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Cartilage organoids have emerged as powerful modelling technology for
recapitulation of joint embryonic events, and cartilage regeneration, as well as
pathophysiology of cartilage-associated diseases. Recent breakthroughs have
uncovered “mini-joint” models comprising of multicellular components and
extracellular matrices of joint cartilage for development of novel disease-
modifying strategies for personalized therapeutics of cartilage-associated
diseases. Here, we hypothesized that LGR5-expressing embryonic joint
chondroprogenitor cells are ideal stem cells for the generation of cartilage
organoids as “mini-joints” ex vivo “in a dish” for embryonic joint development,
cartilage repair, and cartilage-associated disease modelling as essential research
models of drug screening for further personalized regenerative therapy. The pilot
research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells
are promising for generation of cartilage organoids through gel embedding method,
which may exert various preclinical and clinical applications for realization of
personalized regenerative therapy in the future.
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1 Introduction

Cartilage remains among the most difficult tissues to regenerate, and integration of an
implant with the surrounding tissue is also a major challenge in cartilage regeneration (Huey
et al., 2012; Trengove et al., 2022). Regeneration of calcified cartilage regions is also a critical
issue for stable and functional integration to subchondral bone besides cartilage–cartilage
integration in the field of regenerative medicine and tissue engineering.

Organoids are self-assembling three-dimensional tissues containing multiple types of
cell clusters that generated from pluripotent stem cells or adult stem cells, providing a
powerful tool for developmental biology and disease modeling of various tissue and organ
systems in vitro (Dutta et al, 2017; Hu et al, 2018). Originally, organoid technology mainly
comprises of gel encapsulation method that developed by Hans Clevers lab, and air-liquid
interface method developed by Calvin J. Kuo lab. To date, organoids have been successfully
established from adult stem cells of multiple healthy and diseased tissues and organs,
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including stomach (Engevik et al., 2019; Murakami et al., 2021),
colon (d’Aldebert et al., 2020), intestine (Gjorevski et al., 2016;
Hirota et al., 2021), lung (Miller et al., 2019; Lim et al., 2023), liver
(Vyas et al., 2018), kidney (Takasato et al., 2016; Yuan et al. 2022),
pancreas (Broutier et al., 2016), ovary (Kopper et al., 2019), brain
(Luo and Li, 2021; Luo et al., 2022), and prostate (Huang et al.,
2021) ex vivo.

2 Advancements of cartilage organoids

The development of cartilage organoid technology as useful modelling
tools and robust research platforms enables the definition and disease
modelling of cartilage-tissue structures ex vivo to facilitate drug screening
through identification of key signaling pathways, and recapitulation of
developmental events during joint embryogenesis and cartilage
regeneration, dynamics of stem cell chondrogenic differentiation, and
aging-induced degenerative joint diseases “in a dish” (Clevers, 2016;
Lacko and Chen, 2019; O’Connor et al., 2021; Rothbauer et al., 2021;
Sun et al., 2021). In the early 1990s, C. Schröter-Kermani and his colleagues
successfully established an ex vivo model of a prolonged, but almost
identical of chondrogenesis events in vivo prior to endochondral
mineralization, providing a useful tool for investigations on cartilage
differentiation, maturation, and degeneration (Schroter-Kermani et al.,
1991). Further research by Irie, Yutaka, et al. developed sheet-shaped

organoids (organoid-sheet) of cartilage-like tissues, in which cells formed
multicellular aggregates (organoids), through an effective cartilage-
formation method (Irie et al., 2008). Cell clusters called spheroids exert
promising therapeutic potential for cartilage tissue engineering research as
building blocks (Baptista et al., 2018; Kronemberger et al., 2020).
Intriguingly, recent breakthroughs have uncovered “mini-joint” models
comprising of multicellular components and extracellular matrices of joint
cartilage for potential realization of novel disease-modifying strategies for
personalized therapeutics of cartilage-associated diseases (Delplace et al.,
2021; Abraham et al., 2022). A recent striking study has developed a novel
differentiation protocol that generated self-organizing craniofacial cartilage
organoids from human embryonic stem cells via a neural crest cell
intermediate (Foltz et al., 2021).

Cartilage organoids are specific three-dimensional and functional
cartilage-like tissues through self-assembled reconstruction of
chondrocytes or chondroprogenitor cells (Irie et al., 2008; Schon et al.,
2017; Gryadunova et al., 2021), which is of essential clinical significance for
tremendous translational applications to repair various cartilaginous
structures throughout the body, as well as organoid biobanking, disease
modeling, drug toxicity testing, personalized regenerative therapy,
host–microbe interaction studies, and omics analysis (including
transcriptomics, proteomics, epigenomics, and metabolomics) (Dutta
et al., 2017). Cartilage organoids have been successfully generated both
from induced pluripotent stem cells or mesenchymal stem cells (Li Z. et al,
2022). Cartilage organoid formation and their assembly into neo-hyaline-

TABLE 1 Advancements of cartilage organoid research.

