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The balance of cell proliferation and size is key for the control of organ
development and repair. Moreover, this balance has to be coordinated within
tissues and between tissues to achieve robustness in the organ’s pattern and size.
The tetrapod limb has been used to study these topics during development and
repair, and several conserved pathways have emerged. Among them, mechanistic
target of rapamycin (mTOR) signaling, despite being active in several cell types and
developmental stages, is one of the least understood in limb development,
perhaps because of its multiple potential roles and interactions with other
pathways. In the body of this review, we have collated and integrated what is
known about the role of mTOR signaling in three aspects of tetrapod limb
development: 1) limb outgrowth; 2) chondrocyte differentiation after
mesenchymal condensation and 3) endochondral ossification-driven
longitudinal bone growth. We conclude that, given its ability to interact with
the most common signaling pathways, its presence in multiple cell types, and its
ability to influence cell proliferation, size and differentiation, the mTOR pathway is
a critical integrator of external stimuli and internal status, coordinating
developmental transitions as complex as those taking place during limb
development. This suggests that the study of the signaling pathways and
transcription factors involved in limb patterning, morphogenesis and growth
could benefit from probing the interaction of these pathways with mTOR
components.
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1 The coordination of cell growth and proliferation
during limb development

Development of the tetrapod limb requires the exquisite coordination of growth
between multiple tissues (cartilage, muscle, bone, tendons, dermis, nerves, diffuse
connective tissue, etc.). In most of these tissues, controlling the balance between cell
proliferation and size is critical to achieve a proper size and function, and is one of the
main cellular processes that are regulated by the mechanisms controlling limb
development. The coupling between proliferation and cell size has been extensively
studied in multiple systems, and several highly conserved pathways have been identified
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that link cell size to proliferative capacity. One of such pathways is
the mTOR pathway (Gu et al., 2011). This review will focus on the
known roles of mTOR during limb development, with a special
focus on the long bones. From this review, we conclude that,
besides its well-known role in controlling cell size via insulin-like
growth factor (IGF) signaling, mTOR activity can crosstalk with
many other pathways, such as bone morphogenetic protein
(BMP), wingless/int1 (WNT), hypoxia inducible factor 1α
(HIF-1α), fibroblast growth factor (FGF) and hedgehog (HH).
Through these pleiotropic effects, mTOR may play important
roles in limb outgrowth, chondrocyte proliferation,
differentiation and metabolism, and overall in long-bone growth.

2 mTOR, regulators and effectors

mTOR stands for mechanistic (formerly mammalian) target
of rapamycin, a macrolide produced by Streptomyces
Hygroscopicus bacteria. Rapamycin was named after the
island of Rapa Nui, where it was discovered in the early
1990 s during a genetic screen in the budding yeast, where
TOR1 and TOR2 were identified as the toxic agents of
rapamycin (Cafferkey et al., 1993; Kunz et al., 1993).
Biochemical approaches in mammals allowed purification of
mTOR and confirmed it as the target of rapamycin (Brown et al.,
1994; Sabatini et al., 1994; Sabers et al., 1995).

mTOR is a Ser/Thr protein kinase closely associated with cell
growth, survival, proliferation and tumorigenesis, especially in the
abundance of amino acids, growth factors and energy. mTOR needs
to form complexes with other proteins in order to exert its biological
activities, named mTOR complex 1 and 2 (mTORC1 and 2,
respectively). The sections below will elaborate on the known
regulators and downstream effectors of both complexes (Figures 1, 2).

