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Disruption of the epigenetic program of gene expression is a hallmark of cancer
that initiates and propagates tumorigenesis. Altered DNA methylation, histone
modifications and ncRNAs expression are a feature of cancer cells. The dynamic
epigenetic changes during oncogenic transformation are related to tumor
heterogeneity, unlimited self-renewal and multi-lineage differentiation. This
stem cell-like state or the aberrant reprogramming of cancer stem cells is the
major challenge in treatment and drug resistance. Given the reversible nature of
epigenetic modifications, the ability to restore the cancer epigenome through the
inhibition of the epigenetic modifiers is a promising therapy for cancer treatment,
either as a monotherapy or in combination with other anticancer therapies,
including immunotherapies. Herein, we highlighted the main epigenetic
alterations, their potential as a biomarker for early diagnosis and the epigenetic
therapies approved for cancer treatment.
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Introduction

Epigenetic reprogramming and cancer development

Since first described by ConradWaddington in 1942 (Waddington, 1959), the epigenetic
landscape during the differentiation process, where a totipotent undifferentiated cell acquires
specialized characteristics and functions, is still a challenge for modern biology (Hunter,
2017). During early development, the whole genome is reprogrammed through epigenetic
modifications such as DNA methylation, histone modification and non-coding RNA
interaction, that alter chromatin structure and DNA accessibility by establishing a
differential gene expression program in a cell-specific manner, without changes on DNA
sequence (Skinner, 2011; Olynik and Rastegar, 2012). Epigenetic reprogramming is essential
for normal development, as well as the maintenance of cell type-specific epigenetic patterns
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during cell division. However, given the dynamic and reversible
characteristics of the epigenetic modifications, epigenetic
reprogramming is strongly affected by environmental factors
which play an essential role in the establishment and
maintenance of epigenetic markers (Waddington, 1959).

Aberrant epigenetic reprogramming is associated with the
etiology of developmental disorders as the imprinting defects
(i.e., Beckwith–Wiedemann and Silver–Russell syndromes)
(Monk et al., 2019), and complex and multifactorial diseases
including metabolic syndrome (Ling and Rönn, 2019),
cardiovascular diseases (Handy et al., 2011) and neurological
disorders (Chheda and Gutmann, 2017). Due to its ability to
regulate cell growth and differentiation pathways, non-mutational
epigenetic reprogramming has been added as a hallmark of cancer
(Hanahan, 2022) and maybe a driver mutational event in sporadic
cancers that promotes genomic instability, tumor initiation and
malignant transformation (Feinberg et al., 2006; Feinberg et al.,
2016; Hanahan, 2022). These (epi)genetic changes confer a specific
phenotype to cancer cells as the uncontrolled growth, resistance to
death and increased invasiveness to adjacent tissues and/or spread to
other organs (Ilango et al., 2020).

Lifetime disruption in the epigenetic machinery leads to loss of
global epigenetic marks, activation of growth-related genes
(oncogenes) and silence of cell cycle control genes (tumor
suppressor) and DNA repair genes, thereby initiating and
propagating tumorigenesis (Figure 1) (Gibney and Nolan, 2010;
Feinberg et al., 2016; Hanahan, 2022). These epigenetic features are
similar to those observed in early development, where somatic cells
are reprogrammed towards a less differentiated state followed by
oncogenic reprogramming (Suvà et al., 2013; Feinberg, et al., 2016).
The stem-like state or stem progenitor for cancer development is the
major challenge in treatment, as it promotes unlimited self-renewal,
multi-lineage differentiation and drug resistance (Suvà et al., 2013)
Furthermore, alterations in the tumor microenvironment, tumor
heterogeneity and regulation of stromal cells are associated with

functional abilities acquired through epigenetic reprogramming
(Ilango et al., 2020).

Because of the reversible nature of epigenetic changes, the
possibility of reprogramming cancer epigenome has become a
promising target for both treatment and reversibility of drug
resistance (Miranda Furtado et al., 2019). The discovery of
chemical compounds that act on the enzymes responsible for the
maintenance and establishment of epigenetic mechanisms
(epigenetic drugs), changing the epigenetic landscape of a tumor
cell, has revolutionized cancer therapy, especially for hematological
tumors (Montalvo-Casimiro et al., 2020; Morel et al., 2020).
Moreover, the combination of epigenetic drugs with other
anticancer therapies, such as chemo, hormonal or
immunotherapy has broadened the perspective on the use of
these compounds and their effectiveness on treatment. In this
review, we present the epigenetic alterations in cancer
reprogramming, the main epigenetic drugs and combining
therapies for cancer treatment.

Reprogramming DNA methylation in cancer

DNA methylation is an abundant epigenetic marker in the
mammalian genome, that is stably maintained during DNA
replication. Genome-wide loss of DNA methylation is a
recognized epigenetic marker in oncogenic transformation, which
is followed by an aberrant reprogramming of the cancer epigenome
(Vandiver et al., 2015). The most common DNA modification is the
chemical addition of a methyl group to the 5- carbon of the cytosine
followed by a guanine (5′CG3′ or CpG, cytosine-phosphate-
guanine), giving rise to 5-methylcytosine (5mC) (Geiman and
Muegge, 2010). 5mC is a repressive epigenetic mark that aids in
maintaining genomic stability as most CpG sequences in the
genome are methylated (hypermethylated), except for CpG
islands that are hypomethylated and usually encompass

FIGURE 1
Schematic representation of the aberrant epigenetic reprogramming on cancer cells. Normal cells are aberrantly reprogramed through loss of
global methylation, altered ncRNA expression, disrupted histone modifications and hypermethylation of target genes, which can inactivate tumor
suppressor and DNA repair genes and activate oncogenes, resulting in the global chromatin instability observed in cancer cells. 5mC, 5-methylcytosine;
5hmC, 5-hydroxymethylcytosine.
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promoters and enhancers (Nishiyama and Nakanishi, 2021). This
process is conserved from archaea to eukaryotes, from fertilization
to every stage of development, and is carried out by the family of
DNA methyltransferases (DNMTs). DNMT1, DNMT3A and
DNMT3B are canonical methyltransferase enzymes, while
DNMT2 and DNMT3L are non-canonical, without DNMT
activity. DNMT1 is involved in the maintenance of DNA
methylation, keeping the epigenetic memory in differentiated
cells and restoring parental methylation patterns on the nascent
DNA strand while DNMT3A and DNMT3B are related to de novo
DNA methylation (Moore et al., 2013; Lyko, 2018). The role of
DNMT2 and DNTM3L are not well understood, but they seem to act
on RNA methylation activity and de novo DNA methylation,
respectively (Schaefer et al., 2010; Veland et al., 2019). DNA
methylation during semi-conservative DNA replication occurs
with the support of the ubiquitin-like plant homeodomain and
RING finger domain 1 (UHRF1) that recognizes CpGs in the
hemimethylated DNA, and recruits DNMT1 to restore parental
methylation patterns on the nascent strand (Hashimoto et al., 2008).

