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Actin and its dynamic structural remodelings are involved in multiple cellular
functions, including maintaining cell shape and integrity, cytokinesis, motility,
navigation, and muscle contraction. Many actin-binding proteins regulate the
cytoskeleton to facilitate these functions. Recently, actin’s post-translational
modifications (PTMs) and their importance to actin functions have gained
increasing recognition. The MICAL family of proteins has emerged as important
actin regulatory oxidation-reduction (Redox) enzymes, influencing actin’s
properties both in vitro and in vivo. MICALs specifically bind to actin filaments
and selectively oxidize actin’s methionine residues 44 and 47, which perturbs
filaments’ structure and leads to their disassembly. This review provides an
overview of the MICALs and the impact of MICAL-mediated oxidation on
actin’s properties, including its assembly and disassembly, effects on other
actin-binding proteins, and on cells and tissue systems.

KEYWORDS

MICAL1, MICAL2, MICAL3, MsrB, SelR, semaphorin, plexin, rab

1 Introduction

Actin is one of the main components of the cytoskeleton, playing an essential role in
muscle contraction, cell division, motility, navigation, mechanosensing, and in maintaining
cellular structure (Blanchoin et al., 2014; Pollard, 2016; Rottner et al., 2017; Lappalainen
et al., 2022). Actins share high sequence homology (~90%) across species from invertebrates
to vertebrates. Six distinct isoforms of actin are present in invertebrates such as Drosophila
and vertebrates (called α-cardiac, α-skeletal, α-smooth, γ-smooth, β-cytoplasmic, and γ-
cytoplasmic actins in mammals), which vary primarily at their N-terminus (Kashina, 2020).
The actin cytoskeleton is dynamic and constantly remodels to perform various cellular
functions (Blanchoin et al., 2014; Pollard, 2016; Lappalainen et al., 2022). Many actin-
binding proteins (ABPs) dynamically fine-tune actin structures in response to cell needs
(Gupta et al., 2020; Kadzik et al., 2020; Lappalainen et al., 2022). These proteins help in actin
assembly from its monomers (G-actin) to filaments (F-actin) and then to higher-order
structures, such as actin bundles and networks (Pollard, 2016; Merino et al., 2020; Gautreau
et al., 2022). Among others, ABPs are categorized as proteins assisting in actin nucleation
and elongation (e.g., formins and Ena/VASP family), network formation (e.g., Arp2/
3 complex), severing and depolymerization (e.g., ADF/cofilin, gelsolin superfamily, and
twinfilin), bundling (e.g., fascin, espin, α-actinin), G-actin binding (e.g., profilin), and
barbed-end/pointed-end capping (e.g., CapZ and tropomodulin) (Siripala and Welch,
2007a; Siripala and Welch, 2007b; Pollard, 2016; Lappalainen et al., 2022).

OPEN ACCESS

EDITED BY

Kai Murk,
Charité University Medicine Berlin,
Germany

REVIEWED BY

Velia Fowler,
University of Delaware, United States
Anna Kashina,
University of Pennsylvania, United States
Hans Georg Mannherz,
Academy of Ruhr-University Bochum,
Germany

*CORRESPONDENCE

Jonathan R. Terman,
jonathan.terman@utsouthwestern.edu

Emil Reisler,
reisler@mbi.ucla.edu

SPECIALTY SECTION

This article was submitted to Cell
Adhesion and Migration,
a section of the journal
Frontiers in Cell and
Developmental Biology

RECEIVED 14 December 2022
ACCEPTED 02 February 2023
PUBLISHED 17 February 2023

CITATION

Rajan S, Terman JR and Reisler E (2023),
MICAL-mediated oxidation of actin and
its effects on cytoskeletal and
cellular dynamics.
Front. Cell Dev. Biol. 11:1124202.
doi: 10.3389/fcell.2023.1124202

COPYRIGHT

© 2023 Rajan, Terman and Reisler. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 17 February 2023
DOI 10.3389/fcell.2023.1124202

https://www.frontiersin.org/articles/10.3389/fcell.2023.1124202/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1124202/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1124202/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1124202&domain=pdf&date_stamp=2023-02-17
mailto:jonathan.terman@utsouthwestern.edu
mailto:jonathan.terman@utsouthwestern.edu
mailto:reisler@mbi.ucla.edu
mailto:reisler@mbi.ucla.edu
https://doi.org/10.3389/fcell.2023.1124202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1124202


It is now well-established that besides classical ABPs that regulate
actin’s properties and dynamics via physical, non-covalent
mechanisms, actin is also regulated by alterations of its amino acids
(Terman and Kashina, 2013; Varland et al., 2019). These co-
translational and post-translational modifications (PTMs) of actin,
such as phosphorylation, oxidation, acetylation, arginylation,
SUMOlytion, ubiquitination, and others, also dynamically control
actin’s properties, including F-actin’s stability, functions, and
interaction with other ABPs (Terman and Kashina, 2013; Varland
et al., 2019). Since actin is one of the most ubiquitous proteins, some of
these PTMs are likely to occur non-specifically, including as by-
products of enzymatic reactions or via non-enzymatic (including
environmental) mechanisms (Terman and Kashina, 2013; Varland
et al., 2019). Yet, specific enzymes have also now been identified
that selectively target actin as a substrate. Defining these enzymes
and their modification of actin is therefore a critical biomedical goal.

MICAL (Molecule Interacting with CasL) proteins have recently
emerged as a family of enzymes that selectively target actin as a
substrate. MICALs specifically bind and oxidize F-actin to

posttranslationally alter specific amino acids within filament
subunits, and by this, MICALs robustly alter the properties of
actin (Hung et al., 2010a; Hung et al., 2011). Herein, we review
the MICALs, first describing their protein organization, enzymatic
region, and structural properties. Then, we highlight MICAL-
mediated post-translational oxidation of actin and its impact on
actin structures and dynamics. Lastly, we focus on the modulation of
MICAL-mediated actin regulation by other proteins and the
consequence of the MICAL’s oxidation of actin on cellular and
tissue functions and dysfunctions.

2 The MICAL family of proteins

MICAL proteins were found independently as a binding partner
for the SH3-domain containing adaptor protein CasL (Suzuki et al.,
2002) and as a functional driver of cellular morphology/neuronal
guidance downstream of Plexin cell-surface receptors (Terman et al.,
2002). It was the work in (Terman et al., 2002) that first identified
MICALs as having an enzymatic domain and indicated they were
oxidation-reduction (Redox) enzymes. That work (Terman et al.,
2002) also identified multiple different MICAL genes and that they
comprise a family of phylogenetically-conserved proteins with one
member in Drosophila (called Mical) and three in vertebrates,
including humans [named MICAL-1, MICAL-2, and MICAL-3
(or also known as MICAL1, MICAL2, and MICAL3)]
(Figure 1A). MICALs are large proteins (>1,000 amino acids)
consisting of a highly conserved N-terminal flavoprotein
monooxygenase (also called hydroxylase, MO, FM, or Redox)
domain, followed by several other notable regions, including a
calponin homology (CH) domain, a Lin-11, Isl-1, Mec-3 (LIM)
domain, a proline-rich region with PxxP ligands for SH3-domain
containing proteins, and a region that shares homology to the alpha
(α) region of Ezrin, Radixin, and Moesin (ERM) proteins (this
region is now often referred to as the Plexin-interacting region
(PIR), Rab binding domain (RBD), bMERB, or CC) [Figure 1A
(Terman et al., 2002; Alto and Terman, 2018; Rouyère et al., 2022)].
Each MICAL family member, including those in Drosophila and
humans, has multiple different splice forms/isoforms (Terman et al.,
2002), which impact their enzymatic and cellular functions
[Figure 1A; e.g., (Terman et al., 2002; Weide et al., 2003;
Pasterkamp et al., 2006; Hung and Terman, 2011; Wilson et al.,
2016; Rouyère et al., 2022)]. Among the different family members,
the MICALs are expressed in most, if not all, tissues (see below).