2.1 mTORC1

2.1.1 Upstream signals and regulators of mTORC1
mTORC1 is composed of three core components: mTOR,

Raptor, and mLST8. In addition, it contains two inhibitory
subunits, PRAS40 and DEPTOR. As elaborated below, stress,
growth factors, amino acid bioavailability, oxygen and other
metabolites status have been identified as the upstream regulators
of mTORC1 pathway (Figure 1A). At the molecular level, the
activation of mTORC1 is mainly dependent on Rheb, a small
GTPase that localizes to the lysosomal membrane and is
negatively regulated by the tuberous sclerosis protein complex
(TSC) 1 and 2 (Figure 1A) (Inoki et al., 2003; Tee et al., 2003).
Growth factors, such as IGF1, can stimulate the PI3K and Ras
pathways, leading to phosphorylation and thus inactivation of
TSC1/2 through AKT/PKB, ERK1/2 and RSK1 kinases
(Figure 1A). TSC1/2 then dissociate from the lysosomal
membrane, leading to activation of mTORC1 (Inoki et al., 2002;
Manning et al., 2002; Potter et al., 2002; Roux et al., 2004; Ma et al.,
2005; Menon et al., 2014). This process can be further compounded
by the abundance of amino acids, energy in the form of glucose and
other nutrients. It has been shown that both the nutrients and the
growth factors are necessary for the full activation of

mTORC1 which contributes to the Rag-GTPase mediated amino
acid-sensing regulation of mTORC1 (Beugnet et al., 2003; Kim et al.,
2008; Sancak et al., 2008). In addition, pro-inflammatory cytokine
tumor necrosis factor alpha (TNFα) also activates mTORC1 through
phosphorylation-mediated inactivation of TSC1 (Lee et al., 2007). It
was also shown that the canonical WNT pathway activates
mTORC1 through inhibition of GSK3-β, which phosphorylates
and promotes TSC2 activity (Inoki et al., 2006). This crosstalk
with other signaling pathways will be further discussed in other
sections.

2.1.2 Downstream effectors of mTORC1
As mTORC1 is activated in the presence of nutrients, its

downstream effectors are mainly associated with pathways related
to protein and lipid biogenesis, cell growth and the accumulation of
cell mass. mTORC1 control protein synthesis through
phosphorylation of 4E-BP1 and S6K1 (Figure 1B). 4E-BP1
phosphorylation attenuates binding to eukaryotic initiation factor
4 E (eIF4E), thus allowing formation of the eIF4F complex required
for protein translation. In contrast, S6K1 phosphorylation results in
both increased transcription and translation. Moreover,
mTORC1 also promotes protein synthesis through the regulation
of TIF-1A and MAF1 (Mayer et al., 2004; Kantidakis et al., 2010;
Shor et al., 2010).

mTORC1 also plays a major role in lipid synthesis, which is
required for cell membrane synthesis during cell proliferation
(Duvel et al., 2010; Vaidyanathan et al., 2022). mTORC1 regulates
fatty acid and cholesterol synthesis via Sterol Responsive Element
Binding Protein 1 and 2 (SREBP1/2). mTORC1 is required for
cleavage and nuclear translocation of SREBP1/2, which leads to
the expression of lipogenic genes (Porstmann et al., 2008; Duvel
et al., 2010; Li et al., 2010; Wang et al., 2011). In Drosophila,
silencing of dSREBP caused a reduction in cell and organ size and
impaired the stimulation of cell growth by dPI3K (Porstmann
et al., 2008). Genetic studies in mice have shown that
SREBP1 preferentially regulates fatty acid biosynthesis while
SREBP2 mainly controls the expression of genes related to
cholesterol synthesis (Horton et al., 2003). S6K1 and/or Lipin-
1 have been shown to be the mediators between mTORC1 and
SREBP1/2 (Duvel et al., 2010; Li et al., 2011; Peterson et al., 2011;
Wang et al., 2011). Moreover, mTORC1 also promotes expression
of the master regulator of adipogenesis, PPAR-γ (Kim and Chen,
2004; Zhang et al., 2009).