Global DNA hypermethylation is essential for the maintenance
of genome stability, silencing of repetitive elements (transposon and
retrotransposons) (Hur et al., 2014) and inactivation of nucleotide-
repeat expansion (Poeta et al., 2020). Despite the high stability of
DNAmethylation, 5mC can be demethylated passively during DNA
replication or actively through the oxidation of 5mC to 5-
hydroxymethylcytosine (5hmC), with other intermediates (5-
formylcytosine, 5fC and 5-carboxylcytosine, 5caC), by the ten-
eleven translocated (TET) family of enzymes. The 5hmC is
enriched at transcriptionally active regions, such as gene bodies
and the borders of promoters and enhancers. The passive process is
linked to the absence of DNMT1/UHRF1 which leads to the
progressive dilution of cytosine methylation during successive
rounds of DNA replication (An et al., 2017). Aberrant active
demethylation and increased 5hmC marker at TOP2A and EZH2
genes were associated with poor prognosis in an aggressive subtype
of prostate cancer and are related to the activation of oncogenic
pathways, such as MYC and E2F, and TGFβ signaling pathways in
metastatic castration-resistant prostate cancer (Palanca-Ballester
et al., 2021). On the other hand, loss of 5hmC marker seems to
be a common alteration in penile (Rodriguez-Casanova et al., 2021)
and oral squamous cell carcinoma (Wang et al., 2017) and
myelodysplastic syndrome (MDS) (Cavalcante et al., 2022).

Regions of low CpG density are hypomethylated in cancer,
leading to genomic instability thereby facilitating chromosomal
rearrangements and DNA damage (Das and Singal, 2004; Baylin
and Jones, 2016; Nishiyama and Nakanishi, 2021). However, once
carcinogenesis is established, an increased 5mCmarker is associated
with tumor progression and reduced survival rate (Rodriguez-
Casanova et al., 2021). Additionally, site-specific hypomethylation
or hypermethylation promotes the activation of proto-oncogenes
and the silencing of tumor suppressor genes, respectively (Baylin
and Jones, 2011). Among these, genes related to cell cycle
progression (e.g., RB1, CDKN2A and CDKN2B), invasion and
metastasis (e.g., CDH1 and CDH13) and apoptotic signaling (e.g.,
DAPK1) are hypermethylated in several cancers (Zafon et al., 2019;
Nishiyama and Nakanishi, 2021). The transcription factor MYC,
which is highly expressed during early development and silenced in
somatic cells, is overexpressed in almost 70% of cancers (Slamon and

Cline, 1984; Madden et al., 2021). Activation of this proto-oncogene
by loss of DNA methylation is a common feature of tumor
progression and aggressiveness (Souza et al., 2013). Increased
chromatin accessibility at MYC locus is observed across different
cancer types (Corces et al., 2018).

Biallelic expression of imprinted genes or loss of imprinting
(LOI) is frequently observed in human cancers (Jelinic and Shaw,
2007), and is an early event for some tumors, such as the childhood
Wilms’ tumor (WT) (Graf et al., 2021). The imprinting control
regions (ICR) are differentially methylated (DMR) in a parent-of-
origin manner, resulting in a monoallelic expression of the clustered
genes. LOI at the H19/IGF2 locus, for example, is associated with
WT in overgrowth syndromes (Graf et al., 2021), and other cancers
such as bladder (Byun et al., 2007) and colorectal (Hidaka et al.,
2018). LOI of KvDMR1, INPP5Fv2-DMR and RB1-DMR is also
implicated in the pathogenesis of cancer (Rumbajan et al., 2013). A
comprehensive analysis of The Cancer Genome Atlas showed that
the imprinted genes CDKN1C and PEG3 are downregulated in
primary tumors, while the MEST, PHLDA2 and GNAS were
frequently upregulated. As the ICRs are enriched by long
ncRNAs (lncRNAs), LOI promotes the overexpression of these
regulatory elements during carcinogenesis (Kim et al., 2015).

Loss of function of DNMTs and TETs enzymes during cell
differentiation and growth is also related to oncogenic
transformation. Mutations in DNMT3A, TET1/2 and IDH1/2 are
recurrent in leukemia and lymphoma (Guillamot et al., 2016). TET2
mutations are associated with aberrant DNA methylation in a wide
spectrum of myeloid malignancies, including myelodysplastic
syndrome (MDS), myeloproliferative neoplasms (MPN),
myelomonocytic leukemia (CMML), and acute myeloid leukemia
(AML). Somatic mutations in TET family are linked to changes in
the regulation of stem cell differentiation and transformation
(Cimmino et al., 2011; An et al., 2017). DNMT3A mutations lead
to loss of methylation and promote AML transformation, while
abnormal CpG island hypermethylation dependent on DNMT3A is
observed during AML progression (Spencer et al., 2017). TET1 and
TET2 reduced expression levels have been frequently observed in
hepatocellular carcinoma tissues (Wang P. et al., 2019). Mutational
events at chromatin remodeling factors and Wnt signaling pathway
promote aberrant DNA methylation pattern in human tumors
(Saghafinia et al., 2018). Somatic mutations and microsatellite
instability also affect cancer epigenome (Velho et al., 2014).

Besides the most common DNAmethylation that occurs at CpG
sites, non-CpG methylation at CpA and CpT are emerging
epigenetic markers in eukaryotes. These modifications, especially
the CpA methylation, which gave rise to N6-methyladenine (6mA),
were first recognized in embryonic stem cells and seem to be
mediated by the DNTM3A (Ramsahoye et al., 2000). Other
enzymes may affect 6mA levels, such as the methyltransferase
N6AMT1 and the demethylase ALKBH1 (Kweon et al., 2019;
Shen et al., 2022). Although the low abundance of 6mA is
observed in the mammalian genome under normal conditions,
several studies indicated dynamic changes in 6mA levels during
development and cancer. A lower abundance of the 6mA marker
was observed in glioma cells (Kweon et al., 2019), whereas an
increased 6mA was shown in hepatocellular carcinoma (Lin
et al., 2022). A decrease of genomic DNA 6mA, accompanied by
decreased methyltransferase N6AMT1 and increased demethylase
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ALKBH1 levels promotes tumorigenesis and is associated with poor
prognosis in cancer patients (Xiao et al., 2018).

DNA methylation can also be detected in liquid biopsies, a
minimally invasive procedure that has emerged as a promising
element in cancer early detection. Liquid biopsies allow the
monitoring of the molecular landscape of circulating tumor
elements in body fluids in the search for new biomarkers of
cancer diagnosis, prognosis and therapy (Martins et al., 2021;
Michela, 2021). Cell-free circulating tumor DNA (ctDNA)
exhibits both genetic and epigenetic cancer-related mutations
making it possible to detect malignant lesions, monitor tumor
evolution, metastasis and recurrence and predict treatment
response (Luo et al., 2021; Li et al., 2022). Since aberrant DNA
methylation is an early event in carcinogenesis, ctDNA methylation
analysis has been used for cancer screening in clinical oncology.
Considering that each cell group has a unique epigenetic signature,
ctDNA methylation allows to tracing the origin of tissue in cancer
patients (Luo et al., 2021).