The Redox region of the MICALs consists of three motifs that
bind specifically to FAD (flavin adenine dinucleotide): a distinct
dinucleotide binding Rossman fold GxGxxG motif (where G is
glycine and x is any amino acid), and both GD (glycine-aspartic
acid) and DG (aspartic acid-glycine) motifs that interact with the
ribose and pyrophosphate moieties of flavin, respectively [Figure 1A
(Terman et al., 2002)]. The presence of these three motifs defined
MICALs as flavoprotein monooxygenases, versus other types of
Redox enzymes such as oxidases (Terman et al., 2002). Structural
studies have also confirmed that the Redox region of MICALs is
most similar to flavoprotein monooxygenases, including to the
classical flavoprotein monooxygenase p-hydroxybenzoate
hydroxylase (pHBH) (Nadella et al., 2005; Siebold et al., 2005;
Alqassim et al., 2016; Kim et al., 2020). Biochemical assays have

FIGURE 1
MICAL family proteins: domain organization and allosteric
interaction. (A) Domain organization of Drosophila Mical and human/
mammalian MICAL-1, MICAL-2, and MICAL-3. All MICALs contain the
N-terminal flavoprotein monooxygenase (Redox) domain
(green), followed by a calponin homology (CH) domain (orange), a LIM
domain (blue), a proline-rich region (pink), and an ERM alpha (α)-like
domain (red). These domains are linked by regions of variable length
(//). The FAD binding (GxxGxxG, DG, and GD) motifs in the Redox
domain are denoted in purple. The two Rab binding (RBD) regions
(dark green) and plexin binding (PIR) region (purple) within the ERM α-
like domain are also shown. Sites of phosphorylation by Abl kinase are
shown as yellow circles [Y (tyrosine)], while those of PAK1 kinase are in
dark blue circles [S (Serine)]. It is notable that many annotated cDNAs
for MICAL-2 do not contain the C-terminal ERM α-like region, but the
MICAL-2 genomic locus includes an ERM α-like region that is similar to
MICAL-1 and MICAL-3. This region has independently been called
MICAL-CL and Ebitein and is denoted here with dashed lines. (B) Full-
length MICAL family members have been found to exist in
autoinhibited (inactive) forms. In the autoinhibited form, the
C-terminus ERM α-like domain of the MICAL’s folds in antiparallel
fashion towards the N-terminus, and interacts with the Redox and LIM
domains to inhibit the Redox enzymatic activity of the MICALs.
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also confirmed MICALs’ catalytic activity. In particular, MICALs
non-covalently bind the cofactor FAD and use NADPH as a
coenzyme and oxygen (O2) in Redox reactions (Terman et al.,
2002; Nadella et al., 2005; Hung et al., 2010a; Hung et al., 2011;
Zucchini et al., 2011; McDonald et al., 2013; Wu et al., 2018).
Further, unlike oxidases, flavoprotein monooxygenases such as
pHBH have substrates that they physically interact with, are
activated by, and specifically modify [i.e., direct substrates
(Huijbers et al., 2014)]. So too, MICALs’ Redox region has
substrates that they physically interact with and whose binding
activates MICALs to specifically modify them. In particular,
MICALs modify specific methionine residues within these direct
substrates: F-actin being the best defined [(Hung et al., 2011); see
below]. Of note, in this way, MICAL family proteins are the first
flavoprotein monooxygenases found to have a direct protein
substrate. Another protein, the Ca2+/calmodulin-dependent
protein kinase II (CaMKII), has also recently been linked to
being a direct substrate for MICAL-1 (Konstantinidis et al.,
2020). In the absence of a substrate, flavoprotein
monooxygenases such as pHBH produce hydrogen peroxide
(H2O2) (Entsch and van Berkel, 1995; Huijbers et al., 2014), and
can therefore modify molecules indirectly (i.e., as indirect
substrates). The MICALs’ Redox domain also produces H2O2 in
the absence of a direct substrate (Terman et al., 2002; Nadella et al.,
2005; Schmidt et al., 2008; Hung et al., 2010a; Hung et al., 2011;
Zucchini et al., 2011; McDonald et al., 2013; Wu et al., 2018). This
H2O2 affects the activity of the collapsin response mediator protein
(CRMP) (Schmidt et al., 2008; Morinaka et al., 2011; Tominaga et al.,
2019) and the tau protein (Prifti et al., 2022), with which MICALs
are known to interact, by oxidizing specific cysteine residues in them
(Schmidt et al., 2008; Morinaka et al., 2011; Tominaga et al., 2019;
Prifti et al., 2022). A member of the actin nucleator Arp2/3 complex,
Arp3B, has also been linked to being modified by the MICALs on a
specific methionine residue (Galloni et al., 2021), but it has not yet
been determined whether this is via direct or indirect mechanisms. It
is also notable that the amount of H2O2 produced differs between
different MICALs, such that MICAL-1 produces higher amounts of
H2O2, as compared to other known monooxygenases and other
MICALs (Nadella et al., 2005; Zucchini et al., 2011; Wu et al., 2018).
In this regard, MICAL-1 has a substitution of a critical aspartate
(Asp) to alanine (Ala) in the flavin-binding DG motif, which is
responsible for this increased catalytic activity in the absence of a
substrate (Wu et al., 2018).

Unlike classical flavoprotein monooxygenases such as pHBH,
MICALs contain other domains besides their Redox domains.
Therefore, MICALs are referred to as multidomain flavoprotein
monooxygenases (Terman et al., 2002) and these other domains,
including the proteins they interact with, are essential for
regulating the activity of the MICAL’s Redox domain (Schmidt
et al., 2008; Hung et al., 2010a; Alto and Terman, 2018; Rouyère
et al., 2022). In particular, the MICAL’s other domains have been
found to regulate its catalytic activity and its effects in cells/in vivo
– including to induce it to exist in an autoinhibited state, such that
the C-terminal portion of the MICALs autoinhibits their
N-terminal Redox activity [Figure 1B; (Schmidt et al., 2008;
Hung et al., 2010a; Giridharan et al., 2012; Vitali et al., 2016;
Frémont et al., 2017)]. The MICAL’s Redox activity therefore is
under the spatiotemporal instruction of other specific proteins

(Terman et al., 2002; Schmidt et al., 2008; Hung et al., 2010a;
Frémont et al., 2017) (see below).

The CH domain of each of the MICALs (Figure 1A) is
structurally similar to the CH type-2 domain present in several
other actin-binding proteins (such as smoothelin) (Terman et al.,
2002). While CH type-1 domains are known to directly bind to
F-actin, CH type-2 domains, including those present in MICALs, do
not appear to directly bind to F-actin (Sun et al., 2006; Ishida et al.,
2008; Yin et al., 2020). Indeed, work with purified proteins has
revealed that the Redox domain of theMICALs alone is sufficient for
its binding to F-actin (Hung et al., 2010a; Yoon et al., 2021). So too,
the catalytic activity (Kcat) of the MICAL’s Redox domain and its
effects on F-actin are similar with or without the CH domain (Hung
et al., 2010a; Vitali et al., 2016; Yoon et al., 2021). Yet, the MICAL’s
CH domain may help facilitate the MICAL’s F-actin binding,
including the possibility that the MICAL’s CH domain might
interact with the CH domain of other proteins to further
promote the MICAL’s F-actin binding (Alqassim et al., 2016;
Kim et al., 2020). The MICAL’s CH domain may also provide
the means to interact with non-CH domain-containing proteins
(Suzuki et al., 2002). Based on analogy to other proteins, the
MICAL’s CH domain (or residues nearby) may also be involved
in its self-association (e.g., (Liu et al., 2016; Rai et al., 2020)).
Notably, in vivo work reveals that the CH domain helps localize
the MICALs subcellularly (through unknown means) to exert its
F-actin effects (Hung et al., 2010a).

The LIM domain of each of the MICALs (Figure 1A) is highly
similar to other LIM domains, indicating it contains Zn2+ finger
motifs (Terman et al., 2002). As with other LIM domains, the
MICAL’s LIM domain may serve to bring it into contact with
other proteins (Matthews et al., 2009) — including that it may
contribute to the MICAL’s interaction with CRMP, although no
direct interactions between MICALs’ LIM domain and CRMP have
been observed (Schmidt et al., 2008). The MICAL’s LIM domain
may also be involved in its self-association (Schmidt et al., 2008; Liu
et al., 2016; Miyake et al., 2019). The MICAL’s proline-rich PxxP
region (Figure 1A) is known to mediate its interactions with other
proteins, including with SH3 domain-containing proteins such as
the adaptor protein CasL (Suzuki et al., 2002) and the non-receptor
tyrosine kinase Abl (Yoon et al., 2017). The MICAL’s C-terminal
ERM alpha (α)-like domain (also called PIR, CC, RBD, bMERB)
[Figure 1A (Terman et al., 2002; Alto and Terman, 2018; Rouyère
et al., 2022)] serves an essential function in regulating the enzymatic
activity of the MICALs. It is through this region that MICALs
interact with the cytoplasmic portion of the Plexin transmembrane
receptor (Terman et al., 2002; Schmidt et al., 2008) and also with the
activated (GTP-bound form) of Rab GTPases (Weide et al., 2003;
Fukuda et al., 2008; Deng et al., 2016; Rai et al., 2016; Frémont et al.,
2017). It is also notable that many annotated cDNAs for MICAL-2
do not contain the C-terminal ERM α-like region, but theMICAL-2
genomic locus includes an ERM α-like domain that is similar to
invertebrate Mical, MICAL-1, and MICAL-3 (Terman et al., 2002;
Hung et al., 2011; Giridharan and Caplan, 2014; Alto and Terman,
2018; Rouyère et al., 2022). This region has independently been
called MICAL-CL and Ebitein (Figure 1A, dashed box; see (Hung
and Terman, 2011) for further discussion).

