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All cells employ signal transduction pathways to respond to physiologically
relevant extracellular cytokines, stressors, nutrient levels, hormones,
morphogens, and other stimuli that vary in concentration and rate in healthy
and diseased states. A central unsolved fundamental question in cell signaling is
whether and how cells sense and integrate information conveyed by changes in
the rate of extracellular stimuli concentrations, in addition to the absolute
difference in concentration. We propose that different environmental changes
over time influence cell behavior in addition to different signaling molecules or
different genetic backgrounds. However, most current biomedical research
focuses on acute environmental changes and does not consider how cells
respond to environments that change slowly over time. As an example of such
environmental change, we review cell sensitivity to environmental rate changes,
including the novel mechanism of rate threshold. A rate threshold is defined as a
threshold in the rate of change in the environment in which a rate value below the
threshold does not activate signaling and a rate value above the threshold leads to
signal activation. We reviewed p38/Hog1 osmotic stress signaling in yeast,
chemotaxis and stress response in bacteria, cyclic adenosine monophosphate
signaling in Amoebae, growth factors signaling in mammalian cells, morphogen
dynamics during development, temporal dynamics of glucose and insulin
signaling, and spatio-temproral stressors in the kidney. These reviewed
examples from the literature indicate that rate thresholds are widespread and
an underappreciated fundamental property of cell signaling. Finally, by studying
cells in non-linear environments, we outline future directions to understand cell
physiology better in normal and pathophysiological conditions.
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1 Introduction

All living cells sense and respond to environmental changes (Lim et al., 2014; Alberts et al.,
2015; Murugan et al., 2021). Concentrations of physiologically relevant external stimuli such as
nutrients, chemoattractants, cytokines, hormones, growth factors, morphogens, and
environmental stressors (Table 1) change in diverse patterns that include variations in the
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intensity, duration, time between sequential stimulations, rate of
change, non-linearity, and combinations of different dynamics
(Figure 1; Table 2). As a result, cell responses can change as a
function of different gradual and acute environments. Despite these
facts, most ongoing biological research measures responses to a limited
number of instantaneously changing environments (dose-response
curve) in cell populations (Figure 1A) (Lim et al., 2014; Alberts
et al., 2015). These studies often use normal or mutant cells to
understand how genetic differences or disease impact signaling
response and cell phenotype. In Figure 2, we conceptually illustrate
the phenotype relationship between stimulus molecules (red axis),
genetic backgrounds (blue axis), and dynamic change of the
stimulus molecule (green axis). The stimulus molecules axis
represents any molecule or molecule combinations that can activate
or repress a process in a cell, causing a phenotypic change. This axis
includes all drugs and their combination that can impact the cell. This
number is infinite, given the various molecules and drugs. The genetic
background axis represents any genetic change affecting cell behavior
and phenotype. It is also easy to assume that unique genetic
constellations are infinite. The third axis presents the different
dynamic changes of the stimulus molecule with which any given
stimulus molecule can change over time for any given genetic
background (Figure 1B–F). However, most biomedical laboratory
research uses a finite set of acute changes in the stimulus molecule
concentrations (Figure 1A). A typical example of such a study is the
classical dose-response experiment that may use a dozen different
concentrations (Figure 2, black circle).

In contrast, cells of any organism or in any natural environment
experience a wide variety of gradual changes in external stimuli.
Current treatments and therapies are based on observed phenotypes
(purple plane) and current disease models (grey star) in such acute
treatments, potentially missing or misinterpreting the response of a
cell to the stimulus under physiological conditions. For example, if
one uses a dozen concentrations from the previously mentioned
dose-response experiment and alters the concentration acutely every
1 min for 30 min, then there are 1230 = 2.3 * 1032 unique
combinations possible. This simple example demonstrates the
possible infinite space of modulating the environment of cells in
a non-acute manner. This new dimension of dynamic changes of the
stimulus molecule may dramatically expand our phenotypic space
currently not explored in the laboratory (white star). Including this
critical dimension will allow us to observe physiologically relevant
phenotypes in different dynamic phenotypes (yellow plane) and
under different genetic backgrounds (cyan plane). By designing
experiments that consider this new dimension of dynamic
changes of the stimulus molecule, we expect to better
characterize the accurate and relevant biomedical phenotype
(white star) compared to current disease models (grey star) that
do not fully consider this new dynamic dimension. As an example of
the latest insights gained from dynamic temporal environments, we
will focus on the newly discovered concept of a rate threshold.
Similar to a concentration threshold, where a concentration above a
certain value activates signaling, a rate threshold is a value in the rate
of change in the environment that needs to be crossed to activate

TABLE 1 Environment type that changes over time.

Environment type Citations

Nutrients Block et al. (1983), Segall et al. (1986), Tu et al. (2008), Shimizu et al. (2010)

Chemoattractants Wang et al. (2012), Chang and Levchenko (2013), Sgro et al. (2015)

Cytokines Luecke et al. (2021), Meizlish et al. (2021)

Hormones Bratusch-Marrain et al. (1986), Polonsky et al. (1988), Fernandez and Torres-Alemán (2012), Kubota et al. (2012), Kubota et al. (2018),
Noguchi et al. (2013), Sano et al. (2016)

Growth factors Sasagawa et al. (2005), Fujita et al. (2010), Ji et al. (2010), Avraham and Yarden (2011), Fernandez and Torres-Alemán (2012), Sorre et al.
(2014)

Morphogens Wang et al. (2012), Sorre et al. (2014), Dubrulle et al. (2015), Sagner and Briscoe (2017), Tewary et al. (2017); Hill (2018), Heemskerk et al.
(2019), Li and Elowitz (2019), Mateus et al. (2020), Hashmi et al. (2022)

Environmental stressors Neuhofer and Beck (2005), Muzzey et al. (2009), Pelet et al. (2011), Young et al. (2013), Carlström et al. (2015), Nguyen-Huu et al. (2015),
Goulev et al. (2017), Granados et al. (2017), Firsov and Bonny (2018), Thiemicke et al. (2019), Jashnsaz et al. (2020), Jashnsaz et al. (2021),
Johnson et al. (2021), Thiemicke and Neuert (2021)

TABLE 2 Different dynamics of the same environment.

Environment dynamics Citation

Intensity Hersen et al. (2008), Mettetal et al. (2008), Macia et al. (2009), Muzzey et al. (2009), Pelet et al. (2011), Neuert et al. (2013),
Granados et al. (2017), Jashnsaz et al. (2020)

Rate of change Block et al. (1983), Sasagawa et al. (2005), Muzzey et al. (2009), Fujita et al. (2010), Shimizu et al. (2010), Pelet et al. (2011), Kubota
et al. (2012), Kubota et al. (2018), Wang et al. (2012), Young et al. (2013), Sorre et al. (2014), Sgro et al. (2015), Heemskerk et al.
(2019), Thiemicke et al. (2019), Johnson et al. (2021), Thiemicke and Neuert (2021)

Duration Hersen et al. (2008), Mettetal et al. (2008), Mitchell et al. (2015), Gunne-Braden et al. (2020)

The time between sequential stimulations Hersen et al. (2008), Mettetal et al. (2008), Mitchell et al. (2015), Rahi et al. (2017), Jashnsaz et al. (2020), Johnson et al. (2021)

Combinations of environment dynamics Bandara et al. (2009), Wang et al. (2012), Sgro et al. (2015), Jashnsaz et al. (2020), Jashnsaz et al. (2021), Johnson et al. (2021)
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signaling. We argue that a rate threshold is a novel and
phenotypically important mechanism in cell signaling that is
relevant in gradual and non-acute changing environments. In
this review, we will focus on pathways that respond to gradual
environmental changes and describe different examples from the
literature to illustrate the importance of non-acute and gradually
changing environments from bacteria to humans. We will start with
a yeast Mitogen-Activated Protein Kinase (MAPK) pathways rate
sensitivity and rate threshold as a paradigm for all the remaining
pathways.

2 Concentration and rate thresholds
regulate yeast stress response

The high osmolarity glycerol (HOG) MAPK pathway in the
budding yeast Saccharomyces cerevisiae (Figure 3A) is an ideal
model system (Brewster et al., 1993; Saito and Posas, 2012;
Brewster and Gustin, 2014) for addressing the question how do
rate sensitivity and rate thresholds impact cell signaling and
phenotype (Thiemicke et al., 2019; Jashnsaz et al., 2020; Johnson
et al., 2021). At the molecular level, pioneering studies found that
one signaling branch is activated through the Synthetic Lethal of
N-end rule (Sln1) osmosensing histidine protein kinase leading to
activation of theMAPKKK’s Suppressor of Sensor Kinase (Ssk2) and
its paralog Ssk22 and converging on the MAPKK Polymyxin B
Sensitivity (Pbs2) kinase through several intermediate proteins.
Another signaling branch is activated through the Synthetic,
High Osmolarity-sensitive (Sho1) signaling protein osmosensor
that activates the STErile Signal transducing MEK kinase
(STE11) converging on Pbs2 (Maeda et al., 1994; Posas et al.,
1996; Posas and Saito, 1997; Macia et al., 2009; Saito and Posas,
2012). Activated Pbs2 then dually phosphorylates the evolutionarily
conserved MAPK Hog1 on threonine residue 174 (T174) and

FIGURE 2
Environmental dynamic of the stimulus molecule as a new
dimension in biomedical research. Phenotype relationship between
stimulus molecules or drugs (red axis), genetic background (blue axis),
and environmental dynamics (green axis). Each combination of
these three axis can define a unique phenotype. Because current
environmental dynamics often only consider dose-response
experiments using acute environmental changes, the green axis
effectively projects onto the purple plane that describes most
observed present phenotypes, diseasemodels, and treatment regimes
(gray star). Environmental dynamics add variety to the types of
environmental changes investigated (green arrow) and increase the
dimensionality of biological knowledge to new dynamic phenotypes
(yellow plane) and new genetic phenotypes (cyan plane), thereby
providing a more accurate picture of physiologically relevant biology
and biomedicine (white star).

