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Background: Anoikis has therapeutic potential against different malignancies
including lung adenocarcinoma. This study used anoikis and bioinformatics to
construct a prognostic model for lung adenocarcinoma and explore new
therapeutic strategies.

Methods: Several bioinformatic algorithms (co-expression analysis, univariate Cox
analysis, multivariate Cox analysis, and cross-validation) were used to screen
anoikis-related genes (ARGs) to construct a risk model. Lung adenocarcinoma
patients were divided into training and testing groups at a ratio of 1:1. The
prognostic model was validated by risk score comparison between high- and
low-risk groups using receiver operating characteristic curve (ROC), nomograms,
independent prognostic analysis and principal component analysis. In addition,
two anoikis-related genes patterns were classified utilizing consensus clustering
method and were compared with each other in survival time, immune
microenvironment, and regulation in pathway. Single cell sequencing was
applied to analyze anoikis-related genes constructed the model.

Results: This study demonstrated the feasibility of the model based on seven
anoikis-related genes, as well as identifying axitinib, nibtinib and sorafenib as
potential therapeutic strategies for LUAD. Risk score based on this model had
could be used as an independent prognostic factor for lung adenocarcinoma
(HR > 1; p < 0.001) and had the highest accuracy to predict survival compared with
the clinical characteristics. Single cell sequencing analysis discovered Keratin 14
(KRT14, one of the seven anoikis-related genes) wasmainly expressed inmalignant
cells in various cancers.

Conclusion: We identified seven anoikis-related genes and constructed an
accurate risk model based on bioinformatics analysis that can be used for
prognostic prediction and for the design of therapeutic strategies in clinical
practice.
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Introduction

Lung cancer is one of the malignancies with the highest
morbidity and mortality (Siegel et al., 2021). In 2022, an
estimated 236,740 new cases and an estimated 130,180 deaths are
covered by lung carcinoma. On account of the hysteretic nature of
datum, the 5-year relative survival is accessible lags 4 years behind
the current year, with 22.9% from 2012 to 2018 (Cancer Stat Facts:
lung and bronchus cancer, 2022). The most common subtype of
lung cancer including never-smokers is lung adenocarcinoma
(LUAD) (Lee et al., 2019; Devarakonda et al., 2021). Research
advances have improved the early diagnosis of patients, thus
leading to a better prognosis. Several treatment options are
available including immunotherapy, targeted therapy,
chemotherapy, radiotherapy, and surgical management
(pneumonectomy and lung transplantation) (Glanville and
Wilson, 2018; Wang et al., 2022a; Gross et al., 2022; Huo et al.,
2022; Nguyen et al., 2022). However, LUAD is characterized by
considerable heterogeneity in clinical features, pathological
characteristics, and molecular alterations, as well as genomic
instability (Geng et al., 2021; Okudela et al., 2021). The
prevalence of lung tumors in non-smokers has increased recently,
despite the known association between smoking and lung cancer
(Jeon et al., 2018), underscoring the need to elucidate the underlying
molecular mechanisms and develop effective therapies.