Another family of proteins known as the Mical-like (MICAL-L)
has also been identified (Terman et al., 2002). They share similar
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domain composition with the MICALs but lack the Redox domain.
Humans have two MICAL-like proteins [MICAL-L1 and MICAL-
L2 (also called JRAB)], while Drosophila has one Mical-like protein
(Terman et al., 2002). MICAL-Ls have key cellular functions,
including in endocytosis and vesicle trafficking [e.g., (Farmer
et al., 2021; Malinova et al., 2021; Sikora et al., 2021)], but since
they do not have the actin-modifying Redox domain, they will not be
further discussed herein.

3 The MICAL’s effects on F-actin
properties

The Redox region of all MICALs directly interacts with F-actin
(Hung et al., 2010a; Hung et al., 2011; Zucchini et al., 2011;
McDonald et al., 2013; Wu et al., 2018) (Figures 2A, B).
Moreover, this binding to F-actin substantially enhances each
MICAL family member’s ability to interact with and consume its
coenzyme NADPH (Hung et al., 2011; Zucchini et al., 2011;
McDonald et al., 2013; Wu et al., 2018) (Figure 2C). In
particular, the direct binding of each MICAL family member to
F-actin (not to G-actin) substantially increases its Redox activity

(e.g., including >100-fold, in an F-actin andMICALs concentration-
dependent manner) (Hung et al., 2011; Zucchini et al., 2011;
McDonald et al., 2013; Wu et al., 2018). Each MICAL family
member then oxidizes two specific methionine (Met) residues in
actin (Met44 and Met47) in a stereoselective manner (in the Met
R-isomer conformation) to generate actin Met-44, 47-R-sulfoxide
[actin Met(R)O-44,47] [Figures 2B, C (Hung et al., 2011; Hung et al.,
2013; Lee et al., 2013; Wu et al., 2018)]. Notably, it is the
stereospecific oxidation of these two Met residues that underlies
the MICALs’ F-actin effects. In particular, a high rate of actin
disassembly is achieved at very low, substoichiometric levels of
MICALs, pointing to the catalytic activity of MICALs in
disassembling F-actin (Hung et al., 2011; Wu et al., 2018). So
too, work with purified proteins and in vivo reveals that
mutating the Met44 and Met47 residues of actin prevents
MICALs from exerting their effects on F-actin (Hung et al., 2011;
Lundquist et al., 2014; Grintsevich et al., 2017; Orr et al., 2017; Wu
et al., 2018).

The identification of the MICALs and their mechanism for
affecting actin also provides new insight into the regulation of actin
by oxidative means. In particular, oxidation has long been known to
affect actin filament dynamics [Reviewed in (Terman and Kashina,
2013)]. What was not clear was whether these effects were specific,
selective, and/or locally controlled versus simply being a random by-
product of enzymatic reactions or non-enzymatic mechanisms
(Shacter, 2000; Stadtman et al., 2003; Kim and Gladyshev, 2007).
The identification, as described above, that the MICAL’s enzymatic
modification of actin is substrate specific (i.e., F-actin, but not
G-actin), residues specific (i.e., Met44, Met47), and stereo specific
(i.e., in the R-isomer versus the S-isomer conformation), thus reveals
that actin dynamics are controlled by distinct oxidative mechanisms.
In the same way, the MICALs do not simply release a diffusible
oxidant, such as H2O2, to cause widespread effects on F-actin – since
such oxidants, including H2O2, do not mimic the effects of the
MICALs [e.g., cell-lethal levels of H2O2 have no effect on F-actin
disassembly in the assays used to define the MICALs (Hung et al.,
2010a; Hung et al., 2011; Wu et al., 2018)]. Furthermore, the H2O2

scavenger catalase (and other types of reductants such as DTT and
thioredoxin/thioredoxin reductase) do not alter the MICAL’s
F-actin effects (Hung et al., 2011; Hung et al., 2013).
Additionally, the MICAL’s substrate residues (Met44 and Met47)
are buried within F-actin, in a hydrophobic pocket that is poorly
accessible to diffusible oxidants (Dalle-Donne et al., 2002; Guan
et al., 2003; Guan et al., 2005; Takamoto et al., 2007; Hung et al.,
2011; Chou and Pollard, 2019). Moreover, MICALs need to be in
close proximity to F-actin to exert their effects (Hung et al., 2011)—
and such binding to F-actin is needed to activate MICALs’
enzymatic activity (Hung et al., 2010a; Hung et al., 2011;
Zucchini et al., 2011; McDonald et al., 2013; Wu et al., 2018) to
then oxidize actin filament subunits (Hung et al., 2011; Wu et al.,
2018). Thus, the MICAL family forms a class of monooxygenases
that modify actin by direct interactions. Moreover, as the MICALs
directly/physically interact with F-actin, further work will seek to
capture/determine whether the MICALs directly interact with the
Met44 and Met47 residues to add oxygen to them [which would be
similar to how flavoprotein monooxygenases such as pHBHwork on
their substrate residues (Entsch and van Berkel, 1995; Huijbers et al.,
2014)]. MICALs’ ability to stereospecifically modify Met44 and

FIGURE 2
The MICAL’s activity and its effects on actin dynamics. (A–C)
MICALs posttranslationally modify specific methionine (Met) residues
in F-actin (red), which triggers F-actin disassembly (A). More
specifically, MICALs bind to F-actin [(B), red arrow)] and in the
presence of their coenzyme, NADPH (C), selectively and
stereospecifically oxidize (O) actin’s Met44 and Met47 in the
R-conformation [(C), arrowhead]. This oxidation of Met44 and
Met47 [see (B), red] occurs in the D-loop, at the pointed end of
individual actin filament subunits, which disrupts the interprotomers
interactions in F-actin and leads to their rapid disassembly. (D)MICAL-
mediated F-actin disassembly is regulated by other proteins. From top
and clockwise: following MICALs’ oxidation of F-actin to generate
MICAL-oxidized (Mox) F-actin, MICAL-triggered F-actin disassembly
is enhanced by other proteins, including cofilin, profilin, and INF2. The
Mox-G-actin that is formed does not readily re-polymerize even in the
presence of profilin, formins, and Ena/VASP. Yet, Mox-G-actin is
reduced specifically by selective methionine sulfoxide reductases
(MsrBs/SelRs), and this G-actin can then re-polymerize normally. In
this way, MICALs andMsrBs/SelRs create a reversible system for Redox
regulation of actin dynamics in cells.
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Met47 in the R, but not the S, conformation indicates this type of
selective modification within the MICALs’ – F-actin substrate
interaction pocket. Alternatively, the substrate binding pocket
between the MICALs and F-actin (i.e., the in situ
enzyme–substrate interaction region) may provide an
environment where MICALs release an oxidant that selectively
modifies Met44 and Met47.

The Met44 and Met47 residues are present in the DNaseI-
binding loop (D-loop) of actin at the pointed-end of actin filament
subunits (Figure 2B). Actin’s D-loop is essential for forming
longitudinal contacts between actin subunits in F-actin and
regulates filaments’ stability (Oztug Durer et al., 2010;
Dominguez and Holmes, 2011; Durer et al., 2012; Chou and
Pollard, 2019; Das et al., 2020). More specifically, the side chain
of Met44 is thought to be an important residue for inter-subunit
interactions along the long-pitch helix of filaments (Oztug Durer
et al., 2010; Dominguez and Holmes, 2011; Durer et al., 2012; Chou
and Pollard, 2019; Chou and Pollard, 2020; Das et al., 2020).
Oxidation of these two methionine residues increases the local
charge of F-actin (Hung et al., 2011) and alters the filaments’
D-loops positions (Grintsevich et al., 2017). This loosening of
inter-subunit interactions upon MICAL-mediated oxidation
destabilizes the F-actin structures, making them prone to
fragmentation even under a mild mechanical force such as
pipetting, and ultimately disassembles them (Hung et al., 2011;
Grintsevich et al., 2016; Grintsevich et al., 2017). Of note, actin’s
Met44 and Met47 are phylogenetically conserved in all actin
isoforms, suggesting that MICALs are likely to exert similar
effects on all actins (Hung et al., 2011). Furthermore, the
importance of Met44 in actin structures can be judged by the
fact that a mutation of Met44 is lethal in yeast (Oztug Durer
et al., 2010). Likewise, dominant de novo (heterozygous missense)
mutations in actin’s Met44 and Met47 result in human diseases,
including those defined by an accumulation of F-actin (Laing et al.,
2009; Hung et al., 2010b; Hoffjan et al., 2011; Zou et al., 2013;
Regalado et al., 2014; Wangler et al., 2014; Yates et al., 2017; Zhang
et al., 2019).