References Cell source Experimental model Therapeutic outcome and
mechanisms

Zimmermann et al
(1990)

Embryonic mouse limb bud mesenchymal
cells

Organoid culture and co-cultures ex vivo Osteoblastic cells induce endochondral
mineralization, whereas fibroblast-like cells inhibit
this mineralization via soluble factors

Leijten et al (2016) Human periosteum derived stem cells
(hPDCs)

Subcutaneous implantation in nude mice Integration of microenvironment of cellular
condensation into biomaterials by encapsulating
microaggregates of a hundred hPDCs induced
decreased stemness-related markers and
upregulation of chondrogenic genes and
improved cartilage tissue formation in vivo

Nilsson Hall et al
(2020)

Human-periosteum-derived cells Critical-sized long bone defect in
immunodeficient mice

The assembly of multiple callus organoids into an
easy-to-handle scaffold-free implant resulted in full
bridging of bone defects by the formation of
cortical-like bone tissue with a medullary cavity
containing bone marrow with the absence of fibrous
tissue

Crispim and Ito, (2021) Nucleus pulposus tissue-derived chondrocytes A 3D suspension culture system of organoid ex
vivo

In vitro neocartilage production via chondrocyte
expansion, organoid formation, and their assembly
into neohyaline-cartilage

Tam et al (2021) Human pluripotent stem cells Critical size long bone defects in
immunocompromised mice

IL-1β accelerates bone healing by potentially
increasing cartilage matrix degradation through
MMP13

Hall et al (2021) Human iPSC-derived chondrocytes/cartilage
microtissues

Subcutaneous implantation in nude mice Assembled iPSC-derived cartilage microtissues in
combination with the pre-hypertrophic
cartilage organoids (IHH, COLX) could form dual
tissues consisting of i) a cartilaginous safranin O
positive and ii) a bony osteocalcin positive region
upon subcutaneous implantation

Li et al (2021) Human induced pluripotent stem cells
(hiPSC)

G-Rex 100 bioreactor culturing in vitro Long-term culture of hiPSC-derived multi-tissue
organoids (MTOs) results in the spontaneous
emergence of mesoderm-derived articular
cartilaginous tissues and MTOs cartilage resembles
fetal limb bud and growth plate chondrocytes
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cartilage have paved a new way for large scale cartilage regeneration such as
for entire joint surfaces (Crispim and Ito, 2021). And the development of
cartilaginous organoids has been applied to diverse implications in
preclinical research during recent years (Table 1).

Hyaline cartilages, fibrocartilages and elastic cartilages play
multiple roles throughout human body including bearing loads in
articular joints and intervertebral discs, providing joint lubrication,
forming the external ears and nose, supporting the trachea, and
forming the long bones during development and growth.
Challenges associated with cartilage diseases include poor
understanding of the etiology and pathogenesis and diagnostics due
to the aneural and avascular nature of adult cartilages, and very limited
chondroprogenitor cells within adult joint cartilage.(Krishnan and
Grodzinsky, 2018; Bielajew et al., 2020; Liao et al., 2021; Lin et al.,
2022). Age is a main risk factor for the development of rheumatoid

arthritis, which is associated with accelerated immune aging and
dysfunction of aging stem cells (Weyand and Goronzy, 2004;
Goronzy et al., 2013; Weyand et al., 2014). Generally, joint
cartilage usually degenerates spontaneously in elderly mammalians
(Figure 1). As mitochondrial dysfunctions and age-associated systemic
chronic inflammation (also termed as “inflamm-aging”) have been
demonstrated linked to the development of diverse aging-associated
degenerative diseases (Franceschi and Campisi, 2014; Laforge et al.,
2016; Sanada et al., 2018; Josephson et al., 2019; Shin et al., 2022). To
further decipher dynamic alterations of cellular and mitochondrial
behaviors and structures (Tran-Khanh et al., 2005; Labbe et al., 2014;
Guilak et al., 2018; Akatsu et al., 2019), and key signaling pathways
involved in the interplay between mitochondrial remodeling and
“inflamm-aging” may further advance the understanding of the
pathophysiology of aging-associated cartilage degeneration.

FIGURE 1
Representative images of Safranin O staining of articular cartilage of joints from embryos (E17.5), adult (12-week-old) and aging (96-week-old) mice.
Scale bars = 200 μm.

