 and circArhgap5-2 are key
adipogenic regulators in vitro. Also, in vivo silencing of circArhgap5-
2 inhibits lipid accumulation and downregulation of adipogenesis
markers, suggesting that circArhgap5-2 is important to preserving
lipid biosynthesis andmetabolism in the whole transcription process
of adipocytes (Arcinas et al., 2019).

4 Role of exosomal ncRNAs in diseases

As newly discovered means in inter-cellular communications,
exosomes modulate the progression of different human diseases
(e.g., cancer, metabolic diseases). They comprise growth factors,
protein, lipids, DNA, miRNA, lncRNA, and circRNAs (Li C et al.,
2021). Once released to the extracellular environment, exosomes
bind to receptors and deliver carried ncRNAs, inducing
functional reactions and phenotype changes (Figure 5) (Zhang
et al., 2016). Exosomal analyses focus on how they regulate inter-
cellular signal transduction, immune system function, functional
development, and differentiation in the tumor
microenvironment. Additionally, the application of exosomal
ncRNAs is continually expanding on clinical diagnosis and
treatment.

4.1 Exosomal ncRNAs and insulin resistance

IR is among the crucial sources of Type 2 Diabetes Mellitus
(T2DM) (Qiu et al., 2018). It contributes to the development of
Alzheimer’s disease and gestational diabetes mellitus (GDM).
Insulin resistance refers to insulin-induced tissue damage, such as
facilitating glucose absorption and inhibiting glycogen metabolism
in adipocytes and skeletal muscle cells. Besides its role in glucose
metabolism, insulin also affects the metabolism of proteins and
lipids (Qiu et al., 2018). A knockout of insulin β-cell exosome-
derived β linc1 (β-cellintergenic non-coding RNA1) gene causes
insulin secretion disorder in adult mice and can impair islet cell
maturation as well as differentiation in embryonic mice (Arnes et al.,
2016).

Adipose tissues play a significant role in insulin resistance, and
exosomes derived from adipose tissue may mediate this process.
Exosomes secreted by the adipose tissues of mice can induce
macrophage cell activation, where retinol-binding protein 4
(RBP4) is the key activation factor (Deng et al., 2009).
Additionally, the exosomes linked to obesity deliver
macrophages to the liver and adipose tissues, where
macrophages release TNF-α and IL-6, causing insulin
resistance. Song et al. (2018) uncovered that insulin-resistant
adipocyte-derived exosomes (IRADE) treated macrophages
could promote insulin resistance in adipose tissues by lowering
insulin receptor substrate-1 (IRS-1) and hormone-sensitive lipase
(HSL) expression.

Active substances in exosomes modulate inter-cellular insulin
signal transduction. Pancreatic β-cells secrete miR-29 family
members (miR-29s) via exosomes to regulate glucose homeostasis
by manipulating glucose output in the liver, thereby inhibiting
insulin signaling in the liver, whereas blocking miR-29s
expression in pancreatic β-cells can reverse (HFD)-induced
insulin resistance (Li J et al., 2021). Adipose tissue macrophages
(ATM) of mice with obesity can secrete exosomes transferring
exosomes with miRNA into insulin target cells, which can
evaluate FFA levels in the blood, damaging insulin sensitivity,
and enhancing insulin resistance (Ying et al., 2017). Additional
studies have confirmed that exosomes from ATM of normal mice
can reduce insulin resistance in obese mice, whereas exosomes with
miR-15 from ATM of obese mice can cause insulin resistance (Ying
et al., 2017).

Adipocyte-derived exosomes can promote macrophage
activation by accelerating M1 polarization and inhibiting
M2 polarization, before activating insulin resistance. Serum
exosomes from patients with T2DM and insulin resistance
exhibit markedly upregulated miR-222 expression levels.
High miR-222 expression in mouse adipose tissue-derived
exosomes can aggravate insulin resistance in the liver and
skeletal muscle of obese mice on a high-fat diet by
suppressing insulin receptor substrate 1 (IRS1) expression (Li
et al., 2020).