FIGURE 1
Different environmental dynamics in biology and laboratory research. (A) In a dose-response experiment, the intensity of a stimulus changes acutely.
(B)Duration of stimulus changes. (C) Frequency of stimulus changes. (D) Rate of the stimulus changes. (E)Non-linearity of the stimulus changes. (F) Each
of these stimulus patterns can be combined to generate infinite numbers of environmental dynamics.
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tyrosine residue 176 (Y176) (Saito and Posas, 2012). This dual
phosphorylation is required for Hog1 nuclear import (Figures
3A, B) (Ferrigno et al., 1998; Westfall and Thorner, 2006). Once
in the nucleus, the activated Hog1 regulates the expression of several
hundred stress response genes (Gasch et al., 2000; Rep et al., 2000;

Capaldi et al., 2008; Pelet et al., 2011; Neuert et al., 2013; Nadal-
Ribelles et al., 2014). Hog1 can be inactivated by the
phosphotyrosine-specific phosphatases Ptp2 and Ptp3 and the
type 2C protein phosphatases (PP2C) Ptc1, Ptc2, and Ptc3
(Jacoby et al., 1997; Wurgler-Murphy et al., 1997; Mattison and

FIGURE 3
Rate threshold encoding in the yeast HOG pathway. (A) Components of the High Osmolarity Glycerol MAPK pathway. (B) Non-acute treatments
such as linear and quadratic osmolyte gradients discovered a rate threshold with a concentration threshold regulating Hog1 MAPK through an AND logic.
(C) Different osmolyte concentration profiles as a function of time. (D) Rate changes for these concentration changes. (E) Hog1 signaling activation
depends on the cell environmental dynamics and pathway mutants. For a linear concentration increase with a rate above the rate threshold (sand
line), signal activation increases after a concentration threshold is met (sand arrow). For a quadratic concentration increase (magenta line) resulting in a
linear increase in the rate, the concentration threshold ismet earlier than the rate threshold (magenta arrow), andHog1 gets activated (magenta solid line).
Phosphatase deletion removed the rate threshold (magenta dashed line). Overexpression of the phosphatase increases the rate threshold (magenta
dotted line). (F) A stress-resistant assay shows increase survival of acute (cyan bar) and fast (yellow bar) but not slow (magenta bar) stressed cells. (G)
Deletion of phosphatasemakes cells resistant to rate changes. (H)Overexpression of phosphatase makes cells hyper-sensitive to rate changes but not to
acute changes. Adapted from (Johnson et al., 2021).
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Ota, 2000; Warmka et al., 2001; Young et al., 2002; Mapes and Ota,
2004; Saito and Posas, 2012). Among these phosphatases, only
Ptc1 uses an adaptor protein (the Nap binding protein Nbp2) to
transiently interact with Pbs2 (Mapes and Ota, 2004; Stanger et al.,
2012). The multiple and presumably redundant MAPK
phosphatases dephosphorylate and inactivate Hog1, which, along
with the termination of upstream signaling after adaptation, results
in its return to the cytosol. This knowledge of the Hog1 pathway was
established through acute osmotic stress concentration increases
that induce Hog1 phosphorylation, activation, and translocation to
the nucleus (Figures 3A, B) (Brewster et al., 1993; Ferrigno et al.,
1998; Reiser et al., 1999; Hersen et al., 2008; Macia et al., 2009;
Muzzey et al., 2009; Pelet et al., 2011; Saito and Posas, 2012; English
et al., 2015; Mitchell et al., 2015; Granados et al., 2017). Activated
Hog1 controls the regulation of cellular osmoadaptation and
survival (Saito and Posas, 2012; Mitchell et al., 2015; Johnson
et al., 2021). Because of this behavior of Hog1 nuclear
enrichment, single-cell time-lapse microscopy and analysis have
proven an excellent and sensitive way to monitor signaling
responses to dynamic stimulation patterns in real-time (Figure 3)
(Hersen et al., 2008; Mettetal et al., 2008; Muzzey et al., 2009;
Patterson et al., 2010; Munsky et al., 2012; Mitchell et al., 2015;
Granados et al., 2017; Thiemicke et al., 2019; Jashnsaz et al., 2021;
Johnson et al., 2021). This single-cell analysis of Hog1 nuclear
localization response to instant osmotic stress resulted in the
discovery of perfect adaptation in this pathway (Figures 3C–E)
(Hersen et al., 2008; Mettetal et al., 2008; Muzzey et al., 2009).
Perfect adaptation means that the pre and post-stimulus signal is
identical. Because of adaptation, the Hog1 pathway is sensitive to the
concentration and rate of external stimulus. Pioneering studies then
used increasing linear gradients of osmolytes to test the adaptation
model (Figures 3C–E) (Muzzey et al., 2009). The proposed network
motif to achieve perfect adaptation in this pathway is the integral
feedback loop (Stelling et al., 2004) by which the cell integrates up
internal glycerol and computes the pressure difference between
outside and inside the cell (Mettetal et al., 2008; Muzzey et al.,
2009). Almost a decade later, several osmolyte rates were used to
dissect the contribution of the different upstream Hog1 signaling
branches showing how each branch has a slightly different rate
dependence in regulating Hog1 nuclear enrichment (Granados et al.,
2017). However, neither of these studies considered how these
different osmolyte gradients regulate growth or survival
phenotypes. Another study using square waves of osmolytes of
different duration showed that fast and slow fluctuating osmolyte
environments do not alter yeast doubling time. However,
fluctuations with intermediate durations resulted in a fourfold
reduction in yeast growth rate, showing that environmental
fluctuations have phenotypic consequences (Mitchell et al., 2015).
Several labs developed novel cell culture assays to expose cells to
non-acute environmental changes, followed by quantitative
experiments to investigate molecular mechanisms in non-acute
environmental conditions (Figures 3C, D) (Block et al., 1983;
Muzzey et al., 2009; Fujita et al., 2010; Shimizu et al., 2010; Pelet
et al., 2011; Kubota et al., 2012; 2018; Wang et al., 2012; Noguchi
et al., 2013; Sgro et al., 2015; Mokashi et al., 2019; Thiemicke et al.,
2019; Krause et al., 2021). The novel experimental setup developed
by Thiemicke et al. recently investigated howHog1 signaling and cell
viability are impacted by different rates of osmolyte gradients

(Figures 3C–H) (Johnson et al., 2021). In Figure 3C, the authors
applied acute (cyan line), linear (sand line), and quadratic (magenta
line) concentration changes with the same final concentration and
duration to yeast cells. These concentration changes result in no rate
changes for acute stresses (cyan line), a constant rate change for a
linear concentration increase (sand line), or a linear rate increase for
a quadratic concentration increase (magenta line) (Figure 3D). As a
result of these concentration profiles (Figure 3E), Hog1 signal
activation adapted perfectly upon acute concentration changes
(cyan line). Upon a linear stress increase, Hog1 activates with a
delay after reaching a concentration threshold (sand arrow) followed
by constant signal amplitude (sand line). Interestingly, exposing
yeast cells to a quadratic stress increase resulted in a longer delay in
Hog1 activation due to a threshold in the rate (magenta line and
arrow). Only after a threshold rate was reached did the
Hog1 signaling increase linearly. In detailed experiments, they
showed that Hog1 nuclear localization depends on an osmolyte
concentration and a rate threshold. Additional experiments showed
that the Hog1 pathway uses an AND logic to integrate the previously
determined concentration threshold (Macia et al., 2009) and the rate
threshold. Both thresholds are required to activate Hog1 nuclear
localization. Figure 3B shows how different stress treatment
dynamics can probe one or the other threshold. The authors
then used different linear osmolyte gradients to the same final
and total osmolyte concentration below and above the threshold
rate, followed by a second severe stress. Using a colony formation
assay, they found that cells treated with a pulse or a linear osmolyte
gradient above the threshold rate survive ten times better than
untreated cells (Figure 3F). However, cells treated with a linear
increasing osmolyte gradient below the rate threshold survived only
five times better than untreated cells, demonstrating that the rate of
the gradient determines cell survival. In these experiments, the dose
defined as the integrated NaCl exposure is identical between the
different experiments, but the viability phenotype is different. They
then investigated the molecular basis of this rate threshold by
performing a targeted genetic knockout screen and identified the
phosphatase Ptp2 but not the seemingly redundant Ptp3 as a rate
threshold regulator leading to earlier activation of Hog1 nuclear
localization only dependent on the threshold concentration
(Figure 3E, dashed magenta line). The knockout of Ptp2 was
then rescued by varying the expression level of Ptp2, showing
that the threshold rate is proportional to the expression level of
Ptp2 (dotted magenta line). Subsequent colony formation
experiments showed that the deletion of Ptp2 made cells
resistant to osmolyte gradients (Figure 3G). In contrast,
overexpression of Ptp2 made cells hypersensitive to osmolyte
gradients but not to acute osmolyte changes (Figure 3H). These
results demonstrate that gradient environmental changes
regulate cellular phenotypes. Yeast cells use a novel rate
threshold mechanism to differentiate between different rates
of stimulus increase. Moreover, “redundant phosphatases”
have specific non-redundant functions only detectable in non-
acute environmental conditions. We speculate that a possible
network motives that could give rise to such a rate threshold in an
adapting system is a combination of a Hill function with a
negative feedback loop or with an incoherent feed forward
loop (Milo et al., 2002; Ma et al., 2009; Rahi et al., 2017). In
the context of signal transduction, a Hill function describes the
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relationship between the concentration of a ligand and the non-
linear activation of a downstream signaling protein. A negative
feedback loop is the regulation of an upstream signaling protein
through a downstream signaling protein. An incoherent feed
forward loop has the property to activate both a target signaling
protein and an inhibitor of that proteins, which then inhibits the
target signaling protein. This study hypothesized that the novel
rate threshold mechanism in cell signaling might be prevalent in
other pathways and organisms, which is the focus of this review

article. We next describe how rate sensitivity and thresholds are
prevalent in bacterial chemotaxis.

3 E. coli chemotaxis nutrient sensing

Chemotaxis is a process that allows bacteria to sense nutrients in their
surrounding by randomly sampling their environments and then
measuring the nutrient concentration over time (Figure 4A) (Adler
and Alon, 2018; Tu and Rappel, 2018). Although chemotaxis in
bacteria is molecularly well understood (Waite et al., 2018; Karmakar,
2021), the physiological relevance leaves many open questions (Colin
et al., 2021; Keegstra et al., 2022). The core signal transduction pathway
responsive to chemotaxis in E. coli is reviewed in detail by (Waite et al.,
2018; Karmakar, 2021). Here we briefly summarize the chemotaxis
pathway that consists of a membrane-associated receptor kinase
complex A that can sense an external ligand concentration [L].
Activation of complex A regulates the autophosphorylation activity
resulting in a phosphate transfer to the response regulator CheY
leading to phosphorylated ChY (ChY-P). ChY-P then interacts with
the flagellar motor M to control swimming. The activity of CheY is
determined by the phosphorylation of CheY through the histidine kinase
ChrA and dephosphorylation through the phosphatase CheZ. The
receptor kinase complex A is regulated through feedback consisting of
the methyltransferase CheR and the methylesterase CheB that modified
the number of methylated glutamyl residues. Early studies of quantifying
E. coli tumbling frequency discovered that acute exposure to nutrients
resulted in an instant response that perfectly adapted to the initial
conditions within a few seconds (Block et al., 1982). This response
was explained through a model by an integral feedback loop from the
receptor kinase complex A activating the phosphorylated methylesterase/
deamidase CheB-P. ChB, ChB-P, and methyltransferase CheR then
provide feedback to regulate the receptor methylation of the receptor
kinase complex A (Shimizu et al., 2010). A vital property of an adaptive
system is that it is sensitive to the concentration and the rate of change of
the external ligand.