2.2 mTORC2

2.2.1 Upstream regulators of mTORC2
mTORC2 is comprised of mTOR, DEPTOR, PRAS40,

mLST8, mSin1, Protor1/2, and Rictor, with DEPTOR being the
only inhibitory subunit. In addition, rapamycin treatment affects
mTORC1 and mTORC2 differently: acute treatment suffices to
inhibit mTORC1, while mTORC2 requires prolonged treatment
to get inhibited (Sarbassov et al., 2006). As shown in Figure 2,
growth factors (Insulin/IGF) are the main activators of this
complex. In fact, mTORC2 was identified in 2004 as the
elusive ‘second’ insulin-responsive AKT kinase. The most
accepted model is as follows: PI3K, activated by growth factor-
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receptor signaling, phosphorylates the plasma membrane
phospholipid PIP2 to generate PIP3 (phosphatidylinositol
3,4,5-trisphosphate); PIP3 interacts with the pleckstrin
homology (PH) domains within AKT and PDK1, triggering
their translocation from the cytosol to the plasma membrane;
there, PDK1 phosphorylates AKT in Thr308, partially activating
it. This is sufficient to catalyze Sin1 phosphorylation within
mTORC2, which then phosphorylates AKT at Ser473 to fully
activate it. However, this model was challenged by a study
reporting that phosphorylation of Sin1 impairs
mTORC2 activity in mouse embryonic fibroblasts (Liu et al.,
2013). There are also growth factor-independent activation
mechanisms (Figure 2). For example, in specific cell types
mTORC2 is involved in mechanically induced activation of β-

catenin, such that inhibition of Rictor disrupts mechanically
induced cytoskeletal reorganization (Lewis et al., 2020).
Moreover, mTORC2 can be activated by association with
ribosomes (Oh et al., 2010; Zinzalla et al., 2011). Lastly, p300-
mediated acetylation of Rictor seems to potentiate IGF-1-induced
mTORC2 kinase activity at Ser473 of AKT (Glidden et al., 2012),
and is in general a positive regulator of mTORC2 activity (Singh
et al., 2016). Intriguingly, mTORC2 location inside the cell shows
broad heterogeneity depending on how it is activated. Indeed, it
has been found at the plasma membrane, mitochondria, and sub-
endosomal vesicles, by tracing the localization of mSin1 (Ebner
et al., 2017). In summary, more work is needed to further
elucidate the mechanisms of mTORC2 activation, and how
this relates to its subcellular location.

FIGURE 1
Summary of signaling through mTOR complex 1. (A) Activators of mTORC1. (B) Downstream targets and cellular effects of mTORC1. Adapted from
(Wei et al., 2019), available through an CC BY license http://creativecommons.org/licenses/by/4.0/.
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2.2.2 Downstream effectors of mTORC2
Once activated, mTORC2 regulates cell survival, cell

migration, cytoskeletal rearrangements and glucose metabolism
by mediating the phosphorylation of conserved motifs in AGC
kinases (i.e., PKA, PKC, PKG). This promotes their maturation,
stability and allosteric activation (Cameron et al., 2011; Baffi et al.,
2021). Another likely phosphorylation target is Serum- and
Glucocorticoid-induced Kinase 1 (SGK1), which in turn
regulates sodium transport in kidney epithelial cells (Lang and
Pearce, 2016). SGK also decreases nuclear localization of the
transcription factor FOXO3a and its DNA-binding activity
(Brunet et al., 2001), thus inhibiting apoptosis and promoting
survival.

3 Role of mTOR in limb outgrowth,
morphogenesis and skeletal
development

For the purposes of this review, tetrapod limb development will
be roughly divided into three processes (Figure 3): 1) limb
outgrowth and patterning; 2) Chondrocyte differentiation after

the formation of mesenchymal condensations; 3) Bone growth
driven by endochondral ossification.