Circulating SEPT9 methylation assay has been used as a CRC
biomarker with increased specificity and sensitivity (DeVos et al.,
2009; Church et al., 2014) and was the first blood-based screening
approved by the FDA (Luo et al., 2021). SHOX2 DNA methylation
assay was used to distinguish between malignant and benign lung
disease from bronchial aspirates (Schmidt et al., 2010). Afterwards, a
plasma-based assay was used to detect small cell lung cancer and
squamous cell carcinoma with high sensitivity (Kneip et al., 2011).
Cell-free DNA (cfDNA) methylation of 15 DMRs allowed the
detection and stratification between high and low-risk ovarian
cancer (Liang et al., 2022). Similarly, other tumors, as breast,
prostate and colorectal used cfDNA methylation to differentiate
malignant and normal lesions, and prognosis stratification (Zhang
et al., 2021c; Wu Q. et al., 2021; Chen et al., 2022a; Rodriguez-
Casanova et al., 2022). Besides target ctDNA methylation, cell-free
genome-wide 5hmC has been recently used for cancer diagnosis and
prognosis stratification (Song et al., 2017; Xu et al., 2021; Shao et al.,
2022). Despite the advances and promising use of cfDNA
methylation in clinical oncology, there are some technical
limitations that need to be addressed for use in clinical practice
as a standard diagnostic tool (Heidrich et al., 2021; Lone et al., 2022).

DNA methylation has been widely investigated in oncology due
to its control of time- and tissue-specific gene expression,
inactivation of repetitive DNA and the maintenance of genomic
stability during cancer initiation and progression. Further, the
epigenetic reprogramming of undifferentiated cells through waves
of DNA methylation and demethylation, can aberrantly reprogram
the stem cell epigenome and promote cancer differentiation,
recurrence, and resistance to treatment. Also, 5mC participates in
the acquisition of other epigenetic markers as histone modification
and ncRNA expression (Das and Singal, 2004; Geiman and Muegge,
2010). Herewith, DNA methylation is an important epigenetic
marker for cancer diagnosis, with direct implications for survival
rate and an emergent target for drug development.

Aberrant histone modification

Another important epigenetic mark is the chemical modification
of histone proteins. Histones assist DNA packaging into a highly

organized chromatin structure. DNA is wrapped around a histone
octamer (H2A, H2B, H3 and H4), linked by the histone H1 to form
the nucleosome, a core structure of the chromatin (Lawrence et al.,
2016). The amino-terminal tails of histone proteins are frequently
subject to multivalent post-translational modifications (PTM), such
as acetylation, phosphorylation, methylation and ubiquitination,
altering the degree of local chromatin condensation, and
consequently interfering in gene expression and DNA
accessibility (Demetriadou et al., 2020). Non-conventional
modifications can also occur in histones, such as citrullination/
deamination, sumoylation, formylation and propionylation, among
others (Tweedie-Cullen et al., 2012).

The most studied histone modifications are methylation and
acetylation, however, unlike DNA methylation, histone
modifications can either be an active or repressive epigenetic
marker, depending on the modification and the modified amino
acid group. Many enzymes catalyze methylation at histone protein,
such as the histone methyltransferases (HMTs) and demethylase
(HDM), lysine methyltransferases (KMTs) and demethylases
(KDMs, also known as LSD), protein arginine methyltransferases
(PRMTs), among others (Husmann and Gozani, 2019; Wu X. et al.,
2021). This modification is frequently observed in lysine (K) and
arginine (R) residues and is related to different transcriptional states
(active or inactive) (Greer and Shi, 2012). Histone acetylation is a
common modification in the lysine amino acid that is catalyzed by
histone acetyltransferases (HATs) and histone deacetylases
(HDACs). Acetylation, on the other hand, is usually an
epigenetic marker of transcriptional activation (Bannister and
Kouzarides, 2011).

The combination of these modifications is responsible for
maintaining chromatin structure, which is dynamic and plays key
role in development and cell differentiation. Aberrant
reprogramming of histone modifications is often observed in the
pathogenesis of cancer, changing chromatin accessibility, and
altering the expression of target genes, subsequently affecting
malignant progression (Zhao and Shilatifard, 2019). The
imbalance of genome-wide histone methylation changes cell
growth and may favor tumorigeneses. The enrichment of the tri-
methylation at H3 lysine 9 (H3K9me3) and lysine 27 (H3K27me3), a
repressive epigenetic marker found many promoters region, drives
oncogenic transformation and chemoresistance (Torrano et al.,
2019). Overexpression of EZH2 (Enhancer of zeste homolog 2), a
member of the polycomb proteins which is responsible for the tri-
methylation of H3k27 and inactive chromatin state, is a marker of
cancer initiation, progression, metastasis and targeted therapy
(Chase and Cross, 2011; Duan et al., 2020). Although histone
arginine methylation is a less typical and complex marker,
increased expression of PRMT and enrichment of methylation at
H3 arginine residues (H3R8, H3R3 and H3R2) is observed in
digestive cancer cells (Chen et al., 2020).

Monoacetylation at H4K16 (H4K16ac) is a conserved marker
that increases chromatin accessibility and gene activation. Reduced
levels of the active H4K16ac and H4K20me3 histone modifications
are a hallmark of cancer, perhaps by promoting the loss of DNA
methylation at repetitive sequences (Fraga et al., 2005). The
H3K27ac is often observed in active promoter and enhancer
regions and is dysregulated with prognostic value for thyroid
tumors (Zhang et al., 2021a). Increased active H3K27ac and
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reduced repressive H3K27me3markers seem to be a driver mutation
in high-grade gliomas, which is related to the activation of
endogenous retroviruses (EVRs) and promotes therapeutic
sensibility to demethylating agents (Krug et al., 2019). Histone
H3 and H4 acetylation (H3K9, H3K18 and H4K12) and di-
methylation (H4R3 and H3K4), an epigenetic marker of
transcriptional activation, predicts molecular heterogeneity in
prostate cancer with prognostic value (Seligson et al., 2005).

Post-translational modifications of histones, histone variants
and histone-associated DNA modifications can be detected in
liquid biopsies using circulating nucleosome (Bauden et al.,
2015). Intact nucleosomes are released form cells after death and
has been used as a biomarker for early diagnosis and monitoring of
various types of tumors (Deligezer et al., 2010; Bauden et al., 2015;
Van den Ackerveken et al., 2021). H4K20me3 and
H3K27me3 histone modification at circulating nucleosomes is
reduced in the plasma of patients with colorectal cancer (Gezer
et al., 2015). H3K9me3 marker in the blood plasma was found
decreased of patients with colorectal cancer and increased in patients
with multiple myeloma (Deligezer et al., 2010). Elevated number of
circulating nucleossome have been reported in many tumors
(Bauden et al., 2015), and is associated with tumor recurrence
and metastasis in breast cancer (Mego et al., 2020b; Mego et al.,
2020a). Global analysis of histone PTMs showed 13 modifications
specifically related o colorectal cancer and an increasing in
methylation of histone H3K9 and H3K27, acetylation of histone
H3 and citrullination of histone H2A1R3 (Van den Ackerveken
et al., 2021).

