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Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the
epithelium of the nasopharynx. The disease is insidious, and most patients are
diagnosed at the advanced stage, resulting in poor prognosis. Early diagnosis is
important to reduce NPC mortality. Small extracellular vesicles (sEVs) are rich in a
variety of bioactive molecules, such as proteins, nucleic acids, and lipids, which
can participate in the physiological and pathological regulation of the body by
affecting the function of target cells. Numerous studies have shown that some
RNAs and proteins in sEVs of tumor origin have a key role in the development of
NPC and are potential candidates for malignancy detection. Studying the
relationship between the cargoes of these sEVs and NPC may help in the
diagnosis of the disease. Here in this review, we summarize the application of
sEVs as biomarkers in the diagnosis of NPC and their role in NPC metastasis and
prognosis. In addition, we discuss possible future applications and limitations of
sEVs as biomarkers.
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Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy with strong ethnic and regional
characteristics. It is very common in Southeast Asia, East Asia, and North Africa. It occurs at
a peak age of > 45 years and is two to three times more common in men than in women (Xu
et al., 2015; Chen Y. P. et al., 2019; Zhu et al., 2020). The World Health Organization has
classified NPC into the following three subtypes based on histology: keratinizing squamous
cell carcinoma, non-keratinizing carcinoma (either differentiated or undifferentiated), and
basaloid carcinoma (Chua et al., 2016; Tang et al., 2021). Keratinizing squamous cell
carcinoma is associated with Epstein–Barr virus (EBV) infection in approximately 70%–80%
of the cases. Almost all cases of non-keratinizing carcinoma (either differentiated or
undifferentiated) are related to EBV and occur in areas where EBV is endemic (Sinha
and Gajra, 2022). Research suggests that differences in diet, lifestyle, and exposure to harmful
environmental factors may be the root cause of geographic differences in the incidence of
NPC (Chang et al., 2017; Lee et al., 2019; Xu et al., 2019). In 2020, approximately
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133,000 people were diagnosed with NPC, and there were
approximately 80,000 NPC-related deaths (a mortality rate of
approximately 60%) (Sung et al., 2021). Due to the lack of
effective early diagnostic indicators, most patients are diagnosed
at an advanced stage and are prone to distant metastasis (Guinot
et al., 2020; Brody-Camp et al., 2021). Therefore, early and accurate
diagnosis is of great importance for the prevention and treatment
of NPC.

Currently, screening for NPC is based on serum EBV antibody
assays, plasma EBV DNA tests, imaging, and tissue biopsies (Lam
et al., 2018; Mao et al., 2021; Tang et al., 2021). However, these
methods have some limitations in diagnosing patients with
early NPC. Serum EBV antibody tests are only effective in
EBV-positive NPC patients, and there is no internationally
accepted standardized procedure for plasma EBV DNA testing.
Moreover, the origin of EBV DNA in the blood is not known.
Imaging is only available for patients with no contraindications to
imaging. Tissue biopsies are invasive, and their accuracy depends
on the skill and experience of the operator (Chua et al., 2016; Chan
et al., 2017; Lam and Chan, 2018; Sun et al., 2019). Therefore, non-
invasive and more effective early diagnostic biomarkers for NPC
are urgently needed.

Extracellular vesicle (EV) as the generic term for particles
naturally released from the cell. EVs are classified into small EVs
(sEVs, diameter: <200 nm), medium/large EVs (m/lEVs, diameter:
>200 nm) according to their size. sEVs formed by the fusion of
multivesicular bodies (MVBs) with the plasma membrane can be
actively secreted by healthy, malignant, and virus-infected cells
(Théry et al., 2018; van Niel et al., 2018; Xiao et al., 2019). All
cells, including blood cells, immune cells, cancer cells, and stem cells,
can release sEVs into various body fluids, including blood, urine,
breast milk, ascitic fluid, amniotic fluid, saliva, and cerebrospinal
fluid (Raposo and Stoorvogel, 2013; Teow et al., 2017; Xunian and
Kalluri, 2020). sEVs are rich in proteins, nucleic acids, lipids, and
other bioactive substances, and these active molecules reshape the
tumor microenvironment and participate in the development of
NPC (Juan and Fürthauer, 2018; Liu et al., 2021; Luo and Yi, 2021).
Tumor-derived sEVs contain a variety of RNAs, such as microRNA
(miRNA), long non-coding RNA (lncRNA), and circular RNA
(circRNA) (Valadi et al., 2007). These RNAs hold great promise
for diagnostic monitoring, prognostic assessment, and
immunotherapy of NPC (Duan et al., 2019; Jiang et al., 2021; Liu
et al., 2021).