3.1 mTOR interactions with the limb
outgrowth and patterning programs

The limb primordia, or limb buds, arise as outgrowths from the
lateral plate mesoderm, due to epithelial-to-mesenchymal transition of
the coelomic epithelium (Gros and Tabin, 2014). The limbmesenchyme
then expands in response to its interactions with the overlying epithelium
(Figure 4A), A key event is the induction of an epithelial signaling center
at the distal tip, the apical ectodermal ridge (AER), due to
BMP4 signaling from the mesenchyme to BMP receptor IA in the
epithelium (Ahn et al., 2001; Pizette et al., 2001). The AER is necessary
(Saunders, 1948) and sufficient (Rosello-Diez and Torres, 2011) to
promote the outgrowth of the limb. Also critical for limb outgrowth
is the concomitant stabilization of Fgf10 expression in the limb field,
which then signals to the overlyingAER and activatesWNT3A/β-catenin
signaling, in turn inducing Fgf8 expression, which maintains Fgf10
expression in the mesenchyme and is critical for limb outgrowth
(Ahn et al., 2001; Kawakami et al., 2001; Pizette et al., 2001).

FIGURE 2
Summary of signaling through mTOR complex 2. Activators (top) and effectors (bottom) of mTORC2. Adapted from (Wei et al., 2019), available via a
CC license http://creativecommons.org/licenses/by/4.0/.
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The role of mTOR in the limb outgrowth process has not been
specifically addressed, as the earliest genetic conditional deletion of
key pathway components such as Raptor were done via Prrx1-Cre,
which is only active once the limb bud induction process is
finalized (Logan et al., 2002). However, given the role of
mTORC1 and 2 in mediating EMT in organogenesis and cancer
(Gulhati et al., 2011; Karimi Roshan et al., 2019), and that the

mTORC1 readout p-S6 is present in most of the mesenchyme of
the early limb bud (Figures 4A,B), we propose that mTOR (or at
least mTORC1) may play a role in the EMT process that leads to
limb bud initiation. Supporting this possibility, artificial
overexpression of RhoA represses mTORC1 signaling in
mammalian cells (Gordon et al., 2014) and interferes with
EMT-initiated limb outgrowth in chicken (Gros and Tabin, 2014).

FIGURE 4
mTORC1 interacts with multiple signaling pathways and transcription factors involved in limb outgrowth, progression of skeletal condensations and
bone growth. (A) Schematic representation of the signaling events involved in early limb-bud induction. We propose that mTORC1 could be involved in
the EMT process that gives rise to the limb mesenchyme (Gros and Tabin, 2014). (B) During the patterning phase, mTORC1 activity is high in most of the
limbmesenchyme, but seems to be only required for cell growth and timely progression of limb development (Jiang et al., 2017). (C) Interactingwith
BMP and HIF-1α pathways, mTORC1 is required for the transition of the initial condensations towards proliferative cartilage (Jiang et al., 2017; Iezaki et al.,
2018; Lee et al., 2018). (D) Endochondral ossification process, including growth plate dynamics and main sites of mTORC1 action.

FIGURE 3
Steps in tetrapod limb development where mTOR may play a role.
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After induction, the limb bud undergoes significant growth.
Deletion of Raptor with Prrx1-Cre showed that mTORC1 signaling
in the limb mesenchyme is required for the normal size of both the
limb bud and its individual cells, but relatively dispensable for skeletal
patterning (Jiang et al., 2017). A potential link between mTOR and
limb growth is the FGF-IGF connection. It has been shown that the
maintenance of limb growth by AER-FGFs requires the induction and
signaling of IGF1 in the subridge mesenchyme, at least in the chicken
embryo (Dealy et al., 1996). Moreover, insulin/IGF signaling in the
limb mesenchyme is mediated by PI3K/AKT (Knobloch et al., 2008),
which, as mentioned above, is an upstream regulator of mTORC1.
Since mTORC1 activity is detected in the limb mesenchyme
(Figure 4B), it is possible that mTORC1 mediates part of the
effects of AER-FGFs on limb growth. Although this possibility has
not been directly explored, there are studies in which one copy of Rps6
(encoding ribosomal protein S6, a mediator of mTORC1 activity) was
removed in mouse limb buds using Prrx1-Cre, leading to smaller limb
buds by embryonic day (E) 11.5, and agenesis of the humerus, radius
andmost anterior digit at E17.5 (Tiu et al., 2021). It is noteworthy that
the hindlimb, where Prrx1-Cre is activated later and more sparsely
than in the forelimb (Logan et al., 2002), was mostly unaffected in this
study, suggesting that Rps6 full dosage is only needed in early limb
growth.