The dynamic of histone modifications and modifiers changes
chromatin landscape and genomic function and control cancer cell
phenotype and promotes disease progression. Although the
increased identification of histone modifications and the complex
regulatory machinery made possible by the advancement of high-
throughput technologies, much still needs to be revealed about the
function of each modification and the implications for cancer
development. Even though these modifications are predictive of
clinical outcomes, targeting histone modifiers is a promising
epigenetic therapy in anticancer drug discovery.

Non-coding RNAs as cancer biomarkers

In the human genome, the protein-coding genes represent less
than 2%, whereas a large fraction is constituted by regions that are
transcribed into non-coding RNAs (ncRNAs), which retain
fundamental biological properties within cells, controlling gene
expression in a cell-specific manner. Besides its function in the
regulation of transcription, ncRNAs also influence the translation as
components in the protein synthesis machinery and regulate other
ncRNAs function in a complex network (Ratti et al., 2020).
Therefore, roles of ncRNAs in physiology and pathology are
recognized, including developmental, gametogenesis, stress,
immune response, and tumorigenesis (Aprile et al., 2020; Ratti
et al., 2020; Taniue and Akimitsu, 2021).

Among ncRNAs, the small ncRNAs (<200 nucleotides, nt) and
long ncRNAs (>200 nt) have important roles in cancer
development, acting both as oncogenic and tumor suppressor
molecules (Ratti et al., 2020). MicroRNAs (miRNA) and small

interfering RNA (siRNAs), are small ncRNA duplex,
approximately 18–31 nucleotides long, that regulates gene
expression at the post-transcriptional level through target block
of translation and/or degradation (Zhang et al., 2021b; Torsin et al.,
2021). Both miRNA and siRNA have been extensively investigated
as molecular markers of cancer and therapeutic agents. The main
difference is that the siRNA is highly specific to the target, while the
miRNA can target several molecules simultaneously, regulating
multiple pathways to maintain physiological homeostasis (Lam
et al., 2015; Cuciniello et al., 2021). Aberrant miRNA expression
has been reported in several cancer types, inducing cell proliferation,
invasion, and resistance to death by activating oncogenes and
silencing tumor suppressor genes (Peng and Croce, 2016).

Long non-coding RNAs (lncRNAs, >200 nt) are the most
abundant class of ncRNAs in the human genome (Slack and
Chinnaiyan, 2019). LncRNAs arise from intergenic regions or are
clustered with protein-coding genes (intronic or in gene-dense
regions) and like protein-coding genes, their promoter regions
are globally enriched with histone modifications, such as
H3K27ac, H3K4me3 and H3K9ac (Quinn and Chang, 2016;
Taniue and Akimitsu, 2021). The abundant class of lncRNAs
modulate gene expression in a complex intracellular network of
crossed interactions (competing endogenous RNA networks, or
ceRNET) through chromatin remodeling, either as cis or trans
elements, targeting specific sequences at the transcriptional and
translational level and participating in post-translational
modifications (Engreitz et al., 2016; Yao et al., 2019). Therefore,
the lncRNAs, and their protein-and RNA-based regulation, added
complexity to the cytoplasmatic post-transcriptional and translation
control, orchestrated before by miRNAs and proteins (Aprile et al.,
2020).

Many lncRNAs are highly expressed during development and
participate in cell growth and differentiation pathways (Cabili et al.,
2011). Thus, their modulation in different intracellular pathways,
such as cell survival and proliferation, glucose metabolism,
apoptosis, metastasis formation, and drug resistance, results in
the tumor phenotype (Luo et al., 2018; Hu et al., 2020; Wan
et al., 2020; Liang et al., 2022). Disruption of lnRNA expression
or stability affects the expression of the neighboring genes (Horlbeck
et al., 2020) and promotes chromosomal rearrangements (Yin et al.,
2021) modulating several hallmarks of cancer and fostering
progression. Moreover, several lncRNAs are transcriptionally
regulated by oncoproteins or tumor suppressors, which are
directly related to tumorigenesis (Guttman et al., 2009; Taniue
et al., 2016).

Other classes of ncRNAs, such as small nucleolar RNA
(snoRNAs), involved in RNA modifications and ribosome
biogenesis; small nuclear RNAs (snRNAs), involved in pre-mRNA
processing; piwi-interacting RNAs (pi-RNAs), which is mainly
functional in the germline, inhibiting the transcription and
movement of retrotransposons, repetitive sequences, and other
mobile elements, have also been implied in cancer development
and progression (Zhang et al., 2021b; Xiao et al., 2022). Moreover,
circular RNAs (circRNAs), single-stranded covalently closed RNA
loops, which act as transcriptional regulators, miRNA sponges and
splicing and protein translation regulators, are also abundant in cell
cytoplasm, and widely distributed in body fluids and cell-free samples,
playing critical roles in tumorigenesis (Zhao et al., 2021).
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Besides the main function of ncRNAs in cellular compartments,
ncRNAs can also be released from the cell and transported in body
fluids through exosomes or RNA binding proteins (RBPs), targeting
molecules outside the production site, being a promising minimally
invasive cancer biomarker (Qi et al., 2016). Circulating RNAs (as
ncRNAs) are easy to be sampled in liquid biopsies and can be used as
diagnostic biomarkers in the early detection of cancer, before
radiologic and imaging events, as well as for prognosis,
monitoring disease evolution and adjustments of treatment
(Pardini et al., 2019). Due to their specificity and stability,
circulating ncRNAs can provide accuracy and sensitivity for the
screening of different human cancers (Slack and Chinnaiyan, 2019).
Indeed, there are a large variety of ncRNAs that might be used as
cancer biomarkers in liquid biopsies. Among them, the most studied
are miRNAs, but more recently also pi-RNAs, circRNAs, and other
sncRNAs. The lncRNAs also represent a versatile and promising
group of molecules which, besides their use as biomarkers, have also
a possible therapeutic role (Pardini et al., 2019).

One of the first described miRNA, and probably the most
recurrently detected as a cancer biomarker, is the oncomiR miR-
21. This miRNA is implicated in various signaling pathways, and its
upregulation results in the inactivation of several tumor suppressors.
Altered miR-21 expression is often observed in many cancer types,
including digestive, respiratory, hematological, gynecological and
brain malignancies (Kumarswamy et al., 2011; Pardini et al., 2019).
MiR-21 was also upregulated in serum samples from patients with
renal cell carcinoma (RCC), as well as miR-210 and miR-144-3p,
and the upregulation of miR-21 was positively correlated to tumor
stage (Zhao et al., 2013; Lou et al., 2017; Tusong et al., 2017). On the
contrary, miR-508-3p and miR-509-5p were decreased in plasma
samples of RCC patients (Zhai et al., 2012). Furthermore, miR-155
has been also reported as dysregulated in serum/plasma samples in
gastroenterology malignancies, lung, breast, ovary, and hematologic
malignancies (Larrea et al., 2016; Chen et al., 2017; Giannopoulou
et al., 2019). Likewise, miR-141 and miR-375 were upregulated in
serum and plasma exosomes of patients with metastatic prostate
cancer (Hessvik et al., 2013; Samsonov et al., 2016). Although
promising, miRNAs are not specific to one type of cancer,
therefore understanding the implication of miRNAs in specific
pathways and finding the most sensitive and specific ones is still
challenging (Pardini et al., 2019).