sEVs are rich in proteins, including a wide range of
transmembrane proteins, lipid-anchored membrane proteins,
peripherally associated membrane proteins, and soluble proteins.
Some proteins may have important roles in the early diagnosis,
prognosis, and treatment of NPC (Pegtel and Gould, 2019; Hu et al.,
2022). Studies have shown that the EBV-encoded latent membrane
protein 1 (LMP1) is expressed in NPC cells and enhances the
radioresistance of NPC cells possibly by affecting the infected
host and modulating the tumor microenvironment (Zhang et al.,
2019). Moreover, LMP1 increase the expression of syndecan-2
(SDC2) and synaptotagmin-4-like (SYTL4) through nuclear
factor-κB (NF-κB) signaling and improve sEV formation and
secretion (Liao et al., 2020). It has also been reported that CD63,
a conserved tetraspanin protein, increases the LMP1-mediated
release of sEVs (Hurwitz et al., 2017; Han et al., 2021). Increased

number of sEVs result in P38 MAPK signaling activation in
recipient cells, promoting the proliferation of recipient NPC cells
and tumor growth (Zhang et al., 2019; Wu et al., 2020; Lo et al.,
2021). Here, we summarize the relationship between sEVs and NPC
and the application of sEV miRNAs and proteins in the diagnosis
and prognosis of NPC.

sEVs and EBV-associated NPC

sEVs are generated within a subpopulation of MVBs. When
sEVs are mature, MVBs are transported to the plasma membrane
through microtubules, docking, and membrane fusion, resulting in
sEV release into the extracellular space. sEVs influence cells in the
microenvironment by interacting with the extracellular matrix. sEVs
can also enter the circulation via lymph or blood (Bebelman et al.,
2018; Théry et al., 2018; Verweij et al., 2018). In the tumor
microenvironment, sEVs are key mediators of intercellular
communication, regulating the pathophysiological processes of
tumors (Zhang and Yu, 2019; Shehzad et al., 2021). NPC-derived
sEVs significantly induce macrophages to produce the inflammatory
cytokine interleukin-6 (IL-6), which activates signal transducer and
activator of transcription 3 (STAT3) to promote malignant behavior
of NPC cells (Han et al., 2021; Wang et al., 2021; Chen et al., 2022),
such as immune escape, angiogenesis, and metastasis (Vader et al.,
2014). Similarly, viruses can be transmitted through sEVs. In EBV-
infected patients, EBV particles are transmitted between B cells
and epithelial cells through sEVs, and specific RNAs and proteins
are incorporated in sEVs to regulate intercellular signaling
(Meckes et al., 2010; Raab-Traub and Dittmer, 2017; Zhao
et al., 2019) (Figure 1). EBV-encoded LMP1 promotes NPC cell
metastasis through store-operated calcium entry (SOCE)
conduction of cytoplasmic calcium ions (Wei et al., 2015; Wei
et al., 2020).