3.2 mTOR role in chondrocyte
differentiation after mesenchymal
condensation

During the limb growth process, mesenchymal cells far from the
AER start coalescing into the so-called mesenchymal condensations
(Figure 3), which will give rise to the skeletal elements in a complex
but stereotypical manner (Markman et al., 2023). In this
differentiation process, the extracellular space between cells
collapses, increasing the packing density. This requires partial
replacement of the extracellular matrix (ECM) with new ECM
components. Also, as density increases, cells become rounder and
lose their filopodia (Thorogood and Hinchliffe, 1975). Subsequently,
the condensations enlarge through cell proliferation, and a layer of
elongated cells surrounds the condensation, forming the
perichondrium. BMP signaling induces condensation and
proliferation of mesenchymal cells and promotes their survival
(Yoon et al., 2005). Moreover, these condensations become
hypoxic, and the HIF-1α pathway is required for their
progression towards cartilage cells or chondrocytes (Provot et al.,
2007). Interestingly, levels of the mTORC1 readout p-S6 are high in
the condensations, while they decrease in the rest of the
mesenchyme (Figure 4C), suggesting a role in their formation/
progression and potential interactions with the BMP and HIF1-α
pathways. Indeed, BMPs have been shown to induce
mTORC1 activation via the ALK3 receptor and Smad4-mediated
inhibition of PTEN (Lim et al., 2016; Lee et al., 2018). mTORC1, in
turn, is required for the translational control of SOX9, a key
transcription factor in the progression towards cartilage (Iezaki
et al., 2018). Moreover, mTORC1 has been shown to upregulate
HIF-1α protein levels in the cartilage, which is critical for the control
of glucose metabolism, proliferation and differentiation in
chondrocytes (Lee et al., 2018).

3.3 mTOR and endochondral ossification

The process of endochondral ossification plays a
predominant role in long-bone growth. In this process, a
cartilage template (formed when mesenchymal cells in the
condensations transition to chondrocytes) is progressively
replaced by bone. From the ends towards the center of the
bone, chondrocytes undergo subsequent differentiation stages
(Figures 4D, 5A). Round resting chondrocytes constitute a
reserve pool that with a certain frequency gives rise to
proliferative chondrocytes arrayed in columns. Proliferating
chondrocytes eventually undergo hypertrophy by increasing
protein synthesis and osmotic swelling (Cooper et al., 2013),
while they lay down the ECM that forms the cartilage scaffold.
While some hypertrophic chondrocytes die, others
transdifferentiate to osteoblasts (Yang et al., 2014; Zhou
et al., 2014; Park et al., 2015). Osteoblasts can also derive
from precursors located in the perichondrium (Maes et al.,
2010), and regardless of their origin, lay down the bone
matrix, forming the primary ossification center in the middle
region of the skeletal element. This divides the cartilage template

FIGURE 5
mTOR in skeletal development. (A) Schematic of chondrocyte
transitions during cartilage growth and their regulators. mTOR plays
an integrative role at the intersection of progenitor/stem cell
proliferation, chondrocyte differentiation and cell size control.
(B) Effects of mTORC1 and 2 in the differentiation of mesenchymal
progenitors. Based on (Chen and Long, 2018).
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into two parts (growth plates), located at both ends, where the
process continues (Figure 4D). Eventually, a secondary
ossification center forms within each cartilage pole
(Figure 4D). Key transcription factors like SOX9, RUNX2,
MEF2C, and cell signaling pathways such as WNT, BMP,
FGF, indian hedgehog (IHH) and parathyroid hormone-
related peptide (PTHrP) affect chondrocyte proliferation and
differentiation and osteoblast differentiation, often interacting
with mTORC1 and 2 (Figures 5A, B).