Recently, programmed cell death has been the focus of research
aimed at developing new cancer treatment strategies. There are
several cell death mechanisms including apoptosis (Green, 2022),
autophagy (Russell and Guan, 2022), cuproptosis (Tsvetkov et al.,
2022), ferroptosis, pyroptosis and necroptosis (Tang et al., 2020). A
key factor in maintaining cell homeostasis is adhesion of cells to
matrix, and disruption of this interaction can adversely affect cell
survival (Chiarugi and Giannoni, 2008). Disengagement between
cells and matrix can lead to long-time cells suspension and cell
death. This cell death form has been termed “anoikis” (Frisch and
Francis, 1994). The presence of anoikis may hold back the
reattachment of detached cells and malformation of cells
development. Anoikis after the loss of cell anchorage is
associated with cells development, tissue homeostasis and
malignancies (Danial and Korsmeyer, 2004; Chiarugi and
Giannoni, 2008; Simpson et al., 2008). After escaping from the
adhesion of extracellular matrix and intercellular contact, tumor
cells survived by paracrine and paracrine mechanisms against
apoptosis, and regained the ability to attach to spread,
metastasize and invade. Anti-anoikis is an important feature of
tumor metastasis, which enables tumor cells to spread to distant
organs through the circulatory system (Simpson et al., 2008; Chaffer
et al., 2016). The regulation of anoikis in lung carcinoma mainly
includes extracellular matrix (ECM) and cell adhesion, cell
detachment and directional migration, signal transduction and
regulators (Wang et al., 2022b). Anchor independent survival of
tumor cells requires detachment from ECM matrix (Pickup et al.,
2014; Enkhbat et al., 2022). The inhibition of the overexpression of
fibronectin in cell aggregation during detachment has been proved
that can enhance anoikis in cancer (Han et al., 2021). In the drug
resistance experiments of lung adenocarcinoma, upregulated
Laminin 5 can reduce anoikis through activating integrin/focal
adhesion kinase (FAK) signaling (Kodama et al., 2005).

Generally, cells following the loss of adhesion won’t express
epidermal growth factor receptor (EGFR) and then induce
apoptosis. Research indicated that family with sequence similarity
188 member B (FAM188B) can prevent the degradation of EGFR
and lead to the re-adhesion of lung cancer cells to the ECM (Jang
et al., 2021). Non-coding RNA and IL-13 receptor subunit alpha-2
(IL13Rα2) which both involved in PI3K/AKT pathway regulation
inhibit anoikis and result in lung carcinoma metastasis and grave
prognosis (Xie et al., 2015; Tian et al., 2020). Anoikis play an
important role in LUAD; however, the potential role of ARGs in
LUAD still needs to be examined to date. Here, we hypothesized that
ARGs play a role in the occurrence and development of LUAD, and
constructed models to explore the mechanism of ARGs in LUAD.

The study identified ARGs and constructed a prognostic model
based on the ARGs signature, which revealed the association of these
markers with prognostic prediction and treatmentmodalities in LUAD,
as well as their role in immunemicroenvironment, and drug sensitivity.
Additionally, single cell data were used to analyze these genes for
constructing the model. The functions of ARGs in the classification of
LUAD were evaluated based on the TCGA and GEO datasets.

Materials and methods

Data acquisition

Transcriptome profiling (RNAseq) data and relevant
clinicopathological information in LUAD, were obtained from
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) and Gene Expression Synthesis Database
(GSE41271, GEO, https://www.ncbi.nlm.nih.gov/geo). ARGs
were incorporated through a systematic search and processing
from the Human Gene Database (GeneCards, https://www.
genecards.org/) and Harmonizome platform (https://
maayanlab.cloud/Harmonizome/). The scRNA-seq database
from Tumor Immune Single-cell Hub 2 (TISCH2, http://tisch.
comp-genomics.org/) website was analyzed to explore the model-
related genes expression in pan-cancer.

Construction of a prognostic network and
CNV analysis

Univariate Cox regression analysis was performed using R software
to screen differentially expressed genes (DEGs). We used “igraph,”
“psych,” “reshape2” and “RColorBrewer” R packages to examine the
correlation between ARGs and risk factors. After downloading copy
number variation (CNV) data from UCSC Xena database (http://xena.
ucsc.edu/), we processed the CNV data to calculate frequency of
mutation using the Perl script algorithm. The “RCircos” package
was used for graphical representation.

Consensus clustering analysis and principal
component analysis of ARGs

According to the consensus level of ARGs, the cohort from
TCGA and GEO was allocated into several clusters utilizing the R
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package “ConsensusClusterPlus”. The fitness of the classification
was judged based on the principal component analysis (PCA)
algorithms. “survival” and “survminer” were also applied to
construct curve plotting and compare the survival between
different clusters. The other graphical output consisted of
heatmap and boxplots using “pheatmap” and “boxplots”.