Further understanding of this adaptive behavior was acquired
through carefully controlled in vitro experiments using exponentially
increasing and decreasing gradient profiles of external ligands (Figures 4B,
C) (Block et al., 1983; Segall et al., 1986; Shimizu et al., 2010). Shimizu et al.
(2010) performed elegant fluorescence resonance energy transfer (FRET)
experiments between CheY, and CheZ, genetically tagged with a yellow
fluorescent protein (YFP) and cyan fluorescent protein (CFP),
respectively. The measured FRET signal is a live cell readout that
approximates CheY-P, the phosphorylated form of CheY. These
studies showed that even small increases in the rate of the external
ligand lead to CheY signaling (Figure 4D) (Shimizu et al., 2010). In
contrast, carefully controlled experiments measuring the rotational
probability of the flagellum by Block et al. (1983) showed that there is
a potential rate threshold that the ligand needs to overcome to activate the
flagellum motor (Figure 4E). This rate threshold was explained as a time
delay required to measure the rate changes (Block et al., 1983). An
alternative explanation is that the amount of ChY-P or rate change of
ChY-P might need to overcome a threshold similar to the rate threshold
in MAPK signaling in yeast cells (Johnson et al., 2021). To address this
hypothesis, future studies need to expose E. coli to different concentration
gradients and measure ChY-P as a signaling readout and the E. coli
tumbling frequency as an activity readout. Ideally, these experiments

FIGURE 4
Rate threshold encoding in E. coli chemotaxis. (A) Physiological
context in which E. coli swim towards a food source that increases
non-linearly. (B) Modeling non-linear increase in nutrient
concentration in a cell culture experiment. (C) Linear increase in
the rate of nutrient concentration. (D) Increase in the rate result in
signaling activation. (E) Bacterial tumbling probability only activates
after detecting a threshold rate of nutrients. Adapted from (Block et al.,
1983; Shimizu et al., 2010).

Frontiers in Cell and Developmental Biology frontiersin.org06

Thiemicke and Neuert 10.3389/fcell.2023.1124874

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124874


could then be repeated in othermutant strains of the chemotaxis pathway
to identify potential proteins that regulate the rate threshold.

4 Bacterial B. subtilis stress response

Another example of rate sensitivity in prokaryotes is the general
stress response in the bacterium B. subtilis (Figure 5A) (Hecker et al.,
2007). In this bacterium, different stressors activate the stressosome that
regulates the availability of the serine/threonine-protein kinase RsbT.

RsbT phosphorylates the phosphoserine phosphatase RsbU, which then
dephosphorylates RsbV, an anti-sigma-B factor antagonist. The binding
of RsbV to the serine-protein kinase RsbW results in the release of sigma
factor σB that activates target promotors, including its operon, the
phosphatase RsbX, and induces other genes of the environmental
stress response. Expression of RsbX negatively regulates and feedbacks
to RsbT. This feedback is essential for the adaptive behavior of B. subtilis
to instant environmental stress (Young et al., 2013). In carefully controlled
experiments, Young et al. (2013) showed that the amplitude of a
transcriptional single-cell reporter is proportional to the intensity of
the acute and instant stressors NaCl, ethanol, and butanol (Figures
5B, C) consistent with population studies (Boylan et al., 1993). As
expected from an adaptive system, when NaCl or ethanol stress
increases at different rates, the amplitude of the σB promotor response
changes proportional to the gradient rate (Figure 5D) (Young et al., 2013).
However, at very shallow rates to a high-stress concentration of NaCl or
ethanol, the promotor response was similar to non-stressed cells,
indicating that stress response in B. subtilis may also be regulated by a
rate threshold (Figure 5E). Further studies must be performed using
different linear and quadratic stress gradients in normal and mutated
bacteria to investigate this potential rate threshold mechanism.

5 Rate sensitivity in amoebae response

Besides single-cell organisms, rate sensitivity, and rate
thresholds were also observed in cells of multicellular
organisms. This section will focus on the chemoattractant
cyclic adenosine monophosphate (cAMP) sensitivity of single
Dictyostelium cells (Figure 6A) (Artemenko et al., 2014; Nichols
et al., 2015). These single cells can use cell-to-cell communication
through cAMP to coordinate collective cell behavior, the basis for
the slug and fruit body formation process. Figure 6A illustrate a
situation in which a cell secretes cAMP (green cell), and cells in
the neighborhood (black, blue, magenta, yellow cells) sense
different temporal gradient in cAMP dependent on their
distance to the secreting cell (grey gradient). The signaling
process involves cAMP binding to cAMP-specific
heterotrimeric guanosine triphosphate–binding protein (G
protein)–coupled receptors (GPCRs). These GPCRs then
transiently activate phosphoinositide 3-kinase (PI3K), which
then adapts to persistent and constant cAMP concentrations.
A fundamental question is how individual Dictyostelium cells
sense cAMP changes in their environment over time, as in the
process from a single cell to a multicellular organism. To address
this question in a controlled environment, Wang et al. (2012) and
Sgro et al. (2015) designed experiments in which they changed
the dynamics of the cAMP concentrations over time (Figures 6B,
D, F). Wang et al. (2012) developed a sophisticated microfluidic
chip to generate acute and slowly changing cAMP concentrations
at different rates (Figure 6B). They used a phosphatidylinositol
3,4,5-trisphosphate (PIP3)–specific biosensor to monitor its
kinetics to the plasma membrane as a live cell readout of
cAMP signaling (Figure 6C). Similar to previous studies, they
observed rapid transient and adapting biosensor translocation.
With this experimental setup, they experimentally and
computationally studied the cAMP signaling response to
better understand the underlying effective signaling network

FIGURE 5
Rate threshold encoding in B. subtilis stress response. (A)
Physiological context in which B. subtilis experience an increasing
stress gradient. (B) In-vitro modeling of different linear gradients of
osmotic stress. (C)Gene expression promotor activity is transient
and dependent on the stress rate. (D) Peak response (colored solid
circles) decreases with gradient duration and decreasing rate. (E) Peak
response as a function of the rate indicate that B. subtilis stress
response may encode a rate threshold. Adapted from (Young et al.,
2013).
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structure. As part of their studies, they used linearly increasing
cAMP gradients of different rates. They experimentally found
that decreasing the cAMP rate led to a delay and reduced
amplitude in biosensor readout (Figure 6C). Interestingly,
when they used two different subsequent rates (Figure 6D), of
which the first rate was fast. Still, the second rate was slow
(Figure 6D, black line), the cell did not respond to the second
slow rate cAMP stimulus (Figure 6E, black line), whereas if the
second rate was fast (Figure 6D, yellow dashed line), cells
responded (Figure 6E, yellow dashed line). Similarly, in
Dictyostelium cells, Sgro et al. (2015) showed that signaling
due to an exponential cAMP increase starts to oscillate above
a certain rate threshold (Figures 6F, G). These results indicate
that cAMP signaling in Dictyostelium cells is rate sensitive and

contains a rate threshold. However, the mechanism and
protein(s) decoding these rate thresholds within the same or
different cells is elusive and requires further studies.

6 Temporal dynamics of growth factors
in mammalian cells

Growth factors are molecules that stimulate cell proliferation
and growth. These molecules change over time in various tissues and
organisms (Figure 7A) (Fernandez and Torres-Alemán, 2012; Li and
Elowitz, 2019; Koseska and Bastiaens, 2020). A long-studied system
of growth factor signaling is the dynamic activation of the
extracellular-signal-regulated kinase (ERK) signaling network

FIGURE 6
Rate sensitivity and rate threshold in amoeba Dictyostelium discoideum. (A) A D. discoideum cell (green) is secreting cAMP over time, and cells at
different distances (black, blue, magenta, yellow cells) experience different cAMP gradients over time. (B) In-vitro modeling of different acute and linear
cAMP gradients over time. (C) Different temporal cAMP gradients result in delayed and reduced activity of cAMP signaling. (D) Exposure of Dictyostelium
cells to two different cAMP profiles with the same initial rate and a subsequent faster rate (black solid line) or an acute increase (yellow dashed line).
(E) Dictyostelium cells respond to a slow first treatment rate but only to an acute second treatment (yellow dashed line) and not to a slow second
treatment (black solid line), indicating a rate threshold. (F,G)Non-linear gradients below a possible threshold rate do not activate cAMP signaling. Adapted
from (Wang et al., 2012; Sgro et al., 2015).
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through the epidermal growth factor (EGF) and nerve growth factor
(NGF) (Avraham and Yarden, 2011). Extracellular EGF binds to the
EGF receptor (EGFR), which then, through several proteins,
activates the Rat sarcoma virus (RAS) protein. RAS then
transiently activates ERK. When extracellular NGF is present, it
can bind to the Tropomyosin receptor kinase A (TrkA). TrkA then
activates Ras-related protein 1 (Rap1), resulting in sustained ERK
activation. Traditional studies used PC12 cells, a rat
pheochromocytoma cell line, to model this pathway response to
growth factors. They applied acute concentration changes of EGF

(Figure 7B, black line) that resulted in adaptive ERK signaling
(Figure 7C, black line). In contrast, acute increasing
concentrations of NGF resulted in sustained ERK signaling
(Figure 7D, black line). To better understand this pathway and to
validate computational predictions, Sasagawa et al. (2005) exposed
PC12 cells to linearly increasing concentrations of EGF and NGF at
different rates (Figure 7B, colored lines). As expected from an
adaptive system, slower rates of EGF resulted in adaptive but
reduced ERK signaling intensity (Figure 7C, colored lines),
whereas slow rates of NGF resulted in sustained but slower ERK
activation (Figure 7D, colored lines). Interestingly, slow-increasing
EGF concentration resulted in no ERK activation, whereas acute
EGF increases resulted in robust ERK activation. These results on
linear EGF gradients activating ERK were confirmed in a subsequent
study from the same group, indicating that ERK signaling through
EGF might also be rate threshold dependent (Fujita et al., 2010). In
this study, Fujita et al. showed that cell proliferation markers pAKT
(phosphorylated Protein kinase B) and Ribosomal protein S6 show
rate-sensitive signaling. These results indicate that pAKT and
S6 might also have a rate threshold.

In an independent study, Ji et al. (2010) exposed cultured rat
hippocampal neurons to acute and gradual increases in the brain-
derived neurotrophic factor (BDNF). BDNF is a neuropeptide
important for synaptic development and plasticity (Park and Poo,
2012; Wang et al., 2022). BDNF binds and activates the TrkB
receptor tyrosine kinase, which activates downstream MAPK,
phosphatidylinositol-3 kinase (PI3K), and Phospholipase C,
gamma 1 (PLC-γ) pathways. One central question by Ji et al. is
how different dynamics of BDNF activate signaling and regulate
phenotype. They found that acute administration of BDNF to
primary neurons resulted in adaptive phosphorylation of TrkB
and ERK. In contrast, a logarithmic increase in BDNF resulted in
a gradual and sustained activation of the same proteins. A significant
conclusion from this study was that BDNF delivery rate might be the
primary regulatory mechanism rather than the absolute BDNF
concentration. As a mechanism, they showed that the Ras-MAPK
complex is transiently activated in acute and gradual conditions. In
contrast, the Rap1-MAPK complex is transiently activated in acute
situations and sustainably activated in gradual conditions. Ji et al.
also showed that PLC-γ1 and Glycogen synthase kinase-3 beta
(GSK-3β) behave similarly to ERK, suggesting that the rate
sensitivity is encoded upstream of ERK, PLC-γ1, and GSK-3β
signaling. Downstream, differences in ERK signaling were
mirrored by the phosphorylation dynamics of the cAMP
response element-binding protein (CREB) transcription factor.
The different dynamics of CREB phosphorylation and activation
are essential for long-lasting synaptic effects of BDNF and result in
differential gene expression of immediate early genes. These changes
then also affected dendritic growth and the morphological
specializations of dendrites of young hippocampal neurons where
acute BDNF treatment promotes neurite growth, whereas gradual
BDNF treatment regulates neurite branching. Ji et al. then quantified
dendritic spine growth to demonstrate the importance of acute and
gradual BDNF administration in mature neurons. They showed that
acute treatment with BDNF resulted in more spines with larger
heads, whereas gradual BDNF regulates the length of spines and the
outgrowth of filopodia-like protrusions. They also showed in
hippocampal slices as an in vivo system that acute BDNF

FIGURE 7
Temporal dynamics of growth factors. (A) A cell (green) secreting
growth factors such as EGF or NGF over time, and cells at different
distances (black, blue, magenta, yellow cells) experience different
growth factor gradients over time. (B) In-vitro modeling of cells
exposed to acute and linear gradients of EGF or NGF. (C) EGF
activation of ERK results in adaptive signaling with delayed and
reduced signaling amplitude. A slow rate of EGF (yellow line) does not
result in ERK activation indicating a rate threshold. (D) NGF activation
of ERK results in a reduced speed of activation but no adaptation.
Adapted from (Sasagawa et al., 2005; Fujita et al., 2010).
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enhances basal synaptic transmission and that gradual BDNF
exposure facilitated long-term potentiation (LTP). These
results show that the dynamics of BDNF differentially regulate
cell signaling and phenotypes and indicate that BDNF
signaling is rate sensitive, and this pathway may encode a rate
threshold. Further studies are required to establish this rate
sensitivity, the rate threshold, and the proteins regulating these
processes.