FIGURE 2
Representative images of bright-field and fluorescence of LGR5+-embryonic joint progenitors-based cartilage organoids formation. Scale bars = 100 µm.
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3 Involvements of GPCRS in joint
embryogenesis and cartilage
pathophysiology

Leucine-rich repeat-containing G protein-coupled receptors 4–6
(LGR4–LGR6) are receptors for R-spondins, potent Wnt agonists that
exert profound trophic effects on Wnt-driven stem cells compartments.
The crystal structure of LGR5 has been discovered (Peng et al., 2013).

Notably, increasing evidence has demonstrated critical
involvements of GPCRs during development and tissue

homeostasis and regeneration in various tissue and organ
systems (Luo et al., 2009; Cui et al., 2014; Feng et al., 2019;
Montgomery et al., 2019; d’Aldebert et al., 2020; Lee et al.,
2021; Li et al., 2022; Khedgikar et al., 2022). Crucial
involvements of GPCRs, such as LGR5, in both embryonic joint
development (Feng et al., 2019), and postnatal joint development
in juvenile mammals (Zhou et al., 2018), as well as progression of
arthritis development (Li R. et al, 2022), have been identified,
suggesting targeted modulation of GPCRs on cartilage as potential
novel therapeutics for arthritis management.

FIGURE 3
(A) General features of three-dimensional cartilage organoids ‘in a dish’. Cells embedded within gels concentrated with various gradients or soluble
growth factors are able to adhere to extracellular matrix (ECM), spread and grow with cell-cell interactions in 3-dimensional space. (B)Diverse applications of
cartilage organoids for preclinical research and clinical transformation of personalized medicine. Cartilage organoid-based implications mainly include cell
therapy through multiple functional cell clusters, drug development, genetic engineering, biobanking, genomic analysis, pathogen analysis,
metabolomic analysis, and basic preclinical research.

FIGURE 4
Establishment of cartilage organoid cell atlas through RNA sequencing-based drug discovery and single cell multi-omics analysis. Targeted organoid
sequencing through a high-throughput, high-content drug discovery platform targeting RNA-seq to monitor the expression of large gene signatures for the
detailed evaluation of cellular phenotypes in cartilage organoids generated from pluripotent or adult stem cells.
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Interestingly, a recent breakthrough by Rothbauer, M. et al.
has successfully established microfluidic joint-on-a-chip
organoid system to investigate reciprocal cross-talk between
individual synovial and chondral organoids on tissue-level
for modelling of arthritic diseases (Rothbauer et al., 2021).
And our ongoing research suggest that LGR5-GFP+ embryonic
joint progenitors embedded within hydrogels enable the
generation of organoid-structures under appropriate culture
conditions with expression of LGR5-GFP signal (Figure 2),
suggesting that LGR5-expressing joint chondroprogenitor cells
are potential ideal cells for cartilage-like organoids formation,
disease modelling for cartilage-associated diseases, drug
screening and cartilage regeneration for realization of
personalized medicine.

4 Conclusions and future perspectives

Organoids have been firmly established as a robust platform to
investigate organ development, normal and pathological processes,
and drug screening in both basic preclinical science and
translational research, to overcome the limitations associated
with animal models (Singh et al., 2021). Optimization of
superior cell source, and ex vivo culture conditions for
phenotypic control of cartilage organoids after transplantation
deserve further exploitation. Integrated with advanced
technologies (such as 3D bioprinting, bio-assembly, and organ-
on-chip-based models, and comprehensive in-depth organoid

single-cell genomic atlas mapping through high-spatial-
resolution multi-omics sequencing), cartilage organoid models
may provide novel molecular, spatial, and temporal insights of
embryonic joint development, and (patho)-physiology of cartilage-
associated diseases for boosting the development of personalized
regenerative therapy for treating cartilage-associated diseases (Liu
et al., 2020; Singh et al., 2021). Cartilage organoids-based research
on basic preclinical study and clinical transformation of
personalized regenerative therapy will put forward a new era of
regeneration medicine (Figure 3). Cartilage organoids provide an
ideal platform for mechanistic biology at scale for establishment of
cartilage organoid cell atlas through high-throughput drug
screening or tissue-on-a-chip systems with molecular and
phenotypic readout, and single cell multi-omics analysis
(Figure 4; Figure 5). Collaborations among bioengineers,
pharmacologists, clinicians, and developmental biologists,
integrated with cutting-edge technologies and multi-disciplinary
platforms, may accelerate the pace of discovery and precision of
future clinical translation based on preclinical models of cartilage
organoids (Li and Izpisua Belmonte, 2019; Xinaris, 2019; Berishvili
et al., 2021; Bhamidipati and Wei, 2022).

Data availability statement

The original contributions presented in the study are included in
the article/supplementary files, further inquiries can be directed to the
corresponding authors.

FIGURE 5
LGR5-joint progenitors-based cartilage organoids for realization of novel drug discovery (identification of novel cytokines, small molecules, and natural
compounds), and personalized regenerative therapy of cartilage repair.
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