Pathway enrichment analysis of ARGs

Gene set variation analysis (GSVA), an extension of gene set
enrichment (GSE) method, are performed for unsupervised
classification of a sample based on the variation of pathway
activity (Hanzelmann et al., 2013). Gene set enrichment analysis
(GSEA) is an analytical method and focused on gene sets which
share common biological function, enrichment pathways and
chromosomal location (Subramanian et al., 2005; Cao et al.,
2019). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed to present the discrepancy of pathways
between those ARGs clusters. The process was completed by the
“GSEABase,” “GSVA” and “clusterProfiler” R package with the
screening criteria adjusted p < 0.05.

Establishment and validation of an anoikis-
related risk model

To identify prognostic ARGs, univariate Cox regression
analysis was performed using R software. LUAD patients
were randomly divided into training and testing cohorts at a
ratio of 1:1. The “glmnet” R package was used to perform the
least absolute shrinkage and selection operator (LASSO)
regression to analyze prognostic candidates. With the
optimization criterion of least error, cross validation was
performed to screen target ARGs, which were applied to the
optimal multivariate Cox model. Subsequently, an ARGs
prognostic signature was constructed utilizing the “survival”
package based on the coefficient and hazard ratio (HR). The
risk score formula was as follows:

Risk score � ∑
n

i�1
XARGi*CoefARGi

Where XARGi represents the expression of each anoikis-
related gene and the corresponding CoefARGi represents the
regression coefficient. The median risk score threshold was
used to distinguish the high-risk group from the low-risk
group. The time-dependent ROC curves and the area under
the curve (AUC) were established to evaluate the risk model.
Multivariate Cox regression analyses were used to assess the
correlation between clinical features and prognosis, and to
determine whether the features could be independent
prognostic factors. A nomogram was generated to predict
the survival of patients based on risk scores through the
summation of each prognostic clinical variable, and
calibration curves were constructed to assess the accuracy of
the risk model.

Immune cell infiltrates and immune
microenvironment

The relationship between risk groups and 22 distinct leukocyte
subsets were identified using CIBERSORT algorithm. ESTIMATE
algorithm was carried out to calculate tumor microenvironment
scores and research the difference of immune and stromal scores
between the high- and low-risk groups.

Analysis of sensitivity to clinical therapies

OncoPredict, an R package for predicting drug responses and
biomarkers (Maeser et al., 2021), was used to analyze the sensitivity
of common oncological therapeutic drugs in TCGA-LUAD dataset.
Drug susceptibility documentation and risk files were subsequently
processed to draw boxplots of the two risk groups.

Statistical analysis

The annotation and collation of transcriptome data, clinical and
gene expression data were performed using PERL (version 5.32.0.1).
Other statistical procedures were performed with R software
(Version 4.1.2; Version 4.2.1). The Wilcoxon test was used to
analyze anoikis-related variation according to sample quantity.

Results

Acquisition of differential ARGs and CNV
analysis in LUAD

To identify ARGs in LUAD, we abstracted 598 samples from the
TCGA-LUAD cohort (59 normal and 539 tumor tissues) and
183 adenocarcinomas tissues from the GSE41271 dataset. A total
of 640 ARGs were identified from GeneCards and Harmonizome
platform. We utilized “limma” package to locate ARGs with
significant variation in TCGA cohort, and the differential
expression levels were presented in heatmap and volcano map
(Figure 1A, B). The heatmap showed the top 50 significant ARGs
in upregulation and downregulation. The red dots and green dots
represented upregulated and downregulated genes in volcano map,
respectively. The detail results of differential ARGs are attached in
Supplementary Table S1. After merging gene expression
information from TCGA cohort and GSE41271 dataset, we
abstracted the expression of 111 differential ARGs
(Supplementary Table S2) and combined it with survival
materials to perform survival analysis. 58 ARGs were eventually
identified from the 111 ARGs using univariate cox regression
analysis and were illustrated in the forest plot and corresponding
network visualization. 10 of 58 ARGs, such as PIK3R1 and ITGA8,
were marked in blue with an HR < 1 and meant favorable factors of
prognosis. Whereas the rest genes were identified with an HR >
1 and represented poor prognosis (Figure 1C). The correlation
between these ARGs and prognosis were more directly exhibited
in Figure 1D. The CNV frequency of 58 ARGs that had
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corresponding CNV data is shown in Figure 1E. As illustrated in
Figure 1E, the frequency of gain of CNV on the left was obviously
higher than the loss. Chromosome 7 and chromosome 11 both had
four genes displayed as a “gain” in the copy number cycle diagram
shown in Figure 1F.