7 Spatio-temporal dynamics of
morphogens

Another important class of signaling molecules that change
in space and time are morphogens which are non-uniformly
distributed molecules that regulate cell fates during

development (Dessaud et al., 2007; Kutejova et al., 2009;
Rushlow and Shvartsman, 2012; Li et al., 2013; Dubrulle
et al., 2015; Sagner and Briscoe, 2017; Li and Elowitz, 2019;
Mateus et al., 2020). In Figure 8A, we depict an example of a
developing fly embryo in which a morphogen concentration
increases at the anterior pole of the embryo. Over time this
increase in concentration results in an increasing concentration
gradient from the anterior to the posterior pole of the embryo.
Cells (circle) along the embryo will experience morphogen
concentration that decreases and become steeper over time
(Figure 8B). However, a cell having a fixed position in the
embryo will experience an increase in the morphogen
concentration over time (Figure 8C). To model how cells
respond to changing morphogen gradients over time, cells
can be studied in-vitro, where the cell environment can be
precisely controlled (Figure 8D).

FIGURE 8
Morphogen gradients change as a function of space and time. (A)Morphogen gradients form between the anterior and posterior of a fly embryo and
change over time from early to late in development. (B) The morphogen gradient decreases along the anterior and posterior axis, starting at a lower
concentration at early time points. (C) The same data is plotted as a function of time, where nuclei at different positions experience different gradients. (D)
Modelingmorphogen gradients in vitro. (E) In cell culture different cells can experience differentmorphogen gradients over time. (F) Ratio of nuclear
to cytoplasmic SMAD4 as a real-time readout is sensitive to the rate of Tgf-β, Actevin, or BMP administration. Slow rates (yellow line) of Tgf-β, Actevin, or
BMP administration does not result in SMAD4 nuclear localization, indicating a rate threshold. Adapted from (Sorre et al., 2014; Heemskerk et al., 2019).
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In this review, we highlight some in vitro models of embryo
development. For example, we choose the transforming growth
factor β (TGF-β) signaling pathway as a significant pathway
activated by morphogens. Further, we will focus on the ligand
proteins TGF-β, bone morphogenetic proteins (BMPs), and
Activin and how their gradual concentration profile that
changes over time impact signaling and phenotype (Sorre
et al., 2014; Heemskerk et al., 2019).

TGF-β signaling is induced by the TGF-β ligands binding to one
of the five TGF-β type II receptors. TGF-βs bind the TGF-β type II
receptor type 2 (TGFBR2), whereas BMPs bind the BMP receptor
type 2 (BMPR2). These receptors are serine/threonine receptor
kinases that phosphorylate one of the seven TGF-β type I
receptors. A specific TGF-β type I receptor phosphorylates one
of the five receptor-regulated Mothers against decapentaplegic
homolog (MADHs or SMADs) (R-SMAD’s) (from the small
worm Caenorhabditis elegans phenotype and MAD family of
Mothers Against Decapentaplegic of genes in the fruit fly
Drosophila). These SMADs can then bind coSMAD SMAD4.
R-SMADs (SMAD1, SMAD2, SMAD3, SMAD5, SMAD9) and
coSMAD can form complexes in the nucleus and act as
transcription factors to regulate target genes. TGF-β signal
through SMAD2 and SMAD3, whereas BMPs signal through
SMAD1, SMAD5, and SMAD9. Sorre et al. (2014) showed
through single-cell time-lapse microscopy experiments that
acute TGF-β1 cell stimulation (Figure 8E, black line) leads
to rapid Smad4 nuclear localization followed by perfect
adaptation and nuclear export (Figure 8F, black line). They
then used gradual increases of TGF-β1 (Figure 8E, colored
lines) in a staircase administration and observed that
Smad4 nuclear localization is rate sensitive (Figure 8F,
colored lines). Interestingly, at a low rate of TGF-β1
administration, Smad4 does not localize to the nucleus,
which indicates that Smad4 nuclear localization may have a
rate threshold.

Another ligand of the TGF-β pathway, BMP, also shows gradual
changes over time during mouse and human development (Li et al.,
2013). Li et al. (2013) observed qualitatively that BMP in mouse
embryos is expressed at different locations with different TGF-β rate
increases. Heemskerk et al. (2019) were interested in understanding
how different BMP4 and Activin gradients that change over time
regulate cell differentiation of human embryonic stem cells (hESCs).
They treated these stem cells with BMP4 or Activin acutely or with
linearly increasing concentrations (Figure 8E). Heemskerk et al.
found that SMAD4 nuclear localization increases rapidly and adapts
slowly when cells are treated with BMP4 but adapts quickly when
treated with Activin (Figure 8F). However, cells respond slowly
when treated with a linear increase of BMP4 or Activin. For Activin,
they showed that the rate of BMP4 administration is directly
proportional to the rate of SMAD4 nuclear localization. These
data indicate that BMP4 and Activin administration rates can
modulate SMAD4 signaling and probe a potential rate
threshold in SMAD4 signaling. In future studies, one could, for
example, expose these cells to different rates of TGF-β1, Activin,
and BMP4 to better understand the adaptive SMAD4 behavior,
identify a potential rate threshold, and discover the proteins
regulating the adaptation and rate threshold mechanisms of
SMAD4 signaling.

8 Temporal dynamics of glucose and
insulin signaling

A well-known example in physiology in which the
concentration changes over time is the relationship between
glucose uptake and insulin secretion in the body (Polonsky
et al., 1988; Fernandez and Torres-Alemán, 2012). The dynamic
changes in insulin secretion depend on glucose levels in the
bloodstream. After a meal, glucose changes in the bloodstream
in different temporal patterns as measured by continuous
glucose concentration monitoring (Figure 9A). The insulin-
secreting beta-cells then detect these changes in blood glucose

FIGURE 9
Modeling temporal dynamics of glucose and insulin in the body.
(A) Glucose concentration measured through continuous glucose
monitoring. (B) The islet in the pancreas may experience these
glucose dynamics over time. (C) Different glucose
concentrations trigger insulin release from the islets resulting in
different temporal insulin concentration profiles. (D) Modeling insulin
concentration changes over time in vitro as acute (black), fast (blue), or
slow (magenta) insulin release. (E–G) Insulin profiles differentially
regulate signaling dynamics that are different in a variety of pathways.
Adapted from (Kubota et al., 2012; 2018).
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levels in the islets of the Langerhans in the pancreas
(Figure 9B). Insulin secretion from the pancreas occurs in a
pulsatile manner (Figure 9C), and this is critical to maintaining
insulin receptor signaling/sensitivity (Matveyenko et al., 2012;
Satin et al., 2015). Insulin secretion from the islet into the portal
vein allows for higher concentrations of insulin that the liver is
exposed to versus other peripheral tissues. Thus, with this high
insulin concentration, the liver can undergo insulin receptor
desensitization if the kinetics of insulin secretion are
inappropriate. To better understand how different insulin
gradients regulate cell signaling, Kubota et al. (2012) used an
in vitro system and studied Fao rat hepatoma cells, a rat liver cell
line, and exposed these cells to different acute and gradual
concentrations of insulin (Figure 9D) (Noguchi et al., 2013).
They then measured under these conditions, activation of the
Akt pathway (Figure 9E) and downstream protein
phosphorylation of glycogen synthase kinase-3b (GSK3b)
(Figure 9F), gluconeogenesis through glucose-6-phosphatase
(G6Pase) (Figure 9G), and phosphorylation of ribosomal
protein S6 kinase (pS6) (Figure 9E) as a marker of protein
synthesis. Kubota et al. (2018) then found that upon acutely
increasing the concentration of insulin, the activity of pAKT,
pGSK3b, and pS6K signaling proteins rapidly increases. In
contrast, G6Pase activity rapidly decreases (Figures 9D–G,
black lines). However, when they applied gradients of
different rates of insulin to the same final concentrations,

they found that pAKT, pGSK3b, and pS6K increased slower,
whereas G6Pase decreased slower, proportional to the rate of
insulin increase (Figures 9D–G, colored lines). These results
indicate that pAKT, pGSK3b, pS6K, and G6Pase are all rate
sensitive and may encode a rate threshold. They also infused
rats with acute or gradual increases in insulin through the
mesenteric vein instead of into the portal vein and directly
onto the liver (as it would be during islet insulin secretion).
They found that in primary hepatocytes, pAKT, pGSK3b, and
pS6K signaling is very similar to rat liver cell culture
experiments indicating that in rats, these pathways are also
rate-sensitive in vivo (Kubota et al., 2018). Interestingly, pS6K
was only slightly activated in slow insulin rate conditions
indicating that proliferation might be rate threshold
sensitive. Further studies are needed to understand better the
rate threshold mechanism in cell culture and animals.