The MICAL-mediated modification of F-actin subunits induces
filaments to disassemble [Figure 2A (Hung et al., 2010a; Hung et al.,
2011; Wu et al., 2018)]. Real-time analysis of immobilized actin
filaments by TIRF microscopy reveals that MICALs induce
depolymerization and severing (fragmentation) of filaments [e.g.,
(Hung et al., 2011; Grintsevich et al., 2016; Grintsevich et al., 2017)].
MICALs depolymerize barbed ends of filaments with disassembly
rates that reach as high as >84 subunits/sec, as opposed to
disassembly rates that on rare occasions can reach as high as
~5.4 subunits/sec for unmodified F-actin (Grintsevich et al.,
2017). At the same time, the pointed-end depolymerization rate
is ~1.44 subunits/sec in the presence of MICAL, in contrast to
~0.17 subunits/sec in control (no MICAL) conditions (Frémont
et al., 2017; Grintsevich et al., 2017). Thus, the prime cause of
MICAL-oxidized F-actin’s rapid depolymerization are their unstable
barbed ends. Intriguingly, the nucleotide state of F-actin also plays a
considerable role in its susceptibility to MICAL-mediated
depolymerization. ADP-Pi·F-actin is less prone to MICAL-
mediated depolymerization than ADP·F-actin (Grintsevich et al.,
2017). Incubation of MICAL-oxidized F-actin with either BeFx
(which mimics the ADP-Pi cap at the barbed ends) or a

heterodimeric capping protein (CP) abolishes the rapid
depolymerization event (Grintsevich et al., 2017). Overall, this
reveals that MICALs affect aged actin filaments much more than
new ones. This is significant at the cellular level because rapid actin
remodeling is required to bring morphological changes to cells – and
these changes are achieved by disassembling existing actin structures
(filaments and bundles). Indeed, MICALs dramatically decrease and
remodel F-actin structures in cultured cells and in vivo, both in the
cytosol [(Hung et al., 2010a; Hung et al., 2011; Hung et al., 2013; Lee
et al., 2013; Wu et al., 2018); see below] and in the nucleus
(Lundquist et al., 2014) — and exert disassembling effects on
different networks of actin including bundled actin (Hung et al.,
2010a), branched actin (Galloni et al., 2021), and actin bound to
decorating proteins — including tropomyosin (Wioland et al.,
2021). Loss of MICALs in vivo results in the accumulation of
F-actin [e.g., (Beuchle et al., 2007; Hung et al., 2010a; Hung
et al., 2011; Hung et al., 2013; Lundquist et al., 2014); see below].

Actin disassembly proteins, such as cofilin, gelsolin, twinfilin,
etc., sever or depolymerize filaments by inducing conformational
changes in F-actin upon their binding (Pollard, 2016; Lappalainen
et al., 2022). MICALs, on the other hand, chemically modify
(oxidize) actin filaments to cause their severing and
depolymerization (Hung et al., 2010a; Hung et al., 2011;
Grintsevich et al., 2016; Frémont et al., 2017; Grintsevich et al.,
2017; Wu et al., 2018). Additionally, in cofilin-mediated severing/
depolymerization, the end products are newly formed barbed ends
or G-actin, which promote actin polymerization (Chin et al., 2016).
In contrast to that, the end product of the MICAL’s disassembly is
MICAL-oxidized actin – and it is ineffectively reused for filaments’
elongation due to its poor polymerization properties (Hung et al.,
2011; Hung et al., 2013; Lee et al., 2013; Wu et al., 2018; Grintsevich
et al., 2021). Thus, in contrast to other well-known actin-binding
proteins that disassemble F-actin but also promote actin
polymerization, MICALs both disassemble F-actin and inhibit
actin polymerization.

4 Structural and dynamic properties of
MICAL-oxidized actin (Mox-actin)

MICAL-oxidized actin (Mox-actin) is the end product of the site-
specific F-actin oxidation by the MICALs. Mox-actin has different
polymerization properties than unoxidized actin. ATP-bound Mox-
actin monomers (Mox-G-actin) form filaments with altered
polymerization kinetics and length compared to unoxidized actin.
They have ~10-fold higher critical concentration for polymerization
than unoxidized actin (~1 μM for Mox-actin versus 0.1 μM for
unoxidized actin), with a prolonged nucleation phase that reaches
saturation at a lower level than unoxidized actin (Grintsevich et al.,
2016). This results in ~3-fold slower rate of Mox-G-actin elongation
than that of unoxidized actin. Intriguingly, ADP-bound Mox-actin
monomers cannot polymerize even at high concentrations (>30 µM)
(Grintsevich et al., 2017). Notably, a decrease in the critical
concentration of Mox-actin was observed when BeFx was present
(~0.24 µM), suggesting that the protection of barbed ends of
filaments reduces their disassembly (Grintsevich et al., 2017). In
addition to that, the filaments formed byMox-actin are also generally
very short and highly fragile, breaking even under small force as
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mentioned above (Grintsevich et al., 2016; Grintsevich et al., 2021).
Altogether, Mox-G-actin is unlikely to participate in active actin
polymerization in the cell, and even if it does, those filaments would
not be stable enough to withstand any applied force.

Mox-F-actin also readily disassembles — by steps of slow
(~2.6 subunits/sec compared to ~0.2 subunits/sec for unmodified
actin) and catastrophic depolymerization (>84 subunits/sec
compared to rare events of ~5.4 subunits/sec for unmodified
actin) (Grintsevich et al., 2017). Cryo-EM structural analysis
showed two Mox-F-actin conformations (Class 1, PDB ID: 6AV9,
and Class 2 PDB ID: 6AVB), supporting the two different
disassembly modes (Grintsevich et al., 2017). Most of the
structural changes were limited to the D-loop. In Class 1, Met44-
O (MICAL-oxidized Met44) moves out from its canonical position
(hydrophobic cleft of actin), which ablates the interprotomer
longitudinal contacts in Mox-F-actin. In contrast to that, Met47-
O in Class 1 forms a new hydrogen bond with threonine (Thr) 351,
thereby twisting the D-loop and further destabilizing F-actin
(Grintsevich et al., 2017). Thus, the Class 1 conformation
supports the catastrophic (>84 subunits/sec) disassembly of
F-actin (Grintsevich et al., 2017). In Class 2, Met44-O remains in
its position and forms close interactions with the cleft. Met47-O in
this class forms a hydrogen bond with tyrosine (Tyr) 169 instead,
and the Mox-F-actin structure remains similar to that of unmodified
F-actin (Grintsevich et al., 2017). These structural observations
complement the enzymology and site-directed mutagenesis
results described above, i.e. that Met44 is the main site through
which MICAL-mediated oxidation exerts its effects on F-actin but
Met47 oxidation also impacts F-actin (Hung et al., 2011; Lundquist
et al., 2014; Grintsevich et al., 2017; Orr et al., 2017; Wu et al., 2018)
and support the notion that MICALs rapidly disassemble F-actin by
modifying the Met44 and Met47 residues present in the D-loop of
F-actin subunits.

5 The MICAL’s and Mox-actin’s effects
on the function of actin-binding
proteins, and vice versa

The MICAL’s Redox actin regulatory system is therefore an
unusual system for robustly regulating actin dynamics. Yet, recent
results also reveal that it should not be thought of as working
independently from other classical actin-binding proteins but that it
interacts/works together with them. In particular, the binding of
ABPs to F-actin is controlled by its nucleotide-bound state (Chou
and Pollard, 2019), its tension and torque (Hayakawa et al., 2011;
Risca et al., 2012), and structural impacts due to the presence of
other actin-binding proteins (Reymann et al., 2012; Ngo et al., 2016;
Mizuno et al., 2018). Furthermore, since MICALs oxidize F-actin
specifically at its two Met residues in the D-loop (Hung et al., 2011),
this alters F-actin’s structure (Grintsevich et al., 2017) and, thereby
F-actin’s interactions with other ABPs (see below).