As endocrine factors, ADSC-derived exosomes (ADSC-Exos)
can disrupt the metabolism of corresponding target organs and
functions by biologically active vesicular molecules. In the liver,
miRNAs carried by ADEVs could regulate PPARγ and FGF-21
expression and are involved in glucose tolerance and insulin
sensitivity regulation (Thomou et al., 2017). In cases of obesity,
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additional organs may also generate IR-related exosomes. miR-
130a-3p-containing exosomes secreted by the liver can improve
glucose tolerance by inhibiting PH domain leucine-rich
phosphatase 2 (PHLPP2) expression in adipocytes; On the
other hand, in the case of specific knockdown of miR-130a-3p,
mice with obesity showed a notable increase in blood glucose level
as well as a decrease in glucose tolerance and insulin sensitivity in
vivo (Wu et al., 2020). This indicates that miRNAs secreted by
hepatic exosomes can significantly reduce insulin resistance.
Pancreatic islets are involved in the regulation of insulin
sensitivity and can act also produce insulin. For instance, miR-
26a from pancreatic β-cell could improve insulin sensitivity with
preserved β-cell function.

miR-27a and miR-320 expressions in plasma exosomes are
noticeably higher in T2DM patients than in healthy individuals,
making it possible for exosomes with specific bioactive
substances to act as serum biomarkers of T2DM (Zhang et al.,
2018). Notably, the Dicer enzyme is an RNA endonuclease;
Thomou et al. (2017) used Cre-Lox recombination to
construct a Dicer-KO mouse. In contrast with wild mice, the
quantity of white adipose tissues in the experimental mice was

reduced, causing insulin resistance, adipose tissue inflammation,
and dyslipidemia; consequently, miRNA expression in its
circulating exosomes becomes significantly downregulated.
Transplanting adipocyte-derived exosomes with multiple
miRNAs, particularly miR-99b, can restore circulating miRNA,
reducing FGF21mRNA expression and its 3′-UTR receptor
activity, eventually regulating lipid metabolism in multiple
tissues (Thomou et al., 2017). Considering the molecular
regulatory mechanism, in which lncRNA can function for the
competitive binding of ceRNA to miRNA, it is hypothesized that
exosome-derived lncRNA may activate pro-inflammatory factors
via its abnormal expression, potentially causing abnormal
glucolipid metabolism including insulin resistance or
alteration of glucose tolerance in the body.

5 Exosomal ncRNAs as a diagnostic
biomarker of human diseases

Biomarkers are molecules used for disease detection and/or
prognostic prediction. An effective biomarker exhibits high

FIGURE 5
Roles of exosomes in obesity-related disorders. MSC-derived exosomes reduce insulin resistance by promoting M2 macrophage polarization and
repressingM1macrophage polarization. Lipid droplets enlarge after ingestion by tiny adipocytes from exosomes. Insulin resistance in adipocytes and liver
develops as a result of exosomes from the adipose tissue of obese people activating monocyte differentiation into macrophages and triggering the
release of inflammatory factors. Exosomes released from dysfunctional and hypertrophic adipocytes can impair the functional ability of vascular
endothelial cells. Exosomes produced from adipose tissue contain miRNA, necessary for modulating gene expression in adipose tissue and other cells.
Adipose tissue-derived exosomes that contain various miRNAs are partially upregulated, while others are downregulated [Reprinted by permission from
John Wiley and Sons Ltd. Cell Proliferation, Zhang et al. (2016), copyright 2016].
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sensitivity and specificity, good stability, and anti-interference.
Exosomes are broadly spread in different bodily fluids with
various sources and can easily be utilized and stably detected.
Various human diseases possess various expression levels of
exosomal ncRNAs, including cancers and metabolic diseases,
laying a foundation for ncRNAs as a biomarker in early diagnosis.

Abnormal expression of exosome-derived lncRNA is
responsible for disordered lipid metabolism (Khalil et al., 2009;
Yin et al., 2013; Zhu et al., 2019). Exosomes are characterized by
targeted delivery and can protect lncRNA from interferences from
exogenous substances. As a result, lncRNA can be effectively
maintained in target cells and function normally. Thus, analysis
of the regulation of lipid metabolism through the perspective of
exosomes may reveal important biomakers. Future studies should
attempt to predict fat deposition sites in livestock and even regulate
lipid accumulation.