9 Temporal dynamics of stressors in the
kidney

The kidney harbors one of the most extreme environments in
the human body (Figure 10A) (Neuhofer and Beck, 2005; Carlström
et al., 2015; Silverthorn, 2019). Of these, the inner zone is the
papillary tip which regularly has the highest osmolarity levels
(Figure 10A, a dark grey area) compared to the outer zone,

FIGURE 10
Spatio-temporal osmolyte gradients in the kidney. (A) Different sections of the kidney have different osmolyte concentrations from low (Cortex) to
high (Medulla). Cells (white circles) can migrate in the kidney in different directions (arrows). (B) Cells at different positions in the kidney experience
different osmolyte gradients along the direction of migration. (C) In-vitro modeling of different osmolyte concentration gradients. (D) Acute osmolyte
changes activate caspase signaling (C) whereas gradual increase over 10 h does not activate caspase signaling but instead induces proline import (P)
from the media. (E) Acute stress results in apoptosis (left), whereas gradual stress leads to prolin import to protect cells resulting in increases viability
(right). Detailed studies indicated a rate threshold that regulate a cell fate switch from high to lower apoptosis. Adapted from (Thiemicke and Neuert,
2021).
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named the renal medulla, which has an osmolarity level similar to
plasma (Figure 10A, a light grey area). Depending on the conditions,
osmolarities can at least reach 1,200 mOsmol/l in humans, four
times the level found in plasma (Dantzler et al., 2014; Silverthorn,
2019). How kidney cells can survive these extreme conditions is
poorly understood (Neuhofer and Beck, 2005). Interestingly, the
osmolyte concentrations in the kidney change dynamically over
time and follow circadian rhythms (Firsov and Bonny, 2018). If
these rhythms change, they can cause several kidney
pathologies, indicating that the temporal patterns of
osmolyte changes may be relevant for cell survival.
Surprisingly, the same cell types that can function
appropriately in vivo die in culture when exposed to acute
increases in the same osmolarity (Zhang et al., 2002; Zhang
et al., 2022; Sanz et al., 2008; Thiemicke and Neuert, 2021).
Further studies found that a slow increase of osmolarity
drastically improves cell survival of a human kidney cell line
compared to a step increase (Cai et al., 2002). A follow-up study
identified gene expression differences in several
osmoprotective genes as the reason for the improved
survival during the gradual increase (Cai et al., 2004). They
suggest that kidney cells are well-adapted to extreme
hyperosmolarity. However, recent studies create an image of
great cellular diversity in the kidney and show that the inner
medulla and the papillary tip tissue contain immune cells
(Stewart et al., 2019), indicating that immune cells in the
kidney need to survive strong osmolyte gradients. An open
question is how these immune cells survive in this environment

(Müller et al., 2019; Wilck et al., 2019). In Figure 10A, we depict
three T cells that migrate through the kidney in different
directions (Figure 10A, yellow, magenta, and cyan arrow),
each experiencing different osmolyte gradients in space and
time (Figure 10B). Interestingly, in pathological conditions,
elevated levels of immune cells suggest that these cells survive
in the kidney in this particular environment in various disease
contexts (Sanz et al., 2008; Müller et al., 2019; Wilck et al.,
2019). To better understand how immune cells survive in such
harsh conditions, Thiemicke et al. (2019) modeled in vitro
immune cell exposure to different osmolyte gradients
(Figure 10C) and quantified cell viability as a phenotypic
metric (Thiemicke and Neuert, 2021). They cultured cells in
growth media and changed osmolarity by either acute or
gradually increasing physiological NaCl concentrations. In
T cells (Jurkat cells) and monocytes (THP1 cells), they
observed that acute exposure to physiological NaCl
concentrations in the kidney resulted in 85% cell death. In
comparison, exposing the same cells to the same stressor and
the same final concentration but at a linearly increasing
concentration resulted in only 60% cell death, indicating a
rate threshold in the cell viability. These results are
consistent with observations in kidney cells from the Burg
laboratory (Cai et al., 2002; Cai et al., 2004) and in several
colon cancer cell lines (Zhang et al., 2022) confirming that
elevated hypertonicity by NaCl can cause cell death. Thiemicke
et al. then performed a temporal functional screen for 27 well-
established markers of caspase signaling, stress signaling,

FIGURE 11
Signaling features and phenotypes in different dynamic environments. (A–C) Acute concentration changes (A) do not change the rate (B) and rapidly
active signaling (C). For an adaptive pathway, acute environmental changes probe the response time of the pathway (A1), the maximum signaling
response (A2), and the adaptation time (A3). (D–F) A linear concentration change (D) results in a constant rate (E), leading to prolonged signaling of an
adaptive system (F). From this signaling response, we can extract the delay in signaling activation (L1), the concentration activation threshold (L2),
rate-dependent signaling response amplitude (L3), and the duration and type of adaptation (L4). (G–I) Using a quadratic concentration change (G),
resulting in an increasing linear rate (H) and a complex and non-linear signaling response (I). This signaling response contains information about delay in
signaling activation (Q1), concentration activation threshold (Q2), rate activation threshold (Q3), linear concentration dependence (Q4), linear rate
dependence (Q5), and concentration and rate saturation threshold (Q6).
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growth, inflammation, and DNA damage to identify the
principal mediators of cell death. Within the markers of
caspase and stress signaling, they found differential
regulation of several caspases and p38 between acute and
slowly increasing stress. Upon further investigation, they
found that p38 signaling does not significantly contribute to
the cell death phenotype. Instead, they found caspase-mediated
apoptosis as the primary contributor to cell death (Figures 10D,
E). Thiemicke et al. then showed through quantitative mass
spectroscopy that cell internal proline increases strongly upon
hypertonic stress and that proline increases to higher levels
after gradual increases of hypertonic stress (Figure 10D).
Supplementing external proline to Jurkat cells protects them
against acutely changing stress conditions to a similar extent
but synergistically when compared to caspase inhibition,
demonstrating that proline functions as a molecular
osmolyte similar to betaine in the kidney (Figure 10D)
(Garcia-Perez and Burg, 1991; Cai et al., 2002; Burg and
Ferraris, 2008). Thiemicke et al. identified differential
regulation of caspase-mediated apoptosis in acute versus
gradually increasing osmolyte concentration (Figure 10E).
These studies suggest that proline may be used by human
cells as an osmoprotective molecule, previously only
described in non-human cells. The wider implications are
that gradually increasing environmental changes
differentially regulate human cell fate and signaling. In
addition, a better understanding of how metabolic networks
are coordinated with signaling networks to control cell fate may
result in a novel therapeutic avenue of intervention in
pathophysiological conditions.

10 Summary and future directions

The previous sections described rate dependencies of
different essential signaling pathways in other organisms and
suggested that these pathways may encode a rate threshold
mechanism. Additional experiments must be performed at
different linear or quadratic rates to test these pathways’
proposed rate threshold mechanisms. From these
experiments, one can learn if a pathway encodes a
concentration, a rate, or both thresholds. The next step is
identifying the protein(s) encoding the rate threshold. After
this protein(s) has been placed, one might investigate the rate
threshold mechanism through protein domain deletions,
chemical inhibition, or overexpression studies. After
identifying a rate threshold protein, a phenotypic assay will
establish the biological relevance in different dynamic
environments and rate threshold regulator mutants (see
Figure 3) (Johnson et al., 2021). Besides rate thresholds,
dynamic environments may also reveal other signaling
features and associated phenotypes that cannot be observed
in acute conditions but are relevant in non-acute physiological
conditions. In Figure 11, we compare the pathway response to
an acute, a linear, and a quadratic concentration change. The

acute induction (Figures 11A–C) leads to a quick increase in
signaling (A1), a maximum signaling response (A2), and then a
slowly decaying and adapting signaling back to the initial
signaling condition (A3). In a linear increasing condition
(Figures 11D–F), we can quantify the delay in signaling
activation (L1), a concentration threshold (L2), a rate-
dependent signaling amplitude (L3), and the duration and
type of adaptation (L4).

In comparison, the same cells and pathways exposed to a
quadratic increasing condition (Figures 11G–I) lead to a delay
in signaling activation (Q1), a detection of a concentration
activation (Q2) and rate (Q3) activation thresholds, a linear
concentration (Q4) and a linear rate dependency (Q5), and a
saturation concentration and rate threshold (Q6) after which
signaling is not rate dependent anymore, and an increase in
stimulus signal do not lead to signaling increase. This example
illustrates that non-acute conditions might be vital to
unraveling hidden signaling features not observable with
current acute perturbation paradigms. Comparing these
different signaling profiles and signaling features indicate
that unique activation profiles probe special signaling
features. Linking these signaling features to phenotypes and
regulatory proteins will help us better understand the basic
mechanisms of signal transduction in normal cells. This data
and knowledge will provide the foundation to investigate how
mutated signaling proteins in a pathophysiological condition
alter these signaling profiles and provide the basis to develop
targeted therapeutic approach. These signaling features might
also be conserved or modulated throughout evolution because
many of the signaling proteins are evolutionarily conserved.
Quantitative data generated in these experiments will build the
foundation for developing approaches for model inference,
quantitative predictions, and computational screening of
combinatorial protein regulation (Rahi et al., 2017; Jashnsaz
et al., 2020; 2021). The proposed approaches of non-acute cell
perturbations are also amenable for dissecting many other
signaling processes, such as signaling cross talk, cell cycle
regulation, protein translation, phase separation, and gene
regulation, which are all dependent on specific signaling
dynamics. Lastly, designing drug profiles in cell culture will
fill a gap in understanding drug mechanisms that will guide the
design of expensive and time-consuming pharmacodynamics
and pharmacokinetics studies in animals and humans and
improve the translatability of non-clinical studies. Finally,
studying cell physiology besides the mentioned processes in
non-acute conditions might reveal many hidden biological
mechanisms currently not accessible with acute treatment
conditions, expanding the observable phenotypic space
underlying normal and pathophysiological conditions in
humans as conceptualized in Figure 2.

Author contributions

GN and AT wrote the manuscript.

Frontiers in Cell and Developmental Biology frontiersin.org14

Thiemicke and Neuert 10.3389/fcell.2023.1124874

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124874


Funding

This work was supported by an NIH Director’s New Innovator
DP2 award (GM11484901), NIH R01 (GM140240), and the School
of Medicine Faculty Fellow Endowed Chair to GN, and an
American Heart Association (AHA) Pre-doctoral Fellowship
award (18PRE34050016) to AT.

Acknowledgments

We thank P. A. Weil and D. A. Jacobson for their feedback on
the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or those
of the publisher, the editors and the reviewers. Any product that may be
evaluated in this article, or claim thatmay bemade by itsmanufacturer, is
not guaranteed or endorsed by the publisher.

References

Adler, M., and Alon, U. (2018). Fold-change detection in biological systems. Curr.
Opin. Syst. Biol. 8, 81–89. doi:10.1016/J.COISB.2017.12.005

Alberts, B., Johnson, A., Lewis, J., Morgan, D., and Raff, M. (2015).Molecular biology
of the cell. 6th ed. New York: Garland Science.

Artemenko, Y., Lampert, T. J., and Devreotes, P. N. (2014). Moving towards a
paradigm: Common mechanisms of chemotactic signaling in Dictyostelium and
mammalian leukocytes. Cell. Mol. Life Sci. 71, 3711–3747. doi:10.1007/s00018-014-
1638-8

Avraham, R., and Yarden, Y. (2011). Feedback regulation of EGFR signalling:
Decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117.
doi:10.1038/NRM3048

Bandara, S., Schlöder, J. P., Eils, R., Bock, H. G., and Meyer, T. (2009). Optimal
experimental design for parameter estimation of a cell signaling model. PLoS Comput.
Biol. 5, e1000558. doi:10.1371/journal.pcbi.1000558

Block, S. M., Segall, J. E., and Berg, H. C. (1983). Adaptation kinetics in bacterial
chemotaxis. J. Bacteriol. 154, 312–323. doi:10.1128/jb.154.1.312-323.1983

Block, S. M., Segall, J. E., and Berg, H. C. (1982). Impulse responses in bacterial
chemotaxis. Cell 31, 215–226. doi:10.1016/0092-8674(82)90421-4

Boylan, S. A., Redfield, A. R., Brody, M. S., and Price, C. W. (1993). Stress-induced
activation of the sigma B transcription factor of Bacillus subtilis. J. Bacteriol. 175,
7931–7937. doi:10.1128/JB.175.24.7931-7937.1993

Bratusch-Marrain, P. R., Komjati, M., and Waldhausl, W. K. (1986). Efficacy of
pulsatile versus continuous insulin administration on hepatic glucose production and
glucose utilization in type I diabetic humans. Diabetes 35, 922–926. doi:10.2337/DIAB.
35.8.922

Brewster, J., de Valoir, T., Dwyer, N., Winter, E., and Gustin, M. (1993). An
osmosensing signal transduction pathway in yeast. Sci. (1979) 259, 1760–1763.
doi:10.1126/science.7681220