Two ARGs patterns identified by
58 significant ARGs

When divided into two groups, the 58 significant ARGs had a
significant difference using consensus clusteringmethod (Figures 2A–D).

FIGURE 1
Acquisition of ARGs and CNV analysis. (A, B) Different expression of ARGs in LUAD with established standards (|log2FC| > 1 and FDR <0.05). (C, D)
Forest plot and network graph of identified 58 ARGs correlated with prognosis via univariate Cox regression analysis. The significance criteria were set as
p-value < 0.05. (E) The CNV frequency of gaining or losing in each ARGs. (F) Location and copy number of ARGs on chromosomes presented by CNV
cycle diagram. Red spots mean gain, accordingly, blue one means loss.
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Figures 2E, F based on cluster A and cluster B demonstrated the
differential expression levels of these 58 significant ARGs. As the
histogram shown, 55 ARGs had remarkable difference of expression
in the two clusters, except for CDX2, SLCO1B3, TRIM31. Most of the
expression of these genes were obviously higher in cluster A than in
cluster B. Such as PHLDA2, CDKN3, CDKN2A, PLAU, PLK1 and so
on. A PCA graph was drew for the verification of cluster allocation based
on the ARGs (Figure 5G). It turned out that ARGs could classify the two
patterns. Figure 5H showed that survival (p< 0.001) differed significantly
between the two cluster subgroups, with a better survival rate in the
cluster B than in the cluster A.

Identification of KEGG pathway and immune
analysis

Immune-related analyses were performed to compare the
differences between two ARG clusters. We investigated the

immune cell abundance landscape to explore the differences
between subgroups using the ssGSEA algorithm. There were
marked differences in activated B cell, activated CD4 T cells,
CD56 bright natural killer cell, CD56 dim natural killer cell,
eosinophil, gamma delta T cell, immature dendritic cell,
macrophage, mast cell, monocyte, natural killer T cell,
plasmacytoid dendritic cell, regulatory T cell, T follicular
helper cell, type 17 T helper cell, type 2 T helper cell (Figure 3A).

KEGG analysis was applied for comparison of the KEGG
pathways in two ARG clusters. 20 significant KEGG pathways
were plotted in the heatmap (Figure 3B). 13 pathways were
activated in ARG cluster A, and cluster B was on the contrary.
The diagram in Figures 3C, D demonstrated that ARG cluster A
and B were primarily enriched in arachidonic acid metabolism,
cell cycle, DNA replication, oocyte meiosis and P53 signaling
pathway. Only arachidonic acid metabolism pathway turned off
(“ silenced”) in cluster A, while only it turned on (“ activated”) in
cluster B.

FIGURE 2
Consensus clustering of ARGs and survival analysis using K-M curves. (A–D)Consensus matrices of 58 significant ARGs (k = 2–5). (E, F)Heatmap and
histogram of the 58 ARGs expression. (G) PCA for the expression profiles of different patterns. (H)Comparison of survival possibility in two subgroups. The
significance criteria were set as p-value < 0.05. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Establishment and assessment of an anoikis-
related risk model

The 58 ARGs were subjected to LASSO regression analysis and
proportional-hazards model analysis with evaluation of prognosis.