3.3.1 Role of mTOR in chondrocyte proliferation
and hypertrophic differentiation

As a first approach to studying the role of mTORC1 in
endochondral ossification, rapamycin was used to treat fetal
rat metatarsal cultures or pregnant rats in the last day of
gestation, finding that mTORC1 inhibition impaired fetal
chondrocyte differentiation and response to insulin, but not
proliferation (Phornphutkul et al., 2008). Similarly, genetic
deletion of either Mtor or Raptor in the mouse cartilage
impaired skeletal growth through reduced matrix production,
decreased chondrocyte size and delayed chondrocyte
hypertrophy (Chen and Long, 2014). While these landmark
studies were important first steps, given the multiple signaling
interactions and roles that mTOR can participate in, as well as the
multiple states and complex spatiotemporal dynamics that
chondrocytes go through, it is worth considering more recent
studies as well, focused on specific aspects of chondrocyte
regulation by mTOR.

Due to the continuous cartilage destruction near the bone,
maintenance of the cartilage regions, and hence bone growth,
requires de novo production of cartilage at roughly the same rate.
At fetal/early postnatal stages, cartilage progenitors located in
the resting zone do not self-renew and have limited proliferative
potential, so that when they are recruited into the proliferative
pool, they deplete the pool of progenitors and give rise to short
clonal columns of chondrocytes (Newton et al., 2019). Some
time after formation of the secondary ossification center (SOC),
however, some resting chondrocytes start to self-renew and
show higher clonogenic potential, so that the pool of resting
chondrocytes is not depleted as fast, and long clonal columns of
chondrocytes are formed (Newton et al., 2019). Signals from the
SOC (most prominently sonic hedgehog, Shh) seem to be critical
for this change of behavior, as was the activation of the
mTORC1 pathway in these so-called cartilage stem cells
(Newton et al., 2019). Importantly, pharmacological
abrogation of HH signaling reduced proliferation in the
resting zone, while ectopic activation of mTORC1 via Tsc1
deletion led to a bias towards symmetric division in
the resting zone, disorganizing cartilage structure (Newton
et al., 2018; Newton et al., 2019). There is no consensus
about this phenotype, however, as other group reported
drastically different results (Yan et al., 2016), warranting
further analyses.

Besides the control of cartilage progenitors, balanced cartilage
growth requires maintenance of a relatively constant height of the
different regions of the growth plate. The size of the proliferative
zone is controlled by a well characterized negative feedback loop
between IHH and PTHrP (Lee et al., 1996; Vortkamp et al., 1996; St-

Jacques et al., 1999; Minina et al., 2001). In this loop, IHH produced
by pre-hypertrophic chondrocytes induces PTHrP expression in
resting chondrocytes, whereas PTHrP secreted from the resting zone
promotes chondrocyte proliferation and delays differentiation,
including Ihh expression (Figures 4D, 5A). mTOR is likely
involved in this feedback loop in two different ways: via
mechanotransduction-dependent Ihh expression, and via
regulation of PTHrP signaling. Regarding the former, mechanical
loading is an important regulator of chondrocyte maturation, and
experiments in chicken embryos showed that elimination of muscle
contraction results in mTOR inhibition in the cartilaginous growth
plate (Guan et al., 2014). This led to significant inhibition of
chondrocyte proliferation and reduced expression of Ihh.
Conversely, mechanical stimulation of chondrocytes in vitro led
to mTORC1-dependent activation of Ihh expression (Guan et al.,
2014). Moreover, one of us (AR-D) showed that in vivo inhibition of
SHP2, an antagonist of mTORC1-mediated mechanotransduction,
leads to increased Ihh expression (Rosello-Diez et al., 2017). Along
these lines, it was recently shown in chicken and alligator embryos
that limb proportions can change in response to embryo movement,
an effect due to mTOR-mediated changes in chondrocyte
proliferation and specific of certain growth plates (Pollard et al.,
2017).