Brewster, J. L., and Gustin, M. C. (2014). Hog1: 20 years of discovery and impact. Sci.
Signal 7, re7. doi:10.1126/scisignal.2005458

Burg, M. B., and Ferraris, J. D. (2008). Intracellular organic osmolytes: Function and
regulation. J. Biol. Chem. 283, 7309–7313. doi:10.1074/jbc.R700042200

Cai, Q., Ferraris, J. D., and Burg, M. B. (2004). Greater tolerance of renal medullary
cells for a slow increase in osmolality is associated with enhanced expression of
HSP70 and other osmoprotective genes. Am. J. Physiol. Ren. Physiol. 286, F58–F67.
doi:10.1152/ajprenal.00037.2003

Cai, Q., Michea, L., Andrews, P., Zhang, Z., Rocha, G., Dmitrieva, N., et al. (2002).
Rate of increase of osmolality determines osmotic tolerance of mouse inner medullary
epithelial cells. Am. J. Physiol. Ren. Physiol. 283, F792–F798. doi:10.1152/ajprenal.
00046.2002

Capaldi, A. P., Kaplan, T., Liu, Y., Habib, N., Regev, A., Friedman, N., et al. (2008).
Structure and function of a transcriptional network activated by the MAPK Hog1. Nat.
Genet. 40, 1300–1306. doi:10.1038/ng.235

Carlström, M., Wilcox, C. S., and Arendshorst, W. J. (2015). Renal autoregulation in
health and disease. Physiol. Rev. 95, 405–511. doi:10.1152/physrev.00042.2012

Chang, H., and Levchenko, A. (2013). Adaptive molecular networks controlling
chemotactic migration: Dynamic inputs and selection of the network architecture.
Philosophical Trans. R. Soc. B Biol. Sci. 368, 20130117. doi:10.1098/rstb.2013.0117

Colin, R., Ni, B., Laganenka, L., and Sourjik, V. (2021). Multiple functions of flagellar
motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038.
doi:10.1093/FEMSRE/FUAB038

Dantzler, W. H., Layton, A. T., Layton, H. E., and Pannabecker, T. L. (2014).
Urine-concentrating mechanism in the inner medulla: Function of the thin limbs
of the loops of henle. Clin. J. Am. Soc. Nephrol. 9, 1781–1789. doi:10.2215/CJN.
08750812

Dessaud, E., Yang, L. L., Hill, K., Cox, B., Ulloa, F., Ribeiro, A., et al. (2007).
Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation
mechanism. Nature 450 (7170), 717–720. doi:10.1038/nature06347

Dubrulle, J., Jordan, B. M., Akhmetova, L., Farrell, J. A., Kim, S. H., Solnica-Krezel, L.,
et al. (2015). Response to nodal morphogen gradient is determined by the kinetics of
target gene induction. Elife 4, e05042. doi:10.7554/eLife.05042

English, J. G., Shellhammer, J. P., Malahe, M., McCarter, P. C., Elston, T. C., and
Dohlman, H. G. (2015). MAPK feedback encodes a switch and timer for tunable stress
adaptation in yeast. Sci. Signal 8, ra5. doi:10.1126/scisignal.2005774

Fernandez, A. M., and Torres-Alemán, I. (2012). The many faces of insulin-like
peptide signalling in the brain. Nat. Rev. Neurosci. 13, 225–239. doi:10.1038/nrn3209

Ferrigno, P., Posas, F., Koepp, D., Saito, H., and Silver, P. A. (1998). Regulated nucleo/
cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs
NMD5 and XPO1. EMBO J. 17, 5606–5614. doi:10.1093/emboj/17.19.5606

Firsov, D., and Bonny, O. (2018). Circadian rhythms and the kidney. Nat. Rev.
Nephrol. 14, 626–635. doi:10.1038/s41581-018-0048-9

Fujita, K., Toyoshima, Y., Uda, S., Ozaki, Y., Kubota, H., and Kuroda, S. (2010).
Decoupling of receptor and downstream signals in the Akt pathway by its low-pass filter
characteristics. Sci. Signal 3, ra56. doi:10.1126/scisignal.2000810

Garcia-Perez, A., and Burg, M. B. (1991). Renal medullary organic osmolytes. Physiol.
Rev. 71, 1081–1115. doi:10.1152/physrev.1991.71.4.1081

Gasch, a. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz,
G., et al. (2000). Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell 11, 4241–4257. doi:10.1091/mbc.11.12.
4241

Goulev, Y., Morlot, S., Matifas, A., Huang, B., Molin,M., Toledano, M. B., et al. (2017).
Nonlinear feedback drives homeostatic plasticity in H2O2 stress response. Elife 6,
e23971–e23997. doi:10.7554/eLife.23971

Granados, A. A., Crane, M. M., Montano-Gutierrez, L. F., Tanaka, R. J., Voliotis, M.,
and Swain, P. (2017). Distributing tasks via multiple input pathways increases cellular
survival in stress. Elife 6, e21415. doi:10.7554/eLife.21415

Gunne-Braden, A., Sullivan, A., Gharibi, B., Sheriff, R. S. M., Maity, A., Wang, Y. F.,
et al. (2020). GATA3 mediates a fast, irreversible commitment to BMP4-driven
differentiation in human embryonic stem cells. Cell Stem Cell 26, 693–706. doi:10.
1016/J.STEM.2020.03.005

Hashmi, A., Tlili, S., Perrin, P., Lowndes, M., Peradziryi, H., Brickman, J. M., et al.
(2022). Cell-state transitions and collective cell movement generate an endoderm-like
region in gastruloids. Elife 11, e59371. doi:10.7554/ELIFE.59371

Hecker, M., Pané-Farré, J., and Völker, U. (2007). SigB-dependent general stress
response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol.
61, 215–236. doi:10.1146/ANNUREV.MICRO.61.080706.093445

Heemskerk, I., Burt, K., Miller, M., Chhabra, S., Guerra, M. C., Liu, L., et al. (2019).
Rapid changes in morphogen concentration control self-organized patterning in human
embryonic stem cells. Elife 8, e40526. doi:10.7554/elife.40526

Hersen, P., Mcclean, M. N., Mahadevan, L., and Ramanathan, S. (2008). Signal
processing by the HOGMAP kinase pathway. PNAS 105, 7165–7170. doi:10.1073/pnas.
0710770105

Frontiers in Cell and Developmental Biology frontiersin.org15

Thiemicke and Neuert 10.3389/fcell.2023.1124874

https://doi.org/10.1016/J.COISB.2017.12.005
https://doi.org/10.1007/s00018-014-1638-8
https://doi.org/10.1007/s00018-014-1638-8
https://doi.org/10.1038/NRM3048
https://doi.org/10.1371/journal.pcbi.1000558
https://doi.org/10.1128/jb.154.1.312-323.1983
https://doi.org/10.1016/0092-8674(82)90421-4
https://doi.org/10.1128/JB.175.24.7931-7937.1993
https://doi.org/10.2337/DIAB.35.8.922
https://doi.org/10.2337/DIAB.35.8.922
https://doi.org/10.1126/science.7681220
https://doi.org/10.1126/scisignal.2005458
https://doi.org/10.1074/jbc.R700042200
https://doi.org/10.1152/ajprenal.00037.2003
https://doi.org/10.1152/ajprenal.00046.2002
https://doi.org/10.1152/ajprenal.00046.2002
https://doi.org/10.1038/ng.235
https://doi.org/10.1152/physrev.00042.2012
https://doi.org/10.1098/rstb.2013.0117
https://doi.org/10.1093/FEMSRE/FUAB038
https://doi.org/10.2215/CJN.08750812
https://doi.org/10.2215/CJN.08750812
https://doi.org/10.1038/nature06347
https://doi.org/10.7554/eLife.05042
https://doi.org/10.1126/scisignal.2005774
https://doi.org/10.1038/nrn3209
https://doi.org/10.1093/emboj/17.19.5606
https://doi.org/10.1038/s41581-018-0048-9
https://doi.org/10.1126/scisignal.2000810
https://doi.org/10.1152/physrev.1991.71.4.1081
https://doi.org/10.1091/mbc.11.12.4241
https://doi.org/10.1091/mbc.11.12.4241
https://doi.org/10.7554/eLife.23971
https://doi.org/10.7554/eLife.21415
https://doi.org/10.1016/J.STEM.2020.03.005
https://doi.org/10.1016/J.STEM.2020.03.005
https://doi.org/10.7554/ELIFE.59371
https://doi.org/10.1146/ANNUREV.MICRO.61.080706.093445
https://doi.org/10.7554/elife.40526
https://doi.org/10.1073/pnas.0710770105
https://doi.org/10.1073/pnas.0710770105
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124874


Hill, C. S. (2018). Spatial and temporal control of NODAL signaling. Curr. Opin. Cell
Biol. 51, 50–57. doi:10.1016/J.CEB.2017.10.005

Jacoby, T., Flanagan, H., Faykin, A., Seto, A. G., Mattison, C., and Ota, I. (1997). Two
protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast
by targeting the mitogen-activated protein kinase, Hog1. J. Biol. Chem. 272,
17749–17755. doi:10.1074/jbc.272.28.17749

Jashnsaz, H., Fox, Z. R., Hughes, J., Li, G., Munsky, B. E., and Neuert, G. (2020).
Diverse cell stimulation kinetics identify predictive signal transduction models. iScience
23, 101565. doi:10.1016/j.isci.2020.101565

Jashnsaz, H., Fox, Z. R., Munsky, B., Neuert, G., Fox, R. Z., Munsky, B., et al. (2021).
Building predictive signaling models by perturbing yeast cells with time-varying
stimulations resulting in distinct signaling responses. Star. Protoc. 2, 100660. doi:10.
1016/J.XPRO.2021.100660

Ji, Y., Lu, Y., Yang, F., Shen, W., Tang, T. T. T., Feng, L., et al. (2010). Acute and
gradual increases in BDNF concentration elicit distinct signaling and functions in
neurons. Nat. Neurosci. 13, 302–309. doi:10.1038/NN.2505

Johnson, A. N., Li, G., Jashnsaz, H., Thiemicke, A., Kesler, B. K., Rogers, D. C., et al.
(2021). A rate threshold mechanism regulates MAPK stress signaling and survival.
PNAS 118, e2004998118. doi:10.1073/pnas.2004998118

Karmakar, R. (2021). State of the art of bacterial chemotaxis. J. Basic Microbiol. 61,
366–379. doi:10.1002/JOBM.202000661

Keegstra, J. M., Carrara, F., and Stocker, R. (2022). The ecological roles of bacterial
chemotaxis. Nat. Rev. Microbiol. 20, 491–504. doi:10.1038/S41579-022-00709-W

Koseska, A., and Bastiaens, P. I. H. (2020). Processing temporal growth factor patterns
by an epidermal growth factor receptor network dynamically established in space.
Annu. Rev. Cell Dev. Biol. 36, 359–383. doi:10.1146/ANNUREV-CELLBIO-013020-
103810

Krause, H. B., Bondarowicz, H., Karls, A. L., McClean, M. N., and Kreeger, P. K.
(2021). Design and implementation of a microfluidic device capable of temporal growth
factor delivery reveal filtering capabilities of the EGFR/ERK pathway. Apl. Bioeng. 5,
046101. doi:10.1063/5.0059011

Kubota, H., Noguchi, R., Toyoshima, Y., Ozaki, Y., Uda, S., Watanabe, K., et al. (2012).
Temporal coding of insulin action through multiplexing of the AKT pathway.Mol. Cell
46, 820–832. doi:10.1016/j.molcel.2012.04.018

Kubota, H., Uda, S., Matsuzaki, F., Yamauchi, Y., and Kuroda, S. (2018). In vivo
decoding mechanisms of the temporal patterns of blood insulin by the insulin-AKT
pathway in the liver. Cell Syst. 7, 118–128. doi:10.1016/j.cels.2018.05.013

Kutejova, E., Briscoe, J., and Kicheva, A. (2009). Temporal dynamics of patterning by
morphogen gradients. Curr. Opin. Genet. Dev. 19, 315–322. doi:10.1016/J.GDE.2009.
05.004

Li, L., Liu, C., Biechele, S., Zhu, Q., Song, L., Lanner, F., et al. (2013). Location of
transient ectodermal progenitor potential in mouse development. Development 140,
4533–4543. doi:10.1242/DEV.092866

Li, P., and Elowitz, M. B. (2019). Communication codes in developmental signaling
pathways. Development 146, dev170977. doi:10.1242/dev.170977

Lim, W., Mayer, B., and Pawson, T. (2014). Cell signaling: Principles and mechanisms.
1st ed. New York, USA: Garland Science, Taylor and Francis Group, LLC. 978-0-8153-
4244-1.