LncRNAs, particularly circular lncRNAs, are stable circulating
ncRNAs used as cancer biomarkers. In this context, overexpression of
the oncogenic lncRNA MALAT1 in non-small cell lung cancer
(NSCLC) tissue is related to reduced overall survival and could be
a potential prognostic biomarker and therapeutic target in early-stage
lung cancer (LC) (Gutschner et al., 2013; Huang et al., 2017; Lu et al.,
2018). Otherwise, circulatingMALAT1 expression is lower in patients
with LC when compared to healthy controls (Weber et al., 2013; Guo
et al., 2015). Another lncRNA overexpressed in LC is the imprinted
geneH19 which is associated with carcinogenesis from early stages to
metastasis, reduced disease-free survival (DFS) time, and poor
prognosis. Plasma level of the lncRNA H19 is also increased in
NSCLC patients (Ge and Yu, 2013; Luo et al., 2018; Yin et al.,
2018). In the same context, the imprinted lncRNA KCNQ1OT1
(LIT1) is dysregulated in human tumors (Nakano et al., 2006), and
seems to be related to chemoresistance in tongue squamous cell
carcinoma and poor prognosis (Guo et al., 2014).

Wang and collaborators demonstrated that the lncRNA colon
cancer-associated transcript 2 (CCAT2) was significantly
overexpressed in colorectal cancer (CRC) tissues of CRC patients
when compared to healthy controls. Overexpression of CCAT2 was
also seen in serum and serum-derived exosomes of the CRC patients
(Wang L. et al., 2019). Likewise, in AML, the lncRNAs SBF2-AS1,
DANCR, LINC00239, LINC00319, LINC00265 and LEF1-AS1 are
overexpressed. Whereas the lncRNA H22954 is downregulated, and
its decreased expression is related to a higher risk of relapse (Zimta
et al., 2019). In gastric cancer (GC), different lncRNAs are related to
drug resistance, by modulating the expression of drug resistance-
related genes, such as the oncogenic lncRNAs MACC1-AS1,
PVT1 and HAGLR, which are upregulated and promote 5-FU
resistance in GC cells (Liu et al., 2022).

CircRNAs have been reported to play important roles in cancer
growth, metastasis, and resistance to therapy (Su et al., 2019). In this
context, Zhang et al. reported that circUBAP2 was overexpressed in
osteosarcoma cells, and its knockdown inhibited cell proliferation
and promoted cell apoptosis. CircUBAP2 acts inhibiting the
expression of miR-143, thus enhancing the expression of Bcl-2,
an important anti-apoptotic molecule (Zhang et al., 2017a).
Likewise, circNFIX was found overexpressed in glioma and
inhibited apoptosis through sponging miR-34a-5p, regulating
NOTCH1 expression (Xu et al., 2018). In NSCLC,
circSNAP47 expression, through the miR-1287/GAGE axis, is
correlated with metastasis and associated with decreased overall
survival (Li et al., 2018). On the other hand, circSHPRH in NSCLC is
associated with downregulated metastasis and improved overall
survival (Liu et al., 2018).

Due to the important role of ncRNAs in many biological
processes through chromatin remodeling, gene expression
regulation, protein synthesis and post-translational modifications,
these regulatory RNAs have emerged as an important biomarker for
cancer diagnosis, with implications in disease prognosis, drug
resistance and targeted therapy. Additionally, the possibility to
detect small and long ncRNAs in cell-free body fluids and liquid
biopsies, circulating ncRNAs represents a new class of minimally
invasive biomarkers for the early diagnosis of cancer.

Epigenetic modifications in ncRNAs

RNA modifications have emerged as important post-
transcriptional regulators of gene expression patterns and have
shown significant implications in several human diseases,
including cancer (Barbieri and Kouzarides, 2020; Nombela et al.,
2021). These modifications can be divided into two categories:
reversible, which include chemical modifications, i.e., the
different types of RNA methylation, such as cytosine and
adenosine methylation; and non-reversible, i.e., editing and
splicing, including the formation of circular RNAs (Esteller and
Pandolfi, 2017). Most of the time, those chemical modifications are
dynamic, as a result of adaptation to the cell environment, however,
they can also be transmitted during mitosis and meiosis.

The epitranscriptome scenery is complex, and more than
170 different types of chemical modifications are described for
coding and ncRNAs (Boccaletto et al., 2018). A familiar chemical
modification of some RNAs affects its 5′-end, the well-known

Frontiers in Cell and Developmental Biology frontiersin.org06

Costa et al. 10.3389/fcell.2023.1116805

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1116805


“5′cap”, and the most characterized cap modification is the addition
of an N7-methylguanosine (m7G) (Ramanathan et al., 2016).
Another frequent modification in RNAs is the 5-methylcytosine
(m5C), first thought to be present only in tRNAs and rRNAs, and
later identified in other RNA transcripts, which might have a role in
miRNA targeting (Squires et al., 2012). The lncRNA XIST, for
example, is regulated by m5C where cytosine methylation has
been shown to interfere with the binding of the histone modifier
PRC2 (Amort et al., 2013). Importantly, m5C is not a static mark of
RNA, and can be demethylated to 5-hydroxymethylcytosine. RNA
can also be modified at adenosines in the form of N6-
methyladenosine (m6A) and N1-methyladenosine (m1A). m6A is
the most abundant internal modification of mRNA (Lee et al., 2014),
but it is also relevant for miRNAs controlling their maturation and
expression levels. m6A is also found in lncRNAs, being required, for
example, for the efficient transcriptional repression mediated by the
lncRNA XIST and modulating the structure of lncRNA MALAT1,
which is associated with cancer malignancy (Patil et al., 2016; Zhang
et al., 2017b). Pseudouridylation, the 5′-ribosyluracil isomers of
uridine, is a common modification in ncRNAs, including tRNA,
rRNA and snoRNAs and lncRNAs (Ge and Yu, 2013; Schwartz et al.,
2014).

All those RNA modifications are dynamic, allowing rapid
cellular responses to environmental signals, and finely regulating
several molecular processes within the cell: altering RNA
metabolism, splicing or translation; RNA stability or intracellular
localization; binding affinity to RBPs or other RNAs; and finally
diversifying (epi)-genetic information (García-Vílchez et al., 2019;
Gkatza et al., 2019; Nombela et al., 2021). Although RNA
modifications are not alone considered cancer drivers, the
resulting ability of them to modulate several processes of RNA
metabolism, leads to aberrant expression of important genes
functionally related to survival proliferation, self-renewal,
differentiation, migration, stress adaptation, and resistance to
therapy, all of which are hallmarks of cancer. Alterations in the
expression of m6A writers (i.e. METTL3 andMETTL14), erasers (i.e.
FTO) or readers (i.e. YTHDC2 and YTHDF1), for example, are
associated with tumor-suppressive or tumor-promoting scenarios
(Blanco et al., 2016; Cui et al., 2017; Jin et al., 2019; Nombela et al.,
2021).