We identified the ARGs for the construction of the model after
eliminating the effect of multicollinearity among the explanatory
variables and model overfitting (Figures 4A, B). Ultimately, seven
genes, consisted of angiopoietin-like 4 (ANGPTL4), integrin subunit
beta 4 (ITGB4), collagen type XIII alpha 1 chain (COL13A1),

FIGURE 3
Gene set enrichment analysis. (A) Expression differences of immune cell infiltration between ARG cluster A and (B) *p < 0.05, **p < 0.01, and ***p <
0.001. (B–D) The KEGG enrichment analysis for the anoikis-related differentially expressed genes uncovered potential mechanism on the occurrence
and development of the two patterns. Construction of cuproptosis-related risk model. (A) The point of minimum error was picked out by vertical dotted
line based on LASSO cross validation. (B) Dynamic process diagram of Lasso filtering variables.
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FIGURE 4
Construction of anoikis-related risk model. (A) The point of minimum error was picked out by vertical dotted line based on LASSO cross validation.
(B) Dynamic process diagram of Lasso filtering variables. (C, E, G, I) Survival analysis and exposure rating of the training cohort. K-M survival analysis in
training cohort (C). Risk heatmap of training cohort indicated that six over-expressed ARGs in high-risk group, whereas the others over expressed in low-
risk group (E). Training cohort risk curve distinguished subgroups according to the median values (G). Survival scatter diagram reflected a
relationship between the risk score and survival time (I). (D, F, H, J) Survival analysis and exposure rating of the testing cohort, utilizing K-M survival curve
(D), risk heatmap (F), risk curve (H), survival scatter diagram (J). The significance criteria were set as p-value < 0.05.
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KRT14, Rac Family Small GTPase 3 (RAC3), Caudal Type
Homeobox 2 (CDX2), Kinesin Family Member 18A (KIF18A)
were included to establish the prognostic risk model of LUAD.
The risk scores of the seven screened ARGs determined by
multivariate analysis are shown in Table 1. The risk score was
calculated with the following formula:

Risk score � XANGPTL4 × 0.33420( ) + XITGB4 × 0.13667( )
− XCOL13A1 × 0.33534( ) + XKRT14 × 0.07749( )
+ (XRAC3× 0.14982) + XCDX2 × 0.18313( )
+ XKIF18A × 0.22797( )

The risk model divided patients into two cohorts, a training
group (n = 345) and a testing group (n = 344). Follow-up analyses

were performed after comparing the clinical traits of the two cohorts
without significant difference (Table 2). We then constructed the
K-M survival curves to compare survival between high- and low-risk
subgroups in the training and testing cohorts. There were marked
differences between the risk subgroups, with lower survival rates in
the high-risk group and higher survival rates in the low-risk group
(Figures 4C, D). The risk scores were calculated and the median
threshold of the risk score was set to 1 to distinguish between high-
and low-risk groups (Figures 4G, H). Survival scatter diagrams of the
two cohorts showed an inverse correlation between survival time
and the risk score, indicating that patients in the high-risk group had
a worse prognosis (Figure 4I, J). The risk heatmap of the training
cohort indicated that six ARGs (ANGPTL4, ITGB4, KRT14, RAC3,
CDX2, KIF18A) were overexpressed in the high-risk group, whereas
COL13A1 was highly expressed in the low-risk group (Figure 4E).
The testing cohort confirmed the expression of the six ARGs in high-
and low-risk subgroups (Figure 4F).

The risk score and partial clinical traits were included in an
independent prognostic analysis using univariate Cox regression.
Both risk scores (p < 0.001) in training and testing group were
associated with prognosis, suggesting that the risk score could be
used as an independent predictor (Figures 5A, B). As shown in
Figures 5C, D nomogram and calibration curve were established
to predict the survival time of patients with LUAD. The C-index
curve confirmed that the risk model constructed had the highest
accuracy to predict survival compared with the clinical
characteristics (age, gender, and stage) (Figures 5E–G). The
ROC curve showed the highest AUC value of 0.763 for the
risk score, and the AUC values for 1 -, 3 -, and 5-year OS
were 0.730, 0.763, and 0.741, respectively (Figure 5H). The
AUC values for 1 -, 3 -, and 5-year OS were 0.666, 0.663, and
0.631 in testing group (Figure 5I).