Luecke, S., Sheu, K. M., and Hoffmann, A. (2021). Stimulus-specific responses in
innate immunity: Multilayered regulatory circuits. Immunity 54, 1915–1932. doi:10.
1016/J.IMMUNI.2021.08.018

Ma,W., Trusina, A., El-Samad, H., Lim,W. A., and Tang, C. (2009). Defining network
topologies that can achieve biochemical adaptation. Cell 138, 760–773. doi:10.1016/j.
cell.2009.06.013

Macia, J., Regot, S., Peeters, T., Conde, N., Solé, R., Posas, F., et al. (2009). Dynamic
signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci.
Signal 2, ra13. doi:10.1126/scisignal.2000056

Maeda, T., Wurgler-Murphy, S. M., and Saito, H. (1994). A two-component system
that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245.
doi:10.1038/369242a0

Mapes, J., and Ota, I. M. (2004). Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase
to the HOG MAPK pathway. EMBO J. 23, 302–311. doi:10.1038/sj.emboj.7600036

Mateus, R., Holtzer, L., Seum, C., Hadjivasiliou, Z., Dubois, M., Jülicher, F., et al.
(2020). BMP signaling gradient scaling in the zebrafish pectoral fin. Cell Rep. 30,
4292–4302. doi:10.1016/J.CELREP.2020.03.024

Mattison, C. P., and Ota, I. M. (2000). Two protein tyrosine phosphatases, Ptp2 and
Ptp3, modulate the subcellular localization of the Hog1MAP kinase in yeast. Genes Dev.
14, 1229–1235. doi:10.1101/gad.14.10.1229

Matveyenko, A. v., Liuwantara, D., Gurlo, T., Kirakossian, D., Dalla Man, C., Cobelli,
C., et al. (2012). Pulsatile portal vein insulin delivery enhances hepatic insulin action and
signaling. Diabetes 61, 2269–2279. doi:10.2337/DB11-1462

Meizlish, M. L., Franklin, R. A., Zhou, X., and Medzhitov, R. (2021). Tissue
homeostasis and inflammation. Annu. Rev. Immunol. 39, 557–581. doi:10.1146/
ANNUREV-IMMUNOL-061020-053734

Mettetal, J. T., Muzzey, D., Gómez-Uribe, C., van Oudenaarden, A., Gomez-Uribe, C.,
van Oudenaarden, A., et al. (2008). The frequency dependence of osmo-adaptation in
Saccharomyces cerevisiae. Sci. (1979) 319, 482–484. doi:10.1126/science.1151582

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002).
Network motifs: Simple building blocks of complex networks. Sci. (1979) 298, 824–827.
doi:10.1126/science.298.5594.824

Mitchell, A., Wei, P., and Lim, W. A. (2015). Oscillatory stress stimulation uncovers
an Achilles heel of the yeast MAPK signaling network. Sci. (1979) 350, 1379–1383.
doi:10.1126/science.aab0892

Mokashi, C. S., Schipper, D. L., Qasaimeh, M. A., and Lee, R. E. C. (2019). A System
for analog control of cell culture dynamics to reveal capabilities of signaling networks.
iScience 19, 586–596. doi:10.1016/j.isci.2019.08.010

Müller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M., and Linker, R. A. (2019).
Sodium in the microenvironment regulates immune responses and tissue homeostasis.
Nat. Rev. Immunol. 19, 243–254. doi:10.1038/s41577-018-0113-4

Munsky, B., Neuert, G., and van Oudenaarden, A. (2012). Using gene expression
noise to understand gene regulation. Sci. (1979) 336, 183–187. doi:10.1126/science.
1216379

Murugan, A., Husain, K., Rust, M. J., Hepler, C., Bass, J., Pietsch, J. M. J., et al. (2021).
Roadmap on biology in time varying environments. Phys. Biol. 18, 041502. doi:10.1088/
1478-3975/ABDE8D

Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T., and van Oudenaarden, A. (2009). A
systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138, 160–171.
doi:10.1016/j.cell.2009.04.047

Nadal-Ribelles, M., Solé, C., Xu, Z., Steinmetz, L. M., de Nadal, E., and Posas, F.
(2014). Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol. Cell 53, 549–561.
doi:10.1016/j.molcel.2014.01.006

Neuert, G., Munsky, B., Tan, R. Z., Teytelman, L., Khammash, M., and van
Oudenaarden, A. (2013). Systematic identification of signal-activated stochastic gene
regulation. Sci. (1979) 339, 584–587. doi:10.1126/science.1231456

Neuhofer, W., and Beck, F.-X. (2005). Cell Survival in the hostile environment of the
renal medulla.Annu. Rev. Physiol. 67, 531–555. doi:10.1146/annurev.physiol.67.031103.
154456

Nguyen-Huu, T. D., Gupta, C., Ma, B., Ott, W., Josić, K., and Bennett, M. R. (2015). Timing
and variability of galactose metabolic gene activation depend on the rate of environmental
change. PLoS Comput. Biol. 11, e1004399. doi:10.1371/JOURNAL.PCBI.1004399

Nichols, J. M. E., Veltman, D., and Kay, R. R. (2015). Chemotaxis of a model
organism: Progress with Dictyostelium. Curr. Opin. Cell Biol. 36, 7–12. doi:10.1016/J.
CEB.2015.06.005

Noguchi, R., Kubota, H., Yugi, K., Toyoshima, Y., Komori, Y., Soga, T., et al. (2013).
The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin
patterns. Mol. Syst. Biol. 9, 664. doi:10.1038/msb.2013.19

Park, H., and Poo, M. M. (2012). Neurotrophin regulation of neural circuit
development and function. Nat. Rev. Neurosci. 14 (1 14), 7–23. doi:10.1038/nrn3379

Patterson, J. C., Klimenko, E. S., and Thorner, J. (2010). Single-cell analysis reveals
that insulation maintains signaling specificity between two yeast MAPK pathways with
common Components. Sci. Signal 3, ra75. ARTN. doi:10.1126/scisignal.2001275

Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., and Peter, M. (2011).
Transient activation of the HOG MAPK pathway regulates bimodal gene expression.
Sci. (1979) 332, 732–735. doi:10.1126/science.1198851

Polonsky, K. S., Given, B. D., and Van Cauter, E. (1988). Twenty-four-hour profiles
and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Invest.
81, 442–448. doi:10.1172/JCI113339

Posas, F., and Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via
Ste11pMAPKKK: Scaffold role of Pbs2pMAPKK. Science 276, 1702–1705. doi:10.1126/
science.276.5319.1702

Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C., and Saito, H.
(1996). Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay
mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86, 865–875.
doi:10.1016/S0092-8674(00)80162-2

Rahi, S. J., Larsch, J., Pecani, K., Katsov, A. Y., Mansouri, N., Tsaneva-Atanasova, K.,
et al. (2017). Oscillatory stimuli differentiate adapting circuit topologies. Nat. Methods
14, 1010–1016. doi:10.1038/nmeth.4408

Reiser, V., Ruis, H., and Ammerer, G. (1999). Kinase activity-dependent nuclear
export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-
activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell
10, 1147–1161. doi:10.1091/mbc.10.4.1147

Rep, M., Krantz, M., Thevelein, J. M., and Hohmann, S. (2000). The Transcriptional
Response of Saccharomyces cerevisiae to Osmotic Shock. Hot1p and Msn2p/Msn4p are
required for the induction of subsets of high osmolarity glycerol pathway-dependent
genes. J. Biol. Chem. 275, 8290–8300. doi:10.1074/jbc.275.12.8290

Rushlow, C. A., and Shvartsman, S. Y. (2012). Temporal dynamics, spatial range, and
transcriptional interpretation of the Dorsal morphogen gradient. Curr. Opin. Genet.
Dev. 22, 542–546. doi:10.1016/j.gde.2012.08.005

Frontiers in Cell and Developmental Biology frontiersin.org16

Thiemicke and Neuert 10.3389/fcell.2023.1124874

https://doi.org/10.1016/J.CEB.2017.10.005
https://doi.org/10.1074/jbc.272.28.17749
https://doi.org/10.1016/j.isci.2020.101565
https://doi.org/10.1016/J.XPRO.2021.100660
https://doi.org/10.1016/J.XPRO.2021.100660
https://doi.org/10.1038/NN.2505
https://doi.org/10.1073/pnas.2004998118
https://doi.org/10.1002/JOBM.202000661
https://doi.org/10.1038/S41579-022-00709-W
https://doi.org/10.1146/ANNUREV-CELLBIO-013020-103810
https://doi.org/10.1146/ANNUREV-CELLBIO-013020-103810
https://doi.org/10.1063/5.0059011
https://doi.org/10.1016/j.molcel.2012.04.018
https://doi.org/10.1016/j.cels.2018.05.013
https://doi.org/10.1016/J.GDE.2009.05.004
https://doi.org/10.1016/J.GDE.2009.05.004
https://doi.org/10.1242/DEV.092866
https://doi.org/10.1242/dev.170977
https://doi.org/10.1016/J.IMMUNI.2021.08.018
https://doi.org/10.1016/J.IMMUNI.2021.08.018
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1126/scisignal.2000056
https://doi.org/10.1038/369242a0
https://doi.org/10.1038/sj.emboj.7600036
https://doi.org/10.1016/J.CELREP.2020.03.024
https://doi.org/10.1101/gad.14.10.1229
https://doi.org/10.2337/DB11-1462
https://doi.org/10.1146/ANNUREV-IMMUNOL-061020-053734
https://doi.org/10.1146/ANNUREV-IMMUNOL-061020-053734
https://doi.org/10.1126/science.1151582
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.aab0892
https://doi.org/10.1016/j.isci.2019.08.010
https://doi.org/10.1038/s41577-018-0113-4
https://doi.org/10.1126/science.1216379
https://doi.org/10.1126/science.1216379
https://doi.org/10.1088/1478-3975/ABDE8D
https://doi.org/10.1088/1478-3975/ABDE8D
https://doi.org/10.1016/j.cell.2009.04.047
https://doi.org/10.1016/j.molcel.2014.01.006
https://doi.org/10.1126/science.1231456
https://doi.org/10.1146/annurev.physiol.67.031103.154456
https://doi.org/10.1146/annurev.physiol.67.031103.154456
https://doi.org/10.1371/JOURNAL.PCBI.1004399
https://doi.org/10.1016/J.CEB.2015.06.005
https://doi.org/10.1016/J.CEB.2015.06.005
https://doi.org/10.1038/msb.2013.19
https://doi.org/10.1038/nrn3379
https://doi.org/10.1126/scisignal.2001275
https://doi.org/10.1126/science.1198851
https://doi.org/10.1172/JCI113339
https://doi.org/10.1126/science.276.5319.1702
https://doi.org/10.1126/science.276.5319.1702
https://doi.org/10.1016/S0092-8674(00)80162-2
https://doi.org/10.1038/nmeth.4408
https://doi.org/10.1091/mbc.10.4.1147
https://doi.org/10.1074/jbc.275.12.8290
https://doi.org/10.1016/j.gde.2012.08.005
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124874