Cofilin is a well-studied actin depolymerization and severing protein.
It binds cooperatively to actin filaments to form clusters of cofilin-
decorated regions (Wioland et al., 2017). The boundaries between
these clusters are the filaments’ severing sites (Andrianantoandro and
Pollard, 2006; Suarez et al., 2011). Severing occurs because the cofilin-
decorated regions are over-twisted compared to the bare F-actin, leading

to its structural instability (Bobkov et al., 2004; Bobkov et al., 2006; Huehn
et al., 2020). MICAL-mediated oxidation of actin subunits weakens inter-
longitudinal interactions in F-actin and makes them more fragile and
susceptible to severing/depolymerization-inducing conditions [Figure 2D
(Hung et al., 2011; Grintsevich et al., 2016; Grintsevich et al., 2017)]. Even
low concentrations of cofilin, which are harmless to unmodified F-actin,
disrupt Mox-F-actin by quickly disassembling it [Figure 2D (Grintsevich
et al., 2016; Wioland et al., 2021)]. Thus, despite cofilin having a low
affinity for ADP. Pi-actin, and/or the presence of inorganic phosphate
inhibiting F-actin depolymerization, the MICAL’s oxidation of F-actin
counteracts these effects (Muhlrad et al., 2006; Grintsevich et al., 2017;
Wioland et al., 2021). MICALs do this by increasing cofilin’s binding and
favoring the growth of cofilin domains on actin filaments (Grintsevich
et al., 2016; Wioland et al., 2021). The MICAL’s oxidation of actin allows
cofilin to exert its effects also in the presence of at least some of its well-
known inhibitory modifications, such as a phosphomimetic substitution
at Ser3 [that is thought to mimic the effects of phosphorylation by LIM
Kinase, a well-known inhibitor of cofilin (Wioland et al., 2021)].

Profilin, a well-known G-actin binding protein, also increases
F-actin depolymerization (Kinosian et al., 2002; Jégou et al., 2011;
Courtemanche and Pollard, 2013). Interestingly, its
depolymerization effect is more profound on Mox-F-actin, for
which even low profilin concentrations are sufficient to induce its
disassembly [Figure 2D (Grintsevich et al., 2021)]. The exact
mechanism for how profilin causes this increased disassembly is
not known, but several mechanisms are in line with the data
(Grintsevich et al., 2021). In particular, modeling studies suggest
that profilin’s binding to the barbed-end of F-actin requires reduced
flattening of terminal actin subunits to prevent steric clashes
(Courtemanche and Pollard, 2013). This effect would increase the
rate of subunits dissociation from the barbed ends of actin by
inducing more of a G-actin-like conformation – and thus further
enhance the depolymerization of Mox-actin, which is known to be
substantially faster than “normal” actin even in the absence of
profilin (Grintsevich et al., 2017; Grintsevich et al., 2021). It is
also possible, given the unusual structure of Mox-F-actin
(Grintsevich et al., 2017), that free profilin binds to Mox-actin’s
barbed-ends with higher affinity compared to “normal” actin,
therefore, blocking new subunit addition (Kinosian et al., 2002;
Jégou et al., 2011; Courtemanche and Pollard, 2013). Furthermore, a
loss of an ATP cap at the barbed-end of Mox-F-actin may also
contribute to profilin-induced destabilization of Mox-F-actin by
exposing ADP-bound Mox-F-actin segments that are intrinsically
unstable and undergo catastrophic collapse (Grintsevich et al.,
2017). This intrinsic/profilin-induced instability of Mox-F-actin
at its barbed ends would also be enhanced if the association of
profilin–Mox-ATP-G-actin complexes with barbed ends is greatly
inhibited/abolished.

The inverted formin (INF2) is an atypical formin that can both
polymerize and depolymerize actin in a concentration-dependent
manner (Chhabra and Higgs, 2006; Gurel et al., 2014; Hegsted et al.,
2017). Mox-F-actin is also more vulnerable to INF2 [the non-
autoinhibited form of INF2 (INF2-FFC)]-mediated
depolymerization than unoxidized actin [Figure 2D (Das et al.,
2022)]. The exact mechanism of Mox-F-actin disassembly by
INF2-FFC is unknown, but it could be due to an INF2-induced
enhanced destabilization of its D-loop upon MICAL-mediated
oxidation, and a further weakening of interprotomer actin
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contacts in Mox-F-actin (Grintsevich et al., 2017). Overall, the
oxidation of filaments by the MICALs sensitizes them for rapid
disassembly by other more classical severing/depolymerizing actin-
binding proteins (Figure 2D).

Mox-G-actin is the end product of MICAL-mediated rapid F-actin
disassembly — with or without the assistance of other actin severing/
depolymerizing proteins. In cells, G-actin is the fuel for actin
polymerization and is required for maintaining cellular structures.
Formins and Ena/VASP are actin nucleation/polymerization-
promoting proteins that bind directly, or through profilin, to G-actin
to accelerate the polymerization process (Higgs, 2005; Goode and Eck,
2007; Breitsprecher et al., 2011; Courtemanche and Pollard, 2013;
Courtemanche, 2018). Profilin regulates actin remodeling in cells by
deliveringG-actin to formin-bound actin filaments, while also inhibiting
spontaneous actin polymerization by shielding the barbed ends of
G-actin (Kovar et al., 2006). Interestingly, despite being modified,
Mox-G-actin binds normally to profilin (Grintsevich et al., 2021).
However, profilin-Mox-G-actin complexes do not fuel formin-
mediated polymerization [Figure 2D (Grintsevich et al., 2021)].
Moreover, profilin alone inhibits the polymerization of Mox-actin,
even when unoxidized actin seeds are present (Figure 2D
(Grintsevich et al., 2021)). Thus, when combined with Mox-G-actin,
profilin does not facilitate actin polymerization but inhibits it and
further promotes F-actin disassembly (Grintsevich et al., 2021).

The Arp2/3 complex is a well-known nucleator and regulator of
branched actin networks (Pollard, 2007; Pizarro-Cerda et al., 2017). The
Arp2/3 complex consists of seven proteins, with Arp2 and Arp3/Arp3B
being unconventional actin-related proteins that mimic a filamentous
actin dimer (Pizarro-Cerda et al., 2017; Narvaez-Ortiz andNolen, 2022).
To attain an active actin dimer state, which acts as a nucleation site for
polymerization of a new filament on the side of the mother filament,
Arp2 and Arp3/Arp3B need to undergo conformation changes. These
changes are mediated by cortactin and Wiskott Aldrich Syndrome
protein (WASP) (Pollard, 2007; Pizarro-Cerda et al., 2017; Narvaez-
Ortiz andNolen, 2022). Notably, Arp3B is a target forMICAL-mediated
oxidation, such that MICAL-2 oxidizes the Met293 of Arp3B (Galloni
et al., 2021). This oxidation renders Arp3B inactive and promotes
disassembly of branched actin networks (Galloni et al., 2021). The
exact mechanism of debranching is unknown, but it could be due to an
altered structure of the Arp2 and Arp3B complex, which no longer acts
as a nucleation site for branch formation.

Overall, MICALs collaborate with other actin-binding proteins,
changing actin polymerization/depolymerization dynamics and
shifting the cell to impaired actin assembly conditions. Moreover,
because of its reduced polymerization capacity, theMICAL-oxidized
actin monomer is not reused in the actin assembly cycle. Thus,
MICALs are potent actin disassemblers that combine with other
proteins to dynamically tune their functional effectiveness.

6 Reversing the MICAL’s effects on
F-actin: MsrB/SelR family reductases

In light of the identification of this new direct oxidation-dependent
means to regulate actin cytoskeletal dynamics it was of great interest to
determine whether these MICAL-mediated actin alterations were
reversible. Notably, it was found that the MICAL’s actin modification
(stereospecific oxidation of Met44 and Met47) was selectively