With continuing research on the function of exosomal lncRNA
molecular markers, there is increasing evidence on the application of
exosome-derived lncRNAs as biomarkers to indirectly regulate lipid
metabolism. Koeck et al. (2014) isolated exosomes from the adipose
tissue of patients with obesity, and co-cultured it with hepatocytes
in vitro. As previously stated, when exosomes are transported into
hepatocytes, the expression of enzymes, including TIMP-1 and other
bio-active factors, is altered, causing a disorder in the NAFLD
related transforming growth factor β (TGFβ) pathway, and
ultimately lipid metabolism disorder.

lncRNA has been shown to affect NAFLD symptom
formation (Chi et al., 2021). Researchers analyzed the
expression pattern of lncRNA-MEG3, as well as its regulatory
function on triglyceride and adipogenesis-related genes, using
free fatty acids induced HepG2 cells and HFD-mice to establish
biological models in vitro and in vivo (Chi et al., 2021).
Downregulation of lncRNA-MEG3 suppresses adipogenesis-
related genes, whereas MEG3 over-expression reduces lipid
accumulation in cells. The hidden molecular mechanism could
be that lncRNA-MEG3 competitively binds to miR-21 with
LRP6 to suppress the mTOR pathway and stimulate lipid
accumulation in cells, resulting in NAFLD. The results
demonstrated that exosome-derived lncRNA-MEG3 might be
used as a NAFLD biomarker.

Exosomes can be used as detection markers and treatment
targets to alleviate insulin resistance. A useful test that reveals
the general physical state is liquid biopsy. Because of their
sensitivity to changes in human psychological and
pathological states, exosomes have the potential to act as a
biomarker in insulin resistance. Exosomes have a membrane
structure that prevents inner molecular degeneration, allowing
their use in detecting nuclear acid changes in patients. With a
deeper understanding of exosomes, we will learn more about
their benefit as a liquid biopsy tool, particularly in early
diagnosis of insulin resistance, where exosome is the most
promising liquid biopsy method. Notably, potential exosomal
biomarkers, including Let-7b, miR-144-5p, and miR-34a carried
by exosomes in plasma (Jones et al., 2017) and miR-20b-5p
carried by exosomes in serum (Katayama et al., 2019), can all be
candidates in diagnosing insulin resistance. Exosomes regulate
the incidence and development of diabetes and its associated
complications, and thus it can be used as an early detection and

staging biomarker of diabetes mellitus, and as promising
treatment targets in diabetes.

6Disease treatment based on exosomal
ncRNAs (metabolic diseases and
obesity/diabetes)

Exosome, a potential biomarker and treatment target, is a
clinically promising carrier for therapeutic agents. Exosomes,
ncRNAs mimics, and inhibitors can be prepared through
separation and purification, followed by exosome surface
modification to improve target specificity, then used as a carrier
to transport ncRNAs to target tissue or organ. However, there is no
standardized protocol for the processing and characterization of
exosomes, and further studies are needed to address this issue (Lai
et al., 2022). Advances in biomedical materials and molecular
targeted therapy may also help uncover the role of additional
exosomal ncRNAs.

Exosomes have also shown an advantage in disease diagnosis,
and the ncRNAs stored inside are closely associated with disease
progression, acting as a novel biomarker for diseases such as
diabetes. Nevertheless, the interaction network between bioactive
molecules in exosomes and their receptors remains unclear.
Research on exosomes as a novel diagnostic and treatment tool
remains in its infancy and warrants substantial efforts before clinical
application.

7 Conclusion and outlook

Exosomal ncRNAs have a high potential as a biomarker in
multiple human diseases and therapeutic medicine. However, with
a focus on early disease diagnosis markers, exosome suppression, and
drug delivery, ncRNAs carried by exosomes have recently provided
novel ideas and methods in function and related mechanisms of
adipogenesis, development and energy metabolism to prevent obesity.
Nevertheless, research on exosomes and the lipidmetabolism pathway
is currently limited. Thus, to ensure that exosomes are a direct source
of relevant biomarkers to broaden the source of the exosome remain
unresolved. The pharmacokinetics, pharmacodynamics, and toxicity
of exosomal ncRNAs remain to be clinically validated. Also, the
regulation of exosomal ncRNAs in psychological and pathological
process warrant additional analysis. Because adipose tissues interact
with other organs or tissues of the body (central nervous system,
important metabolic organs, and immune system), the dynamics of
adipocyte lipid droplets and regulation of lipidmetabolism by external
nutrients, signals, and stress states merit additional investigation and
exploration. Research on exosome origin, synthesis and secretion,
intake, and other mechanisms is necessary to accelerate the
development of diagnostic and prognostic biomarkers of disease.
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