In hepatocellular carcinoma (HCC), for example, the mutation
frequency of m5C regulatory genes is high, and their dysregulation is
associated with higher stages of HCC (He et al., 2020). In bladder
cancer, NSUN2 and m5C reader YBX1 are upregulated, which are
positively correlated with T and N stages, and poor disease-free
survival in those patients (Chen et al., 2019). In breast cancer cell
lines, 2′-O methylation appeared to be hypermodified in rRNA and
correlated with altered protein translation (Belin et al., 2009).
Modifications in tRNA, which includes m5C or 5-
methoxycarbonylmethyluridine (mcm5U), have been also
reported in breast cancer, and correlate with altered translation
(Begley et al., 2013; Delaunay et al., 2016; Nombela et al., 2021). In
bladder cancer cells, METTL3 promotes the maturation of miR-221/
222 in an m6A-dependent manner, which causes PTEN reduction,
leading to cell proliferation and tumor growth (Han et al., 2019). In
HCC, METTL14 promotes the m6A-dependent processing of pri-
miR-126, and its depletion reduces m6A levels and expression of
miR-126, leading to cancer cell migration and invasion (Ma et al.,

2017). In nasopharyngeal carcinoma (NPC), the oncogenic lncRNA
FAM225A stabilized by m6A modifications serve as a sponge for
miR-590-3p and miR-1275, activating the FAK/PI3K/Akt signaling
pathway and promoting tumorigenesis and metastasis (Zheng et al.,
2019). Therefore, strategies aiming these aberrant post-
transcriptional RNA modifications in cancer cells may be an
efficient targeted therapy for tumors.

Epigenetic treatment in cancer

Genetic changes, including genetic mutations, are difficult to
reverse, unlike epigenetic modifications which are reversible and can
be modulated by pharmacological agents (Zhang et al., 2020). The
epigenomic´s reprogramming, leading to changes in the cell
landscape, reveals a promising therapeutical approach (Miranda
Furtado et al., 2019). Many small molecules targeting epigenetic key
enzymes, called epigenetic drugs or epidrugs (Table 1), have been
discovered and new compounds that modulate epigenetic marks
(Figure 2) are being developed focusing on cancer treatment (Xiao
et al., 2021) (Jin et al., 2022b). Epidrugs promotes disruption of
transcriptional and post-transcriptional modifications, acting manly
on tumor suppressor and DNA repair gene activation (Rodríguez-
Paredes and Esteller, 2011; Ghasemi, 2020). These drugs are tumor
and disease stage specific and the side effects are mostly related to
hematologic disorders like leukopenia, neutropenia and
thrombocytopenia, and gastrointestinal symptoms as nausea,
emesis, diarrhea and constipation (Table 1) (San Miguel Amigo
et al., 2011; Bubna, 2015). Most of the side effects are reversed after
treatment cessation and taper off with the use of appropriate
medicines (Götze et al., 2010; Dong et al., 2012).

The first epigenetic drug approved by the United States Food
and Drug Administration (FDA) was azacitidine (Vidaza®) in
2004 for MDS and chronic myelomonocytic leukemia
(Kaminskas et al., 2005), followed by decitabine (Dacogen®)
approved in 2006 to treat MDS (Steensma, 2009). Both
azacitidine and decitabine are two analogues of the cytidine
nucleoside in which the carbon atom in position 5, in the
pyrimidine ring, has been replaced by a nitrogen (Derissen et al.,
2013). Initially, these compounds were planned as cytotoxic agents,
but it was found that low dose exposition could cause DNA
demethylation by inhibiting the DNMT1 enzyme responsible for
maintaining DNAmethylation (Stresemann and Lyko, 2008). These
so-called ‘hypomethylating agents’ have been used in myeloid
malignancies for more than 1 decade, even though, 50% of
patients do not respond initially or during repeated cycles of
treatment (Zhao et al., 2021; Šimoničová et al., 2022).

Guadecitabine is a second-generation DNA methylation
inhibitor being developed for AML and MDS treatment. It
consists of a dinucleotide of decitabine and deoxyguanosine
which is resistant to cytidine deaminase, the enzyme which is
responsible for decitabine inactivation (Stomper et al., 2021).
Guadecitabine might replace azacitidine and decitabine in a near
future, due to its higher stability, safety profile and ease of
administration (subcutaneous) (Daher-Reyes et al., 2019).
Another class of epigenetic drugs are the histone deacetylase
inhibitors (HDACi) which increase histone acetylation, an
epigenetic mark of transcriptional activation, leading to an
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accessible chromatin conformation and promoting the expression of
important genes that controls cell growth and death (Richon et al.,
2009; Ramaiah et al., 2021).

The first HDACi was suberoylanilide hydroxamic acid (SAHA,
vorinostat®) approved in 2006 by the FDA for the treatment of
cutaneous manifestations of T-cell lymphoma (CTCL) (Duvic and
Vu, 2007). After SAHA approval, a depsipeptide natural product
from the bacterium Chromobacterium violaceum named romidepsin
was approved in 2006 for CTCL and peripheral T-cell lymphomas
(PTCL) treatment (McClure et al., 2018). Belinostat became the
third FDA approved HDACi for T-cell lymphoma (Campbell and
Thomas, 2017). In 2015, panobinostat arise as the first HDACi
approved for a nonlymphoma cancer by FDA and also the European
Medicines Agency (EMA). Panobinostat is an oral pan-HDACi
recommended for relapsed or refractory multiple myeloma
management (Berdeja et al., 2021), the first time that an HDACi
was proposed and accepted for non-lymphoma cancer treatment,
refreshing the possibility of designing inhibitors for all HDACs
bearable enough to benefit humans (McClure et al., 2018).

Tucidinostat (chidamide) is a novel oral subtype of selective
HDACi. This drug inhibits class I HDACs (HDAC1, HDAC2,
HDAC3) and class IIb (HDAC10). It was approved in 2014 as a
second-line therapy for peripheral relapsed or refractory T-cell
lymphoma by the China Food and Drug Administration. In
Japan, tucidinostat was approved in 2021 for relapsed or
refractory adult T-cell lymphoma treatment under the name
Hiyasta (Sun et al., 2022). Valproic acid is an FDA-approved

antiepileptic drug that also presents inhibitory HDAC class I and
II activity (Lunke et al., 2021). Currently, valproic acid is in phase III
clinical trial as a potential drug to treat cervical and ovarian
malignancies and has been proposed in combination regimens
with chemotherapy and radiotherapy (Krauze et al., 2015;
Suraweera et al., 2018; Tsai et al., 2021).

Compounds that modulate epigenome are being discovered and
currently, there is a race in finding potential inhibitors of epigenetic
modifiers. Emerging targets that modulate others DNA-modifying
enzymes, as TETs and isocitrate dehydrogenase (IDHs) inhibitors
(TETi and IDHi) are in current development for cancer treatment.
Likewise, the complex network of histone-modifying enzymes has
been added in anticancer therapy, as HMTi, HATi, HDMi, KMTi
and PRMTi (Ganesan et al., 2019; Morel et al., 2020). An emerging
target therapy for cancer treatment in preclinical studies is the
EZH2 lysine methyltransferase inhibitors, with great results
especially in combination with radiotherapy or chemotherapy,
such as cisplatin, gefitinib and tamoxifen (Duan et al., 2020;
Morel et al., 2020). Another class of epidrugs are the inhibitors
of bromodomain and extra-terminal domain (BETi), a histone
“reader” that recognizes and binds to acetylated lysine and is
responsible for the recruitment of transcription machinery and
gene activation (Cheung et al., 2021).