Sagner, A., and Briscoe, J. (2017). Morphogen interpretation: Concentration, time,
competence, and signaling dynamics. Wiley Interdiscip. Rev. Dev. Biol. 6 (4), e271.
doi:10.1002/wdev.271

Saito, H., and Posas, F. (2012). Response to hyperosmotic stress. Genetics 192,
289–318. doi:10.1534/genetics.112.140863

Sano, T., Kawata, K., Ohno, S., Yugi, K., Kakuda, H., Kubota, H., et al. (2016). Selective
control of up-regulated and down-regulated genes by temporal patterns and doses of
insulin. Sci. Signal 9, ra112. doi:10.1126/scisignal.aaf3739

Sanz, A. B., Santamaría, B., Ruiz-Ortega, M., Egido, J., and Ortiz, A. (2008).
Mechanisms of renal apoptosis in health and disease. J. Am. Soc. Nephrol. 19,
1634–1642. doi:10.1681/ASN.2007121336

Sasagawa, S., Ozaki, Y., Fujita, K., and Kuroda, S. (2005). Prediction and validation of
the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7,
365–373. doi:10.1038/ncb1233

Satin, L. S., Butler, P. C., Ha, J., and Sherman, A. S. (2015). Pulsatile insulin secretion,
impaired glucose tolerance and type 2 diabetes.Mol. Asp. Med. 42, 61–77. doi:10.1016/J.
MAM.2015.01.003

Segall, J. E., Block, S. M., and Berg, H. C. (1986). Temporal comparisons in
bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 83, 8987–8991. doi:10.1073/
PNAS.83.23.8987

Sgro, A. E., Schwab, D. J., Noorbakhsh, J., Mestler, T., Mehta, P., and Gregor, T.
(2015). From intracellular signaling to population oscillations: Bridging size- and
time-scales in collective behavior. Mol. Syst. Biol. 11, 779. doi:10.15252/MSB.
20145352

Shimizu, T. S., Tu, Y., and Berg, H. C. (2010). Amodular gradient-sensing network for
chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Syst.
Biol. 6, 382. doi:10.1038/msb.2010.37

Silverthorn, D. U. (2019). in Human physiology - an integrated approach. Editors
B. R. Johnson, W. C. Ober, C. E. Ober, A. Impaglizzo, and A. C. Silverthorn 8th ed.
(London, United Kingdom: Pearson).

Sorre, B., Warmflash, A., Brivanlou, A. H., and Siggia, E. D. (2014). Encoding of
temporal signals by the TGF-β Pathway and implications for embryonic patterning.
Dev. Cell 30, 334–342. doi:10.1016/j.devcel.2014.05.022

Stanger, K., Gorelik, M., and Davidson, A. R. (2012). Yeast adaptor protein, Nbp2p, is
conserved regulator of fungal Ptc1p phosphatases and is involved in multiple signaling
pathways. J. Biol. Chem. 287, 22133–22141. doi:10.1074/JBC.M112.348052

Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., III, and Doyle, J. (2004). Robustness
of cellular functions. Cell 118, 675–685. doi:10.1016/j.cell.2004.09.008

Stewart, B. J., Ferdinand, J. R., Young, M. D., Mitchell, T. J., Loudon, K. W., Riding, A.
M., et al. (2019). Spatiotemporal immune zonation of the human kidney. Science 365,
1461–1466. doi:10.1126/science.aat5031

Tewary, M., Ostblom, J., Prochazka, L., Zulueta-Coarasa, T., Shakiba, N., Fernandez-
Gonzalez, R., et al. (2017). A stepwise model of reaction-diffusion and positional
information governs self-organized human peri-gastrulation-like patterning.
Development 144, 4298–4312. doi:10.1242/DEV.149658

Thiemicke, A., Jashnsaz, H., Li, G., and Neuert, G. (2019). Generating kinetic
environments to study dynamic cellular processes in single cells. Sci. Rep. 9, 10129.
doi:10.1038/s41598-019-46438-8

Thiemicke, A., and Neuert, G. (2021). Kinetics of osmotic stress regulate a cell
fate switch of cell survival. Sci. Adv. 7 (8), eabe1122. doi:10.1126/sciadv.abe1122

Tu, Y., and Rappel, W.-J. J. (2018). Adaptation of living systems. Annu. Rev. Condens
Matter Phys. 9, 183–205. doi:10.1146/annurev-conmatphys-033117-054046

Tu, Y., Shimizu, T. S., and Berg, H. C. (2008). Modeling the chemotactic response of
Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. U. S. A. 105, 14855–14860.
doi:10.1073/pnas.0807569105

Waite, A. J., Frankel, N. W., and Emonet, T. (2018). Behavioral variability and
phenotypic diversity in bacterial chemotaxis. Annu. Rev. Biophys. 47, 595–616. doi:10.
1146/ANNUREV-BIOPHYS-062215-010954

Wang, C. J., Bergmann, A., Lin, B., Kim, K., and Levchenko, A. (2012). Diverse
sensitivity thresholds in dynamic signaling responses by social Amoebae. Sci. Signal 5,
ra17. doi:10.1126/scisignal.2002449

Wang, C. S., Kavalali, E. T., and Monteggia, L. M. (2022). BDNF signaling in context:
From synaptic regulation to psychiatric disorders. Cell 185, 62–76. doi:10.1016/J.CELL.
2021.12.003

Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. (2001). Ptc1, a type 2C ser/thr
phosphatase, inactivates theHOGpathway by dephosphorylating themitogen-activated protein
kinase Hog1. Mol. Cell Biol. 21, 51–60. doi:10.1128/mcb.21.1.51-60.2001

Westfall, P. J., and Thorner, J. (2006). Analysis of mitogen-activated protein
kinase signaling specificity in response to hyperosmotic stress: Use of an
analog-sensitive HOG1 allele. Eukaryot. Cell 5, 1215–1228. doi:10.1128/EC.
00037-06

Wilck, N., Balogh, A., Markó, L., Bartolomaeus, H., andMüller, D. N. (2019). The role
of sodium in modulating immune cell function. Nat. Rev. Nephrol. 15, 546–558. doi:10.
1038/s41581-019-0167-y

Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., and Saito, H. (1997). Regulation of
the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and
PTP3 protein tyrosine phosphatases. Mol. Cell Biol. 17, 1289–1297. doi:10.1128/MCB.
17.3.1289

Young, C., Mapes, J., Hanneman, J., Al-Zarban, S., and Ota, I. (2002). Role of
Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway
inactivation. Eukaryot. Cell 1, 1032–1040. doi:10.1128/EC.1.6.1032-1040.2002

Young, J. W., Locke, J. C.W., and Elowitz, M. B. (2013). Rate of environmental change
determines stress response specificity. Proc. Natl. Acad. Sci. U. S. A. 110, 4140–4145.
doi:10.1073/pnas.1213060110

Zhang, W., Fan, W., Guo, J., and Wang, X. (2022). Osmotic stress activates RIPK3/MLKL-
mediated necroptosis by increasing cytosolic pH through a plasma membrane Na+/
H+exchanger. Sci. Signal 15, 5881. doi:10.1126/scisignal.abn5881

Zhang, Z., Cai, Q., Michea, L., Dmitrieva, N. I., Andrews, P., and Burg, M. B. (2002).
Proliferation and osmotic tolerance of renal inner medullary epithelial cells in vivo and in cell
culture. Am. J. Physiol. Ren. Physiol. 283 (2), F302–F308. doi:10.1152/ajprenal.00038.2002

Frontiers in Cell and Developmental Biology frontiersin.org17

Thiemicke and Neuert 10.3389/fcell.2023.1124874

https://doi.org/10.1002/wdev.271
https://doi.org/10.1534/genetics.112.140863
https://doi.org/10.1126/scisignal.aaf3739
https://doi.org/10.1681/ASN.2007121336
https://doi.org/10.1038/ncb1233
https://doi.org/10.1016/J.MAM.2015.01.003
https://doi.org/10.1016/J.MAM.2015.01.003
https://doi.org/10.1073/PNAS.83.23.8987
https://doi.org/10.1073/PNAS.83.23.8987
https://doi.org/10.15252/MSB.20145352
https://doi.org/10.15252/MSB.20145352
https://doi.org/10.1038/msb.2010.37
https://doi.org/10.1016/j.devcel.2014.05.022
https://doi.org/10.1074/JBC.M112.348052
https://doi.org/10.1016/j.cell.2004.09.008
https://doi.org/10.1126/science.aat5031
https://doi.org/10.1242/DEV.149658
https://doi.org/10.1038/s41598-019-46438-8
https://doi.org/10.1126/sciadv.abe1122
https://doi.org/10.1146/annurev-conmatphys-033117-054046
https://doi.org/10.1073/pnas.0807569105
https://doi.org/10.1146/ANNUREV-BIOPHYS-062215-010954
https://doi.org/10.1146/ANNUREV-BIOPHYS-062215-010954
https://doi.org/10.1126/scisignal.2002449
https://doi.org/10.1016/J.CELL.2021.12.003
https://doi.org/10.1016/J.CELL.2021.12.003
https://doi.org/10.1128/mcb.21.1.51-60.2001
https://doi.org/10.1128/EC.00037-06
https://doi.org/10.1128/EC.00037-06
https://doi.org/10.1038/s41581-019-0167-y
https://doi.org/10.1038/s41581-019-0167-y
https://doi.org/10.1128/MCB.17.3.1289
https://doi.org/10.1128/MCB.17.3.1289
https://doi.org/10.1128/EC.1.6.1032-1040.2002
https://doi.org/10.1073/pnas.1213060110
https://doi.org/10.1126/scisignal.abn5881
https://doi.org/10.1152/ajprenal.00038.2002
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1124874

	Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments
	1 Introduction
	2 Concentration and rate thresholds regulate yeast stress response
	3 E. coli chemotaxis nutrient sensing
	4 Bacterial B. subtilis stress response
	5 Rate sensitivity in amoebae response
	6 Temporal dynamics of growth factors in mammalian cells
	7 Spatio-temporal dynamics of morphogens
	8 Temporal dynamics of glucose and insulin signaling
	9 Temporal dynamics of stressors in the kidney
	10 Summary and future directions
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