On the other hand, mTORC1 activation has been shown to
reduce expression of the PTHrP receptor in articular cartilage
(Zhang et al., 2017), which could potentially happen in the
growth plate cartilage as well. Moreover, Yan et al. showed that
S6K1, a downstream effector of mTORC1, phosphorylates and
allows nuclear translocation of HH-signaling transducer GLI2,
leading to transcription of Pthlh, encoding PTHrP (Yan et al.,
2016). The mTOR/PTHrP interaction also works in reverse.
Studies of skeletal dysplasia syndromes characterized by
constitutive activation of PTH/PTHrP showed reduced activities
of salt inducible kinase 3 (SIK3), which caused accumulation of
DEPTOR, in turn inhibiting mTORC1 and 2 activity, biasing
skeletal progenitor differentiation towards fat instead of bone
(Csukasi et al., 2018). This new PTH/PTHrP-SIK3-mTOR axis
has been recently explored further, showing that, in the presence
of nutrients, DEPTOR directly interacts with PTH1R to regulate
PTH/PTHrP signaling, whereas in the absence of nutrients it forms a
complex with TAZ (an effector of the Hippo pathway), to prevent its
translocation to the nucleus and therefore inhibit its transcriptional
activity (Csukasi et al., 2022).

Another potential signaling interaction of mTORC1 is with the
canonical WNT pathway. Although related to calvarial bone (not
long bones), it was shown that Wnt10b overexpression causes
enlargement of calvarial tissue and phosphorylation of S6, both of
which effects were abrogated by rapamycin (Inoki et al., 2006).
Similarly, mice with reduced expression of LRP1 (aWNT receptor)
had smaller than normal calvarias and reduced
mTORC1 signaling. The connection seems to be mediated by
WNT-dependent inhibition of GSK-3β, which via its
interdependence with AMPK phosphorylates TSC2, acting as an
mTORC1 inhibitor (Inoki et al., 2006). In the future, it would be
interesting to test this crosstalk during endochondral ossification
in the long bones.

A key signal transducer that interacts with the mTOR
pathway during cartilage and skeletal growth is AKT (aka
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protein kinase B). AKT is the collective name of three Ser/Thr
protein kinases that play key roles in cellular processes such as
cell proliferation, migration, apoptosis, glucose metabolism and
transcription. The functions of AKT and its downstream
molecular mechanisms were explored during skeletal
development using transgenic mouse embryos that expressed
constitutively active AKT (Rokutanda et al., 2009). AKT
positively regulated ECM production, chondrocyte growth,
proliferation and maturation; associated with increased
phosphorylation of FoxO3a, S6K (i.e., mTORC1 signaling) and
GSK-3β in the growth plates of the AKT transgenic mice. Further
examination of the downstream signaling pathways by ex vivo
culture revealed that the AKT-mTOR pathway positively
regulated proliferation, maturation and ECM production
(Rokutanda et al., 2009).

mTORC2 and mTORC2-mediated activation of mTORC1 are
also crucial in skeletal development. It was found that genetic
deletion of Rictor (encoding an essential component of
mTORC2) in the limb mesenchyme led to a smaller skeleton
in mice (Chen et al., 2015). This phenotype is caused by delayed
chondrocyte hypertrophy and not changes in cell size,
proliferation, apoptosis, or ECM production (Chen et al.,
2015). Furthermore, RUNX2, a master regulator of skeletal
development, has been shown to activate PI3K/AKT signaling
via mTORC2 in breast cancer cells (Tandon et al., 2014).
However, the question of whether the RUNX2/PI3K/AKT/
mTORC2 axis is conserved in skeletal development remains to
be examined.