The combined use of epigenetic drugs with conventional
therapies is gaining prominence due to its potential in increasing
tumor cells’ sensitivity to classical chemotherapy improving the
therapeutical effect. A phase Ib/II clinical trial showed that the small

TABLE 1 Epigenetic drugs approved by FDA.

Epigenetic target Compound Clinical
name

Disease Administration Side effects Company Approved
by (Year)

DNMT1 Azacitidine Vidaza® MDS Intravenous Neutropenia,
thrombocytopenia,

nausea, emesis, diarrhea,
and constipation

Pharmion
Corporation

United States
FDA (2004)

Decitabine Dacogen® MDS Intravenous Prolonged
myelosuppression
(neutropenia and
thrombocytopenia)

Janssen
Pharmaceuticals

United States
FDA (2006)

HDACs class I and
HDAC6

Suberoylanilide
hydroxamic acid

(SAHA)

Vorinostat® CTCL Oral Fatigue, nausea, diarrhea,
and thrombocytopenia

Merck United States
FDA (2006)

HDAC6 Romidepsin Istodax® CTCL Intravenous Fatigue, nausea,
leukopenia,

granulocytopenia, and
thrombocytopenia

Celgene United States
FDA (2009)

pan-HDACi Belinostat Beleodaq® T-cell
lymphoma

Intravenous Nausea, vomiting,
fatigue, pyrexia, and

anemia

Topo Target United States.
FDA (2014)

Panobinostat Farydak® Multiple
myeloma

Oral Diarrhea, peripheral
neuropathy, asthenia,
fatigue, neutropenia,

thrombocytopenia, and
lymphocytopenia

Novartis United States
FDA (2015)

HDAC1,
HDAC2 HDAC3 and

HDAC10

Tucidinostat Epidaza® PTCL Oral Fatigue, anorexia,
thrombocytopenia,

leukopenia, neutropenia

Chipscreen
Biosciences

China FDA
(2014)

DNMT, DNA, methyltransferase; HDAC, histone deacetylases; MDS, myelodysplastic syndrome; CTCL, Cutaneous T-cell lymphoma PTCL, Peripheral T-cell lymphoma; U.S, united states;

FDA, Food and Drug Administration.
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molecule eprenetapopt in combination with azacytidine improved
clinical response rates and molecular remissions in patients with
TP53 mutant MDS and oligoblastic AML (Sallman et al., 2021). A
selective BCL-2 inhibitor (Venetoclax) has recently been approved
for use in combination with hypomethylating agents (Azacitidine or
Decitabine), giving promising results for the treatment of acute
myeloid leukemia in patients who are ineligible to receive intensive
chemotherapy (Manda et al., 2021). The use of decitabine associated
with carboplatin has shown greater efficacy in the treatment of
ovarian cancer when compared with conventional therapies by
increasing the sensitivity of the tumor cells (Fan et al., 2014; Fu
et al., 2015).

In the same context, a phase II study showed that patients with
AML or MDS who underwent idarubicin therapy with a high-dose
continuous infusion of Ara-C (cytarabine) associated with
vorinostat® showed an overall response rate of 85%, and a 76%
complete response to treatment in association (Garcia-Manero et al.,
2012). A multicenter phase 2 trial showed that the combined use of
Vorinostat® with Bortezomib and Dexamethasone showed an
overall response of 81.3% in patients with relapsed multiple
myeloma, although more studies are necessary to further
optimize HDACi-based combinations, in order to improve
tolerability and increase the efficacy of combination therapy
(Brown et al., 2021). A multicenter phase II trial showed that the
triple use of belinostat, carboplatin and paclitaxel was well tolerated
and demonstrated clinical benefit in patients with recurrent
epithelial ovarian cancer (Finkler et al., 2008). Combination
therapy of drugs with the ability to modulate the epigenome and
conventional therapies demonstrate increased efficacy and

tolerability, requiring lower dosages of each agent, and reducing
the side effects caused by conventional chemotherapies (Oing et al.,
2019).

Recently, ncRNA have been proposed as a target to overcome
therapy resistance. The focus of this approach is to inhibit the
specific ncRNA molecule if it is overexpressed or restore the normal
function of ncRNAs that are downregulated when therapy resistance
occurs (Chen et al., 2022b). Inhibition of the microRNA-21 (miR-
21) with a locked-nucleic acid-anti-miR resulted in increased
apoptosis level in melanoma cell line and reduced tumor growth
and volume in mice (Javanmard et al., 2020). Targeted inhibition of
miR-221/222 with anti-miR-221 and anti-miR-222 promoted
synergetic effects stimulating cell sensitivity to cisplatin in triple-
negative breast cancer cell line (Li et al., 2020).

Epidrug-associated immunotherapy

Immunotherapy refers to the treatment in which the patient’s
immune system is reprogrammed and stimulated to fight defective
cells such as those resulting from a tumorigenic process. Its main
goal is to empower immunity and modulate the tumor
microenvironment by releasing cytokines such as interferons,
interleukins, and chemokines, promoting T-cell attack and
tumoral cell cleaning (Esfahani et al., 2020).

Monoclonal antibodies have been an important therapeutic
agent used in the treatment of several types of cancer. Since the
approval in 1997 of Rituximab, the first therapeutic antibody
approved for oncology patients and used until the present day

FIGURE 2
Schematic representation of the main epidrugs targets. Histone acetyltransferases (HATs) and deacetylases (HDACs) are enzymes responsible for
post-translational acetylation and deacetylation, respectively. HDAC inhibitors (HDACi) such as Vorinostat

®
, Istodax

®
, Beleodaq

®
, Farydak

®
and Epidaza

®

induce acetylation thereby promoting transcriptional activation. Histonemethyltransferases (HMTs) and demethylases (HDMs) can also bemodulated by
a new class of epigenetic drugs. DNA methyltransferases (DNMTs) are enzymes responsible for transferring a methyl group to carbon five of
cytosine, a repressive epigenetic marker. DNMT inhibitors (DNMTi) like Vidaza

®
and Dacogen

®
promote loss of methylation and activation of aberrantly

silenced genes. Other compoundswith epigenetic activity are inhibitors of the enzyme ten-eleven translocation (TETi), inhibitors of the enzyme isocitrate
dehydrogenase (IDHi), inhibitors of the protein arginine methyltransferase (PRMTi), inhibitors of the bromodomain and extra-terminal domain (BETi) and
inhibitors of the enhancer of zeste homolog 2 (EZH2i), which is a histone-lysine n-methyltransferase enzyme.
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with success in the treatment of B-cell malignancies, dozens of
antibodies recognizing a variety of targets have been used
successfully in the treatment of both solid and hematological
tumors (Zahavi and Weiner, 2020). New antibody formats have
emerged such as antibody-drug conjugates (ADCs), bispecific/
multispecific binding, nanobodies, antibody fragments, and other
engineered molecules (Jin et al., 2022a). In addition to monotherapy,
antibodies can be combined with other drugs since multiple
treatments can increase their effectiveness and decrease
chemoresistance (Miranda Furtado et al., 2019).