counteracted by a family of stereospecific methionine sulfoxide
reductase enzymes called MsrB/SelR (Hung et al., 2013; Lee et al.,
2013). There are three MsrB/SelR enzymes in mammals (MsrB1, 2,
and 3) and one in invertebrates (called SelR). In particular, MsrBs/SelRs
can specifically reverse each of the MICALs effects on actin (Figure 2D),
while other reductases, including other methionine sulfoxide reductase
enzymes (MsrA) and chemical reducing agents such as DTT, cannot do
that (Hung et al., 2013; Lee et al., 2013; Grintsevich et al., 2016; Wu et al.,
2018). In vitro experiments with purified proteins reveal thatMsrBs/SelRs
restore Mox-actin polymerization and formin-assisted polymerization
kinetics (Hung et al., 2013; Lee et al., 2013; Grintsevich et al., 2016; Wu
et al., 2018; Bai et al., 2020; Grintsevich et al., 2021). MsrBs/SelRs also
counteract MICALs in vivo effects, including on F-actin remodeling and
actin-dependent cellular functions such as cell morphology, axon
guidance, synaptogenesis, muscle organization, trafficking, and
cytokinesis (Hung et al., 2013; Wu et al., 2018; Bai et al., 2020;
Hamdan et al., 2020). Results of experiments support the point that
while F-actin is a substrate for the MICALs, the MsrB/SelR’s reversing
effect occurs on G-actin (Figure 2D (Hung et al., 2013; Lee et al., 2013)).
Other points to consider are the relative rates of the MICAL’s oxidation
reaction on actin versus the MsrB/SelR’s reduction reaction, and whether
the catalytic activity of the MICAL’s versus the MsrB/SelR’s favors one
reaction over the other. In short, experimental observations with purified
proteins do not reveal major differences in the relative rates of the
MICAL’s oxidation of actin versus the MsrB/SelR’s reduction of
MICAL-oxidized actin. In other words, although the exact rates of the
MICAL’s oxidation of actin have not been published, experimental studies
(using antibodies to MICAL-oxidized actin and subtilisin digestion of
F-actin after MICAL treatment) reveal that MICAL rapidly (essentially ~
instantaneously) oxidizes filament subunits in a concentration-dependent
manner (Hung et al., 2011; Hung et al., 2013; Grintsevich et al., 2016).
MsrBs/SelRs quickly reverse this MICAL’s-oxidation of actin, and then
actin polymerizes normally (Hung et al., 2013; Lee et al., 2013; Wu et al.,
2018). In vivo observations are also consistent with these results with
purified proteins. In particular, increasingMICAL levels induces dramatic
effects on F-actin in vivo (Hung et al., 2010a; Wu et al., 2018), but the
organization of F-actin in cells –with simultaneous increases in theMsrB/
SelRs – indicates that the MsrB/SelRs serve to negate the MICAL’s effect
(Hung et al., 2013; Wu et al., 2018). Lastly, although proteins (such as
Plexins and Rabs) have been identified that prominently control/regulate
theMICAL’s actions in cells (i.e., control theMICAL’s side of the reaction;
see below formore details), little is known of what controls theMsrB/SelR
side of the reaction in cells. Related to this, MICALs appear to exhibit a
specific subcellular localization pattern (Hung et al., 2010a), while MsrB/
SelRs are more broadly localized (Hung et al., 2013). This difference in
localization may play a role in regulating MsrB/SelRs activity and effects
onMICALs (including favoring one side of the reaction versus the other).
The MICALs and MsrB/SelRs therefore comprise a specific reversible
Redox system for robustly regulating actin dynamics.

7 Regulation of the MICAL’s activity

7.1 Activation of the MICALs: Relieving the
MICAL’s autoinhibited state

MICAL Redox enzymes do not induce their effects on actin
indirectly (e.g., via general effects on the cellular redox state or global
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H2O2 production), but locally target F-actin for disassembly (Hung
et al., 2010a; Hung et al., 2013; Wu et al., 2018). So, an important
question in this regard is how is the activity of theMICALs regulated
in a localized manner. Work with purified proteins and in vivo
reveals that MICALs are self-regulated through intramolecular
interactions between their C-terminal ERM α-like domain and
the N-terminal Redox and LIM domains [Figure 1B (Schmidt
et al., 2008; Hung et al., 2010a; Giridharan et al., 2012; Vitali
et al., 2016; Frémont et al., 2017)]. These intramolecular
interactions mask the active site in the F-actin regulatory Redox
domain of MICALs to render them catalytically inactive (Figure 1B).

So how do MICALs become active? Physical interactions
between MICALs and proteins in specific signaling pathways
spatiotemporally relieve MICALs autoinhibition. In particular,
the ERM α-like/PIR region of the MICALs directly interacts with
the cytoplasmic region of Plexin transmembrane cell-surface
receptors [Figure 3A (Terman et al., 2002)]. Plexins are receptors
for one of the largest protein families of extracellular guidance cues,
semaphorins (Semas), with over twenty family members conserved
from invertebrates to humans (Alto and Terman, 2017). In the
absence of Semas, Plexins’ cytoplasmic region is also autoinhibited,
and results support a model that Sema binding to the extracellular
portion of Plexin induces an allosteric change, which relieves this
autoinhibition and activates Plexin (Pascoe et al., 2015). Activated
Plexin then binds to the MICALs to relieve the MICAL’s
autoinhibition and allow for the activation of its Redox domain
to spatiotemporally regulate actin dynamics [Figures 3A,B (Terman
et al., 2002; Schmidt et al., 2008)]. Further specificity, including

precise regulatory mechanisms, is gained by different semaphorins
and plexins utilizing different MICALs to exert their cellular effects,
including on F-actin disassembly (Terman et al., 2002; Ayoob et al.,
2006; Schmidt et al., 2008; Hung et al., 2010a; Morinaka et al., 2011;
Aggarwal et al., 2015; Hou et al., 2015; Loria et al., 2015; Orr et al.,
2017; Tominaga et al., 2019).

Specific Rab family small GTPases also bind and relieve the
MICAL’s intramolecular autoinhibition (Figure 3A). In particular,
multiple different Rab GTPases (including Rab1A/B, Rab7A, Rab8A/
B, Rab10, Rab13, Rab15, Rab33B, Rab35, and Rab36) directly interact
with different MICALs via MICALs’ ERM α-like/RBD region, and
they do this primarily in their active GTP-bound state [Figure 3A
(Weide et al., 2003; Fischer et al., 2005; Fukuda et al., 2008; Rai et al.,
2016; Frémont et al., 2017; Liu et al., 2017; Tian et al., 2018;
Gillingham et al., 2019; Hamdan et al., 2020; McGarry et al.,
2022)]. Rab GTPases are well-known regulators of cellular
functions, including as key vesicle trafficking proteins in
endocytosis and exocytosis, and their direct interaction with
MICALs releases the MICAL’s autoinhibition (Frémont et al.,
2017; Esposito et al., 2019). Further specificity is gained by
different MICALs interacting and utilizing different Rabs to recruit
and activate them at specific locations to exert their cellular effects,
including on F-actin disassembly [Figures 3A,B (Grigoriev et al., 2011;
Deng et al., 2016; Frémont et al., 2017; Hamdan et al., 2020)].
Different Rab and MICAL-interacting proteins, including ELKS
active-zone proteins (Grigoriev et al., 2011; Liu et al., 2017), NINL
(Bachmann-Gagescu et al., 2015), MKLP1/Kif23 centralspindlin
components/kinesin family proteins (Maliga et al., 2013; Liu et al.,
2016; Liu et al., 2017), GRAFmembrane tubulating proteins (Lucken-
Ardjomande Hasler et al., 2020), TBC1D1 Rab GTPase activating
proteins (GAPs) (Hook et al., 2020), alpha2-spectrin (Liu et al., 2016;
Hamdan et al., 2020), and the MuSK and PAK1 serine/threonine
kinases (Budayeva et al., 2022; McGarry et al., 2022) are also linked to
Rab and MICAL interactions/cellular effects.

Thus, different modes of regulation help in the precise
spatiotemporal activation of the MICALs, which is a prerequisite for
normal cellular forms and functions [e.g., (Terman et al., 2002; Schmidt
et al., 2008; Hung et al., 2010a; Frémont et al., 2017)]. Further, the
dysregulation of the MICALs has a detrimental effect on cellular forms
and functions. For example, constitutively-active forms of MICAL (e.g.,
those lacking the ERM α-like domain that serves an autoinhibitory
function) induce widespread and excessive F-actin disassembly and
marked abnormalities in cellular morphology/structure (Hung et al.,
2010a; Giridharan et al., 2012;Wu et al., 2018) and disease (Dazzo et al.,
2018). Related to this, without a C-terminal ERM α-like domain,
MICAL-2 would not be autoinhibited in cells (i.e., it would be
constitutively active in cells). Thus, further study is needed to
determine if the MICAL-CL/Ebitein region/ERM α-like domain that
is a part of theMICAL-2 locus, is involved inMICAL-2’s autoinhibition
(Terman et al., 2002; Hung and Terman, 2011).