3.3.2 Role of mTOR in the osteoblast/osteocyte
lineage

Besides its roles in chondrocytes, mTORC1 is required for the
transition of pre-osteoblasts to mature osteoblasts (Figure 5B).
Indeed, Mtor or Raptor deletion (and thus perturbation of
mTORC1 function) in preosteoblasts (using Osx-Cre) or in
calvarial cultures caused reduced osteogenic capacity and
delayed bone formation (Chen and Long, 2015; Dai et al.,
2017; Fitter et al., 2017). Mechanistically, this was caused by
reduced expression of Runx2, a master regulator of osteogenesis
(Dai et al., 2017).

Regarding mTORC2, its inactivation via Prrx1-Cre mediated
deletion of Rictor in the limb mesenchyme did not affect
chondrocyte proliferation, apoptosis, cell size or matrix
production, but instead caused a delay in osteoblast
differentiation (Figure 5B) (Chen et al., 2015). Moreover, Rictor
deletion in late-stage osteoblasts/osteocytes with Dmp1-Cre
hampered load-induced bone formation, causing a reduced bone
mass phenotype (Lewis et al., 2020).

mTORC2 can also interact with other signaling pathways.
Through its tyrosine kinase activity, mTORC2 is involved in the
activation of IGF-1R/InsR signaling, which plays an essential
role in osteoblasts proliferation, survival, and differentiation
during skeletal growth. Indeed, a study reported that mTORC2 is
recruited to the IGF-1R/InsR via SIN1 interaction with insulin
receptor substrate (IRS) (Yin et al., 2016). Another study showed
that IGF-activated AKT and PI3-kinase are crucial for BMP2-
stimulated Runx2 expression and therefore osteoblast

differentiation, maturation, and function in mouse metatarsal
bones (Mukherjee and Rotwein, 2009) (Figure 5B).

WNT signaling has been shown to play a role in both prenatal
and postnatal skeletal formation, in part interacting with
mTORC1 and 2. Prenatal induction of WNT7B in the
osteoblast lineage (Col1a1-Cre) increased bone mass via
increased osteoblast number during bone formation (Chen
et al., 2014). Deletion of Raptor in the osteoblast lineage
reduced the WNT7B-induced phenotype. In addition,
induction of WNT7B postnatally in Runx2+ cells also
enhanced bone formation (Chen et al., 2014). Moreover,
WNT3A signaling via LRP5, independent of β-catenin, has
been shown to activate mTORC2-AKT downstream of
RAC1 and promote a metabolic reprogramming that is critical
for osteoblast differentiation (Esen et al., 2013).

Therefore, all together, it can be inferred that mTORC1 and 2,
activated by IGFs, BMPs andWNTs are involved in the regulation of
osteoblast activity to maintain skeletal growth.

4 Conclusion. mTOR and limb
development: a TORrent of possibilities

In this review, we have addressed the role and regulation of
the mTOR pathway during multiple steps of tetrapod limb
development, with a focus on the long bones. mTOR, as an
integrator of intrinsic cellular status (e.g., metabolism, stress)
and extrinsic signals (e.g., growth factors, nutrients), is in a
unique position to coordinate multiple inputs into a robust
growth program. In fact, its widespread expression, pleiotropic
effects and ability to interact with multiple signaling pathways
and transcription factors suggest that it could be involved in
more processes than the ones studied so far. For example, we
have already mentioned that, while no study has found a clear
role for mTORC1 or 2 in limb initiation, most genetic
interventions have been performed once the limb bud is
already present, precluding a clear conclusion. There is also
the possibility of synergies. Since mTORC1 and 2 can modulate/
interact with many of the signaling pathways involved in limb
patterning (BMP, FGF, HH, WNT, Figures 4B, C), it is
reasonable to think that heterozygous deletions of mTORC
components may synergize with genetic defects impacting said
pathways. This could also have implications in other fields. For
example, in the context of cancer it has been recently proposed
that the interaction between HH and mTORC1, happening at the
level of the primary cilium, is more widespread than currently thought
(Larsen and Moller, 2020). We submit that disentangling these
interactions could open new avenues to understanding the control
of limb size and proportions during development and evolution, and
treating limb growth disorders.
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