Immune-related and drug sensitivity
analyses based on the risk model

After investigating the immune cell abundance using the
CIBERSORT algorithm, we compared the correlation between
immune cell content and risk scores. The correlation analysis
plot demonstrated that 12 immune cells had significant
associations with risk scores (Figure 6). There were remarkably
positive correlations in activated memory CD4 T cells,
M0 macrophages, M1 macrophages, neutrophils, resting NK cells
and follicular helper T cells. The others, including activated mast
cells, activated NK cells, memory B cells, monocytes, resting
dendritic cells, resting mast cells and resting memory
CD4 T cells, had negative correlations with risk scores. In
addition, we analyzed immune cells expression in the two risk
groups and identified 11 significantly different immune cells
(Figure 7A). A heatmap of the correlation of immune cells with
the seven model ARGs was generated and presented a close
connection between KIF18A and the cells (Figure 7B). The
correlations between these 22 immune cells which were allocated
for immune analyses were found in Figure 7C. Activated memory
CD4 T cells showed high positive correlations with CD8 T cells. The
low-risk group got higher immune score (p < 0.001) and stromal
score (p < 0.001) than the high-risk group (Figure 7D).

TABLE 1 Seven ARGs selected by multivariate cox results.

ARGs Coef

ANGPTL4 0.33420

ITGB4 0.13667

COL13A1 −0.33534

KRT14 0.07749

RAC3 0.14982

CDX2 0.18313

KIF18A 0.22797

ARGs, anoikis-related genes; Coef, coefficient.

TABLE 2 Clinical characteristics analysis of subgroups.

(n, %)

Covariates Total quantity Training Testing p-value

(n = 689) group group

(n = 345) (n = 344)

Age 0.1108

≤65 317(46.01%) 171(49.57%) 146(42.44%)

>65 362(52.54%) 172(49.86%) 190(55.23%)

NA 10(1.45%) 2(0.58%) 8(2.33%)

Gender 0.4242

Female 362(52.54%) 187(54.2%) 175(50.87%)

Male 327(47.46%) 158(45.8%) 169(49.13%)

Stage 0.1094

I 372(53.99%) 188(54.49%) 184(53.49%)

II 148(21.48%) 62(17.97%) 86(25%)

III 131(19.01%) 71(20.58%) 60(17.44%)

IV 30(4.35%) 18(5.22%) 12(3.49%)

NA 8(1.16%) 6(1.74%) 2(0.58%)

NA, unknown variables; n, numbers of patients.
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Considering the relevance of ARGs clusters to risk model, we
further scored the two clusters and compared the difference of the
risk score, and the risk scores in A group was higher than that in B
group (Figure 7E). The sankey diagram distinctly displayed the
association between clusters and anoikis-related risk scores
(Figure 7F).

The correlation analysis of IC50 with risk scores showed that
73 anticancer drugs had significant correlations with risk scores,
including 17 drugs with negative associations and 56 drugs with
positive associations. This indicated that patients in the high-risk
group responded well to most medications. Detailed information
is found in Supplementary Table S3. The 3 kinds of molecular
targeted drugs with significant differences (p < 0.05) are shown in
Figures 8A–C, which might be candidate medications for patients
with LUAD in the high-risk group. In addition, there were 2 types
of frequent medications (erlotinib and gefitinib) associated with

LUAD and had lower sensitivity in high-risk group
(Figures 8D, E).

Analysis of ARGs based on single-cell RNA
sequencing data

GSE131907, a single-cell RNA sequencing data of LUAD, was
chosen to exhibit the expression of seven model ARGs utilizing
TISCH2 platform. The landscape of intermediate cells was shown in
Figure 9A. The pie diagram depicted the proportion of each cell type
(Figure 9B). As it illustrated, CD4 conventional T cell was the most
abundant immune cell. Following the research of proportion of each
cell type in patients (Figure 9C), the expression of seven ARGs was
analyzed and draw in Figure 9D–J. ANGPTL4, CDX2, ITGB4,
KRT14, and RAC3 were mainly enriched in epithelial cells.