Epidrugs are alternative strategies for a more personalized
tumor treatment because they might sensitize tumors to immune
checkpoint inhibitors and cell therapy, besides their effect on viral
mimicry response and immune cell activation. Currently, several
clinical trials on different tumor types are ongoing using epidrugs
alone or in combination with other immunotherapy drugs (Xu et al.,
2022). There are different approaches regarding the use of epidrugs
in cancer treatment, such as DNA methyltransferase inhibitors
(DNMTi), histone deacetylase inhibitors HDACi, and
bromodomain and extra-terminal motif inhibitors BETi.

New combinations of epidrugs and immunotherapeutic
molecules have shown potential clinical application for cancer
treatment. A study of colorectal cancer in CT26 tumor-bearing
mouse model revealed a therapeutic gain when low-dose decitabine
was administrated with anti-PD-1 regimen (Yu et al., 2019).
Decitabine is a well-known DNMTi and FDA-approved drug. A
methylation profile was assessed in decitabine-treated CT26 cells
and patient-derived xenografts (PDX) model, and tumor cells were
significantly downregulated regarding methylation of promoter
regions after decitabine treatment. It was also observed that
decitabine in combination with anti-PD-1 antibody
administration promoted longer survival in PDX mice than
single therapy. These results shed light on the role of decitabine
on tumor microenvironment re-modulation of methylation profile
of promoter genes and suggest that PD-1 blockade and low-dose
decitabine would be effective in future clinical trials.

Huang also correlated decitabine and anti-PD-L1 treatment to
colorectal cancer (Huang et al., 2020). Using in vitro and in vivo
models, the study showed that decitabine induces DNA
hypomethylation which enhances tumor PD-L1 expression via an
epigenetic mechanism, improving the therapeutic efficacy of anti-
PD-L1 immunotherapy. Besides, decitabine treatment modifies the
interferon signaling pathway and remodels the tumor
microenvironment, recruiting more immune cells, such as T cells
for antitumor immunity (Huang et al., 2020).

An important work performed by Goltz used data from
470 melanoma patients provided by The Cancer Genome Atlas
and a cohort of 50 metastatic melanoma patients treated with
anti–PD-1 or/and anti–CTLA-4 antibodies, to investigate if
CTLA-4 promoter methylation profile can be used as a
biomarker to predict more successful treatment with ICB
(immune checkpoint blockage). Methylation levels in patients
treated with anti-PD-1 and anti-CTLA-4 were slightly lower
when compared to the non-ICB cohort. Low CTLA-4
methylation levels also play a key role in prolonged overall
survival observed in patients (Goltz et al., 2018). The study paves
the way for use of demethylating agents to aid the treatment with
immune checkpoint inhibitors. Several clinical trials have been

performed to evaluate the effects of the combination of
epigenetic inhibitors and immunotherapies which creates hope
for more efficient treatments and overcomes the limitations of
current approaches (Topper et al., 2020; Villanueva et al., 2020;
Licht and Bennett, 2021).

Epi-cell therapy

Chimeric Antigen Receptor (CAR-T) cell therapy has
revolutionized personalized cancer treatment. Some of the
strategies available for this approach target B cell tumors,
through molecular markers such as CD19, CD20, and CD22.
DNA methylation profiles have been reported to impact
outcomes of CAR-T targeting CD19 treatment. A study revealed
that the use of the DNA methylation inhibitor 5-Aza-2′-
deoxycytidine in the hypermethylated T-cell lines resulted in the
downregulation of INPP5A and ECHDC1 expression levels. These
genes are involved in intracellular signaling cascades, important to
CAR-T Cell therapy. In addition, these T-cell–derived lines also
showed that hypermethylation of 5′-end CpG sites was associated
with transcript downregulation. An illustrative example is the 5′-
UTR CpG hypermethylation of FOXN3, a candidate tumor
suppressor gene for T-cell acute lymphocytic leukemia which was
downregulated in the T-cell-derived lines mentioned (Garcia-Prieto
et al., 2022). Wang discussed the influence of decitabine, a DNMTi,
on T-cell exhaustion of CAR-T therapy. Decitabine-treated CAR-T
cells (dCAR) differentially expressed genes regarding proliferation,
cytokine secretion, cytotoxicity and memory in vitro. dCAR also
presented tumor shrinkage in the acute lymphoblastic leukemia
mouse model (Wang et al., 2021). Xu reveal the benefits of priming
CAR-T cell therapy mice with 5-azacytidine, a DNMTi. CD19+

B-cell acute lymphoblastic leukemia mouse models were used to
perform those experiments. A regimen of 1 day of azacitidine before
CAR-T cell infusion expanded IFNγ+ effector T cells and promoted
CAR-T cell divisions. Azacitidine was related to activating several
immune pathways, such as TNFSF4, a gene that encodes OX40L
which is related to co-stimulatory signals on CAR-T cells. Another
interesting finding is that neither PD-L1/PD-L2 expression in
leukemia cells nor PD-1 expression in CAR-T cells was affected
by pre-treatment with azacitidine, suggesting that azacitidine effects
were not mediated through the modulation of the inhibitory PD-1
checkpoint (Xu et al., 2021). Thus, the study of the epigenetics
landscape in CART-T-Cells can improve the efficacy of the cellular
immunotherapy treatment in patients with B-cell malignancy and
expanding its use to other oncological diseases.

Conclusion

Epigenetic reprogramming is the main event to promote cell
differentiation, and once cell fate is determined, the epigenetic
pattern of genomic function must be stably maintained during
DNA replication in cell division. Disruption of the epigenetic
landscape of differentiated cells changes cell fate and promotes
carcinogenesis and tumor progression. Thought waves of
reprogramming cancer cells have the ability to return to a less
differentiated state or aberrantly reprogram the stem progenitor.
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This stem cell-like phenotype is a challenge in cancer treatment
leading to resistance, recurrence, and poor overall survival. Loss
of global DNA methylation, aberrant activation/inactivation of
growth-related genes, altered chromatin remodeling through
histone modifications and ncRNA interaction, as well as
disrupted expression of microRNAs and lncRNA, are
molecular features of many cancer types. Given the
heterogeneity of tumor cells, epigenetic changes have been
highlighted as an important diagnostic marker, even in the
early stages of cancer development, with great prognostic
value. Recently, ncRNAs have an emerging role as a less
invasive biomarker for diagnosis since they can be easily
detected in body fluid and liquid biopsies. The complex
regulatory machinery involved in the establishment and
maintenance of epigenetic markers, and the cell-type specific
modifications, give an individual variation in oncology,
highlighting the importance of precision medicine. In this
field, regulating the enzymes that catalyze epigenetic
modifications using inhibitors or compounds that target these
modifications has been extensively used in cancer therapy,
especially for hematological tumors, although some of them
are used for solid tumors as combinatory therapy. DNMTi
and HDACi are the main epidrugs in clinical use and other
new classes of epigenetic modulators are in development. Even
though it has great results as monotherapy, the synergic use with
other anticancer therapies, such as chemo, hormonal or
immunotherapy has expanded the potential and effectiveness
of epidrugs on cancer treatment.
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