7.2 Additional positive effectors of the
MICALs

The MICAL’s effects have also been found to be enhanced
through the action of specific signaling proteins. For example,
vascular endothial-derived growth factor (VEGF), platelet-derived

FIGURE 3
Regulation of the MICAL’s activity. (A) Plexins and GTP-bound
Rab proteins bind the MICAL’s ERM α-like domain to relieve the
MICAL’s autoinhibition. PAK1 kinases also play a role in relieving the
MICAL’s autoinhibition by phosphorylating residues within the
MICAL’s C-terminus. (B) Rabs and Coronin 1C are involved in the
MICAL’s translocation and positioning. Myosin15 is involved in moving
the MICAL’s into a new region to propagate its F-actin disassembly
effects.
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growth factor (PDGF), epidermal growth factor (EGF), and
fibroblast growth factor (FGF) and their receptors have been
linked to increasing the MICAL’s F-actin disassembly effects
(Hou et al., 2015; Deng et al., 2016; Evans et al., 2017; Yoon
et al., 2017; Barravecchia et al., 2019; McGarry et al., 2022).
Further results reveal that they enhance the MICAL’s F-actin
disassembly effects by working with Abl/Arg non-receptor
tyrosine kinases, which phosphorylate specific tyrosine (Y)
residues within the Redox domain of the MICALs (Y500 in
Mical and Y445, Y463 in MICAL-2) [Figure 1A (Yoon et al.,
2017; Yoon and Terman, 2018a; Shi et al., 2020; Zhang et al.,
2022)]. Furthermore, at least in the case of Mical, this Abl
phosphorylation increases its NADPH consumption activity in
the presence of F-actin and potentiates its F-actin disassembly/
repulsive activity [Figure 3B (Yoon et al., 2017)]. PAK1 kinase also
works downstream of growth factors, and its activated form binds to
the Redox and CH regions of MICAL-1 and phosphorylates
MICAL-1 at specific serine (S) residues (S817, S960) within the
PxxP and ERM α-like domain, respectively [Figure 1A (McGarry
et al., 2022)]. This phosphorylation relieves MICAL-1’s
autoinhibition and also increases Rab7A and Rab10’s interaction
with MICAL-1 [Figure 3A (McGarry et al., 2022)]. These results
(McGarry et al., 2022) also add to the work of others (Wang et al.,
2018; Zhao et al., 2019; Wang et al., 2021a; Wang et al., 2021b; Qi
et al., 2021) and link Rho family GTPases to the regulation of the
MICAL’s effects. MICALs have also been associated with nerve
growth factor (NGF) signaling, such that it induces MICAL-2’s
F-actin disassembly activity in the nucleus to promote gene
transcription through the serum response factor (SRF)/MRTF-A
(Lundquist et al., 2014). MICALs have also been linked to regulating
the effects of other extracellular ligands/receptors, including those of
TGFβ/TGFR and Ephrins/Eph, on cell migration and F-actin
disassembly (Liu et al., 2019; Shi et al., 2020; Jiang et al., 2021;
Pu et al., 2021).

MICALs’ localization and action in specific subcellular regions is
important for their F-actin/cellular effects. Towards this end,
MICALs were recently found to interact with specific myosins,
which are well-known regulators of cellular behaviors. Myosins
regulate cell functions in two ways: they move/hold F-actin
(i.e., myosins act as force generators/mechanical tethers) and/or
they move processively along F-actin (i.e., myosins act as
intracellular transports) (Coluccio and Biol, 2020). A specific
myosin, Myosin 15 (Myo15), physically associates, transports,
and broadens MICAL’s distribution to expand and directionally
orient the MICAL’s F-actin effects [Figure 3B (Rich et al., 2021)].
MICALs also interact with members of another class of myosins,
MyoVa (and MyoVb) (Niu et al., 2020). Yet, interestingly, in
contrast to Myo15, which expands the MICAL’s distribution/
F-actin disassembly, MICAL-1 was found not to be transported
by MyoVa, but to be tethered to a specific spot and derail MyoVa
and its cargo as MyoVa passed through that specific site (Niu et al.,
2020). Thus, myosins are involved in at least two functions as it
relates to the MICALs: 1) myosins expand MICALs-mediated
F-actin disassembly and cellular remodeling and 2) myosins
restrict MICALs-mediated F-actin disassembly and cargo
unloading. Specific myosins may also interact with specific
MICALs [e.g., MyoV interacts with MICAL-1 but not with
MICAL-2 and 3 (Niu et al., 2020)] and control other aspects of

MICALs’ functions [e.g., another myosin, Myo9, binds and
promotes the nuclear export of MICAL-2 (Zhou et al., 2020)].
Other intracellular proteins have also been found to bind and
recruit MICALs to specific subcellular regions. Coronin 1C, an
actin regulatory protein, facilitates the recruitment of MICAL-2
to vaccinia-induced actin tails [Figure 3B (Galloni et al., 2021)]. This
type of recruitment may be specific to different MICALs since
coronin 1C recruits MICAL-2 but not MICAL-1 (Galloni et al.,
2021).

MICALs have been found to interact also with other proteins,
including most notably CasL/Nedd9 (Suzuki et al., 2002; Evans et al.,
2017; Grauzam et al., 2018; Zhao et al., 2019) and the intermediate
filament protein vimentin (Suzuki et al., 2002; Grauzam et al., 2018;
Semelakova et al., 2019), but the specific roles of these interactions
are unclear. Cortactin’s presence on actin branches is required for
the enhanced MICAL-2’s effects on the dissociation of Arp3B-
containing Arp2/3 complexes and the increased rate of actin
network disassembly via yet unknown mechanisms (Galloni
et al., 2021). MICALs have also been functionally linked to other
proteins and signaling pathways, including ERK, PP2A, and
RanBPM, among others, although the roles of these proteins/
signaling pathways in regulating MICALs is unclear [e.g.,
(Togashi et al., 2006; Deng et al., 2018; Tao et al., 2019;
Wolterhoff et al., 2020)]. Moreover, in vitro studies have
suggested that MICALs’ activity depends on ionic strength and
pH (Zucchini et al., 2011; Grintsevich et al., 2016), including that
MICAL-1 shows higher catalytic turnover with increasing
pH (Zucchini et al., 2011). Such changes may regulate MICALs’
effects in vivo – particularly given that intracellular alkaline
pH promotes tumor progression and growth (White et al., 2017),
and H+ transporters NBCn1 and NHE1 (and thereby intracellular
alkaline pH) are upregulated in specific cancers [e.g., (Flinck et al.,
2018)], and increased MICAL activity is associated with specific
cancers (Yoon and Terman, 2018b) (see below).

7.3 Dampening the MICAL’s effects

Factors that dampen MICALs’ functions are also likely to play
prominent roles in regulating the MICAL’s effects. Yet, besides
MsrB/SelR, as described above, so far these negative regulators have
been poorly defined. For example, an antagonistic relationship
between MICAL-1 and NDR Kinase apoptotic signaling has been
identified, but NDR kinases do not negatively regulate MICAL-1’s
effects (Zhou et al., 2011). Notably, micro RNAs have been found
that specifically target MICALs, including to promote actin
polymerization (Tao et al., 2019; Torrini et al., 2019; Han et al.,
2022). Future work is likely to reveal more effectors that work in
opposition to MICALs.

8 The MICAL’s physiological and
pathological functions

The MICAL’s role in robustly altering actin dynamics is critical
for regulating specific cellular and tissue behaviors in the cytosol
(often in close proximity to the plasma membrane) and in the
nucleus. Furthermore, as described below, it is important to note
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that while theMICAL’s role in vivowas first identified in the nervous
system (Terman et al., 2002), MICALs are broadly expressed and
regulate the form, function, and dysfunction of multiple different
types of cells and tissues. Yet, it is also clear that much remains to be
learned about how broadly the MICALs are utilized in vivo,
including a full understanding of their use by nature in different
tissue systems, cell types, and specific cellular events. Below we
provide a general overview of what is known of the MICAL’s in vivo
functions. For additional coverage including detailed specifics of the
MICAL’s in vivo functions, we refer readers to (Hung and Terman,
2011;Wilson et al., 2016; Manta and Gladyshev, 2017; Vanoni, 2017;
Alto and Terman, 2018; Ortegón Salas et al., 2020; Haikazian and
Olson, 2022; Rouyère et al., 2022).

8.1 Physiology: Cell biology, neurobiology,
musculoskeletal biology, cardiovascular
biology, and more

Cells undergo rapid reorganization during division, polarity,
motility, navigation, and other behaviors by robustly inducing actin
remodeling (Pollard and Borisy, 2003; Blanchoin et al., 2014).
MICALs and their effects on F-actin structures have now
emerged as robust modulators of these behaviors – being
required and sufficient to alter the form and function of multiple
different cells and tissues (Figure 4). In particular, MICALs were first
identified for their functions in the nervous system – being required
for the guidance of neuronal axons in vivo (Terman et al., 2002).
Subsequent work has added to these guidance roles, as well as
defined roles for the MICALs in neuronal growth cone morphology
and axon extension (Beuchle et al., 2007; Schmidt et al., 2008; Hung
et al., 2010a; Morinaka et al., 2011; Hashimoto et al., 2012; Hung
et al., 2013; Lundquist et al., 2014; Van Battum et al., 2014). MICALs
also regulate the morphology/complexity of neuronal dendrites
(Kirilly et al., 2009; Loncle and Williams, 2012; Rumpf et al.,

2014; Rode et al., 2018) and are important for establishing and
regulating the connection between neurons (i.e., synaptic formation,
organization, and activity) (Beuchle et al., 2007; Hung et al., 2013;
Van Battum et al., 2014; Orr et al., 2017; Schaukowitch et al., 2017).
MICALs regulate the migration of neurons (Bron et al., 2007), the
trafficking of proteins into axons (Hamdan et al., 2020), the docking
and fusing of vesicles at the plasma membrane (Grigoriev et al.,
2011; Van Battum et al., 2014; Bachmann-Gagescu et al., 2015), and
the morphology of neuro-mechanosensory system cells (e.g.,
Drosophila bristle cells, which are akin to the inner ear hair cells
required for hearing in mammals) (Hung et al., 2010a; Hung et al.,
2013).