FIGURE 5
Independent prognostic analysis and nomogram construction for LUAD. Univariate Cox regression analysis in training group (A) and testing group
(B) of clinical features in the riskmodel set (p < 0.05). (C) The construction of nomogram to foretell patient’s 1 -, 3 -, and 5-year survival rates, according to
the total points. (D) Calibration curve of the nomogram. (E–G) C-index curve for different variables, including risk score, age, gender, and stage. ROC
curves for 1 -, 3 -, and 5-year overall survival in training group (H) and testing group (I).
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COL13A1 was mainly expressed in fibroblasts and KIF18A was
mainly expressed in CD8 T cells. Subsequently, we explored
expression of these ARGs in pan-cancer single-cell sequencing

dataset and found that only KRT14 was highly expressed in
various tumors, including basal cell carcinoma (BCC), non-
hodgkin lymphoma (NHL), oral squamous cell carcinoma

FIGURE 6
Correlation between immune cells and risk scores. Positive correlations: activated memory CD4 T cells, M0 macrophages, M1 macrophages,
neutrophils, resting NK cells and follicular helper T cells. Negative correlations: activated mast cells, activated NK cells, memory B cells, monocytes,
resting dendritic cells, resting mast cells and resting memory CD4 T cells. p < 0.05 was considered as significant correlation.
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(OSCC) and squamous cell carcinoma (SCC). In various tumors,
KRT14 was widely expressed in malignant cells in the tumor
microenvironment (Figure 9K).

Discussion

Despite advances in therapeutic modalities for malignant lung
tumors, sundry drugs can result in a poor prognosis because of

undesirable side effects, resistance, and cachexia after progression
(Wang et al., 2021). Chemoresistance, particularly, remains an
important cause of failure of treatment and the driving force of
death. Inherent resistance leading to poor initial treatment response
and acquired resistance leading to poor follow-up responses
constitute the two aspects of resistance (Gottesman, 2002;
Nikolaou et al., 2018; Jing et al., 2020). Chemotherapeutic drugs
act on cancers by inducing programmed cell death, whereas tumor
death evasion can increase the occurrence of resistance

FIGURE 7
Immune-related analysis based on the risk model. (A) Expression differences of immune cell infiltration in risk subgroups. (B) Correlation between
7 ARGs, risk scores, and the immune cells. (C)Correlation between these immune cells. (D)Other characteristics including estimate score, immune score,
and stromal score between the high- and low-risk groups. (E) Differential risk score comparison in the two ARGs patterns. (F) Sankey diagram of the
relationship between two ARGs patterns, survival status, and risk scores. *p < 0.05, **p < 0.01 and ***p < 0.001.
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(Wattanathamsan et al., 2019; Yang et al., 2021). Several studies have
focused on examining cell death mechanisms to overcome drug
resistance. A previous review reported that dysregulation of ULK1-
mediated autophagy plays a crucial role in drug resistance (Liu et al.,
2020). Ferroptosis induces tumor cell death through lipid
peroxidation mechanistically and via shrunken cell mitochondria
morphologically (Dixon et al., 2012).

Our research focused on anoikis in LUAD, which is one of
the programmed cell death. We hypothesized that ARGs act on
lung tumor cells in a similar way as ferroptosis-related or
cuproptosis-related genes identified in previous research
(Tian et al., 2021; Zhang et al., 2022). 58 ARGs were
identified for the establishment of anoikis-related risk model
and the ARGs clustering analysis. The feasibility of the model
based on seven ARGs was verified using a variety of analytical
methods. And it implied that ANGPTL4, CDX2, ITGB4,
KRT14, RAC3, and KIF18A were potential therapeutic
targets for LUAD. Regarding drug resistance, the anoikis-
related risk model analyzed hundreds of anticancer
medicines to compare drug responses in the risk subgroups
and provide treatment strategies for LUAD. Both training ang
testing groups demonstrated that patients prognosis could be

accurately predicted by anoikis-related model. Subsequently,
the correlations between the immune cells and risk scores, risk
subgroups and seven ARGs were taken into consideration.
Patients with increasing M0 macrophages were linked with
graver prognosis (Liu et al., 2017; Yi et al., 2021), and the
linear relation between risk scores and M0 macrophages in
our research also consisted with the previous study.
Conversely, memory B cells had a negative relation with risk
scores. It was reported that memory B cells was the foundation
for having lasting immunity (Fan et al., 2021) and it was closely
associated to superior survival (Zhang et al., 2019). We also
found immune score and stromal score were both higher in low-
risk group, implying that TME scores may exhibit a distinct
prognostic value in LUAD (Wu et al., 2021).