MICALs also play important non-neuronal functions. They have
been associated with regulating smooth, skeletal, and cardiac muscle
organization, including being required to control F-actin organization
in skeletal muscle (Beuchle et al., 2007; Schnorrer et al., 2010; Hung
et al., 2013; Tao et al., 2019; Giarratana et al., 2020; Konstantinidis
et al., 2020). They regulate the cardiovasculature, including in
angiogenesis, vessel integrity, heart development/function, and
lymphatic remodeling (Lundquist et al., 2014; Hou et al., 2015;
Williams et al., 2017; Barravecchia et al., 2019; Konstantinidis
et al., 2020; Erdmann et al., 2021; Francis et al., 2022). MICALs
have been linked to kidney function (Aggarwal et al., 2015) and
immune response (Lee et al., 2013). MICALs play important roles in
other cell biological events in different cells, including specifying cell
morphology [e.g., (Hung et al., 2010a; Hung et al., 2011; Giridharan
et al., 2012; Hung et al., 2013; Hou et al., 2015; Wu et al., 2018)],
migration [e.g., (Liu et al., 2019; Jiang et al., 2021; Pu et al., 2021)],
proliferation [e.g., (Tao et al., 2019; Pu et al., 2021)], wound healing
(Williams et al., 2017), membrane tubulation (Lucken-Ardjomande
Hasler et al., 2020; Wang et al., 2021b), endocytosis/exocytosis/vesicle
trafficking (Grigoriev et al., 2011; Bachmann-Gagescu et al., 2015; Liu
et al., 2016), and cytokinesis, where they are required to control the
F-actin cytoskeleton at abscission sites (Liu et al., 2016; Frémont et al.,
2017; Bai et al., 2020). MICALs have also been defined for effects on
cell-cell repulsion mediated by one of the largest families of cellular
guidance cues, Semaphorins and their Plexin receptors (Terman et al.,
2002; Schmidt et al., 2008; Hung et al., 2010a; Morinaka et al., 2011;
Aggarwal et al., 2015; Hou et al., 2015; Yoo et al., 2016; Tominaga
et al., 2019).

8.2 Pathology: Cancer, brain disorders,
cardiovascular defects, and more

MICALs and their ability to robustly control the cytoskeleton
have become increasingly linked to different pathologies, including
that altered expression levels and SNPs/missense mutations for
MICALs have been associated with numerous cellular dysfunctions
(Figure 4) and disease. Below, we highlight a few of these studies in
which functional analysis has been carried out. In particular,
MICALs have been functionally linked to different types of
cancers/cancer cells, including bladder (Ho et al., 2012), blood/
leukemia (Corces-Zimmerman et al., 2014), brain/glioma (Pu et al.,
2021), breast (Deng et al., 2016; Mariotti et al., 2016; Wang et al.,
2017; Yoon et al., 2017; Deng et al., 2018; Tominaga et al., 2019;
McGarry et al., 2021), colorectal (Gu et al., 2022), gastric (Mariotti
et al., 2016; Zhao et al., 2019; Wang et al., 2021a; Qi et al., 2021),

FIGURE 4
Cellular behavior controlled by the MICAL’s activity contributes
to multiple functions and dysfunctions in numerous tissues. Modified
from (Alto and Terman, 2018).
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lung-related (Mariotti et al., 2016; Liu et al., 2019; Zhou et al., 2020;
Wang et al., 2021b), pancreatic (Cai et al., 2022), prostate (Ashida
et al., 2006), renal (Mariotti et al., 2016), and skin/mucous
membrane (Loria et al., 2015; Grauzam et al., 2018; Zhang
et al., 2022). Notably, the MICAL’s involvement in at least
some of these cancers/cancer cells has been linked to its actions
on F-actin. The MICALs have also been prominently linked to
neurological and mental health disorders, including
neurodegeneration (Prifti et al., 2022), spinal cord injury
(Pasterkamp et al., 2006; Xu et al., 2021), and epilepsy (Dazzo
et al., 2018). Most notably, heterozygous missense mutations in the
Redox domain (Gly150Ser) and C-terminal ERM α-like domain
(Ala1065fs, deletion of last three amino acids, and addition of
59 extra residues) generate changes in MICAL-1 that have been
linked to Autosomal-Dominant Lateral Temporal Epilepsy (Dazzo
et al., 2018). In particular, it is thought that these dominant
mutants generate constitutively active MICAL-1 and its effects
on cells are consistent with increased F-actin cytoskeletal
disassembly (Dazzo et al., 2018). Since MICAL-1 is also
expressed in other tissues besides the brain, it is interesting to
consider if these heterozygous missense mutations lead to
comorbid pathologies in other tissues/behaviors, or whether the
brain may be particularly susceptible to having these heterozygous
missense MICAL-1 alleles (i.e., only one normal copy of MICAL-1
present). MICALs have been functionally linked to cardiovascular
abnormalities, including heart arrhythmias, pathologic responses
to cardiac stress, myocardial hypertrophy, endothelial and blood-
brain barrier (BBB) permeability, and contributing to effects seen
with mutations in cardiac actin (Hou et al., 2015; Konstantinidis
et al., 2020; Erdmann et al., 2021; Zhao et al., 2021). Notably, the
MICAL’s involvement in at least some of these cardiovascular
defects has been linked to its actions on F-actin. MICALs have also
been functionally linked to renal disease/diabetic nephropathy
through effects on the F-actin cytoskeleton (Aggarwal et al.,
2015). Less well-defined functional links between MICALs and
muscular dystrophy (Marotta et al., 2009), fibrosis (Zhao et al.,
2020; Jiang et al., 2021), autoimmune disorders (Johar et al., 2015),
skin aging (Han et al., 2022), and viral infection (Shapira et al.,
2009; Mitchell et al., 2013) have been observed. Lastly, as described
above, the sites that the MICALs modify on actin (Met44 and/or
Met47) have been linked to different diseases, including nemaline
myopathy, CAP myopathy, aortic aneurisms, hypertrophic
cardiomyopathy, intestinal hypoperistalsis, Baraitser–Winter
cerebrofrontofacial syndrome, and ductus arteriosus (Laing
et al., 2009; Hung et al., 2010b; Hoffjan et al., 2011; Zou et al.,
2013; Regalado et al., 2014; Wangler et al., 2014; Yates et al., 2017;
Zhang et al., 2019). It is also worth considering that some of the
defects associated with mutations in the family of enzymes that
reverse the MICAL’s effects, MsrBs/SelR’s, may result from
increased effects of the MICALs on F-actin [see (Tarrago et al.,
2022) for coverage of those defects].

9 Summary and conclusion

The MICAL family of proteins was discovered a little over
20 years ago, and with the uncovering of their enzymatic domain

and activity, specific targeting of F-actin as a substrate, and their role
in numerous cellular and tissues systems, they have now matured
from proteins of unknown function to ones of significant interest in
biomedical research that are being pursued by multiple laboratories.
Yet, much remains to be learned about the MICALs and the
reversible Redox-driven mechanism they use to regulate F-actin
dynamics. We need to further define MICALs’ interactions with
F-actin and 1) their effects on different F-actin networks, 2) their
roles in different cells, tissues, and biological events, 3) their ability to
interact with and regulate the effects of classical actin regulatory and
signaling proteins, and 4) their interactions with proteins that may
dampen their effects. Numerous studies have revealed altered
expression levels and SNPs/missense mutations for MICALs in
diverse diseases, but our understanding of these changes
(including if, how, and the molecular/cellular basis for the
MICAL’s possible involvement in these pathologies) is still poor
and in need of further exploration. Thus, future studies should also
focus on these areas of critical biomedical importance. MICALs have
now emerged as a phylogenetically-conserved family of proteins
with surprising functions, unexpected mechanisms of action, and
crucial in vivo importance. The continued study of these
biomedically significant proteins is likely to yield further
surprising and unexpected discoveries.
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