We analyzed immune microenvironment, KEGG analysis
and prognosis to explore two distinct ARGs patterns. Patients
with poor prognosis in cluster A were notably more than cluster
B. In addition, increased number of activated CD4 T cells,
CD56 bright natural killer cell, CD56 dim natural killer cell,
gamma delta T cell, natural killer T cell, regulatory T cell, type 2 T
helper cell in cluster A was associated with poor prognosis in
LUAD. KEGG analyses showed that genes were mainly involved

FIGURE 8
Drug sensitivity analysis in low-risk and high-risk sets. We listed 5 kinds of anticancer drugs, including axitinib (A), nibtinib (B), sorafenib (C), erlotinib
(D) and gefitinib (E), with blue boxplots represented low-risk group and red expressed high-risk group. Erlotinib and gefitinib which were common
targeted drugs to LUAD were not a better choice for patients with high-risk scores. The significance criteria were set as p-value < 0.05.

Frontiers in Cell and Developmental Biology frontiersin.org12

Zhou and Hu 10.3389/fcell.2023.1125782

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1125782


in arachidonic acid metabolism, cell cycle, DNA replication,
oocyte meiosis and P53 signaling pathway, confirming
differences in immune factor abundance and immune activity
between the two groups. Moreover, a high inhibition of
arachidonic acid metabolism and activation of cell cycle, DNA

replication, oocyte meiosis and P53 signaling pathway may lead
to poor prognosis in LUAD.

We performed the single-cell analysis to seek the cell types
that express the model ARGs. The expression level of KRT14 in
various cell types, including immune cells, malignant cells,

FIGURE 9
Seven ARGs analyses based on single-cell RNA sequencing data. (A) Annotation of cell types in GSE131907. Proportion of each cell type in the dataset
(B) and in each patient (C). (D–J) Expression of ANGPTL4, CDX2, COL13A1, ITGB4, KIF18A, KRT14, and RAC3. (K) Expression of KRT14 in pan-cancer.
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stromal cells, and functional cells, was explored. It depicted
that KRT14 was mainly overexpressed in malignant cells and
immune cells (especially epithelial cells, CD8 T cells,
endothelial cells, monocyte/macrophage). Several studies
have reported that high KRT14 expression can cause poor
prognosis in cancers. KRT14 associated with TRAIL and
TNF receptor signaling pathway led to a worse prognosis in
LUSC (Dong et al., 2020) and KRT14 following the
upregulation of Gkn1 could inhibit anoikis and contribute
to lung nodal metastasis and poor survival (Yao et al.,
2019). In breast cancer, KRT14+ epithelial tumor cell
clusters promoted to distant organs metastases (Cheung
et al., 2016). The underlying correlation between KRT14 and
pan-cancer needs to be analyzed further.

The present results are theoretical results based on
bioinformatics. Because this is a novel topic, information
about the ARGs identified, including CNV annotation,
mechanistic studies, and confirmation via in vivo and
in vitro experiments require further study. Cell line
experiments, preclinical research, and clinical trials are
needed to further detect the expression and mechanism of
these ARGs.

Conclusion

This study combines bioinformatics research with ARGs to construct
a risk model as a prognostic index for application in clinical practice. The
feasibility of the anoikis-relatedmodelwill be validated through additional
clinical trials. We expect that further literature will be published to
uncover the essential mechanisms underlying the function of ARGs in
tumor cells and to identify new anoikis-related tumor therapies.
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