Many miRNAs in tumor-derived sEVs can promote
angiogenesis in NPC through different pathways. For example,
Studies have shown that miR-9 in sEVs is strongly associated
with NPC patients’ prognosis and survival. miR-9 can directly
inhibit the expression of its target gene midkine (MDK) in
endothelial cells, and it can inhibit endothelial angiogenesis by
regulating the PDK/AKT signaling pathway (Lu et al., 2018;
Ramayanti et al., 2019; Wang et al., 2020a). miR-17-5p promotes
neoangiogenesis in NPC by downregulating bone morphogenetic
protein and activin membrane-bound inhibitor (BAMBI) and
regulating AKT/vascular endothelial growth factor A (VEGF-A)
signaling (Duan et al., 2019). miR-23a plays an important role in
mediating angiogenesis by targeting testis-specific gene antigen 10
(TSGA10) (Bao et al., 2018). In addition, limb-bud and heart (LBH)
of sEVs inhibits epithelial–mesenchymal transition (EMT)
progression and angiogenesis in the NPC microenvironment.
This is mainly achieved by regulating VEGF-A expression and
secretion and associated signaling (Bebelman et al., 2018; Luo
and Yi, 2021; Wu et al., 2022). sEV-derived EBV-encoded small
RNAs (EBERs) regulate vascular cell adhesion molecule 1 (VCAM-
1) expression via TLR3/RIG-I to induce angiogenesis (Ahmed et al.,
2014; Cheng et al., 2019; Li et al., 2019). Hematopoietic cell-specific
substrate protein 1-associated protein X-1 (HAX1) and
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3),
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which are abundant in sEVs secreted by NPC cells, promote
angiogenesis and accelerate the growth of NPC in vitro and in
vivo (You et al., 2016; Gu et al., 2017). Thus, sEVs are closely

associated with EBV transmission in humans, promoting the
development of EBV-associated NPC and influencing the
metastasis and prognosis of NPC.

FIGURE 1
Viral particles and viral RNA are transported by sEVs from infected cells to uninfected cells. sEVs are formed by the fusion of MVBs with cell
membranes;microvesicles are formed by the direct outgrowth of cell membranes; and apoptotic vesicles are formed by the shrinkage and fragmentation
of apoptotic cells. The interaction between LMP1 and the tetraspanin CD63 may contribute to the selective incorporation of LMP1 into sEVs.

FIGURE 2
Blood small extracellular vesicles as diagnostic biomarkers for NPC. The levels of some sEV cargoes, such asmiRNAs, mRNAs, lncRNAs, and proteins,
are abnormal in NPC patients. Blood samples are taken from NPC patients, and sEVs are isolated to analyze the levels of various molecules.

Frontiers in Cell and Developmental Biology frontiersin.org03

Zhang et al. 10.3389/fcell.2023.1100941

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1100941


sEVs as diagnostic biomarkers for NPC

During the latent phase of NPC infection, EBV releases various
products, including Epstein–Barr nuclear antigen 1 (EBNA1),
LMP1, lncRNAs (BARTs), small RNAs (EBERs), and miRNAs
(EBV-miR-BART) (Tsao et al., 2017; Lo et al., 2021). Many
studies have shown that miRNA, RNA, and proteins from sEVs
of different origins have important roles in patients with NPC and
that these molecules may serve as diagnostic indicators
(Rahbarghazi et al., 2019; Liao et al., 2021; Lo et al., 2021) (Figure 2).

sEV miRNAs

miRNAs are a small, highly conserved class of non-coding RNAs
that can be used to diagnose NPC with high accuracy and specificity
(Zhang and Lu, 2019; Kang et al., 2021; Liao et al., 2021). Studies
have shown that sEVs of EBV BART-microRNAs secreted by NPC
cells can spread from tumor sites into the peripheral blood. sEVs are
sufficiently stable in blood and can transmit information through
miRNAs, which may serve as novel tumor biomarkers (Wang et al.,
2017; Di Santo et al., 2022; Lin et al., 2022).

Zou et al. (2020) identified five miRNAs that were significantly
upregulated in EVs secreted by patients with NPC (let-7b-5p, miR-
140-3p, miR-192-5p, miR-223-3p, and miR-24-3p), constituting a
signature for NPC diagnosis with high sensitivity and specificity. Li
et al. performed a comprehensive study of sEV-derived miRNAs and
identified three miRNAs (miR-134-5p, miR-205-5p, and miR-409-
3p) constituting a signature for NPC diagnosis (Jiang et al., 2021).
Previous studies have shown that miR-205-5p is upregulated in NPC
tissue or plasma; miR-205-5p is considered a potential diagnostic
biomarker (Luan et al., 2016; Zhang et al., 2020). It was found that
circulating miR-409-3p could serve as a biomarker for lung
adenocarcinoma and prostate cancer (Wang et al., 2020b; Karadag
et al., 2021). Jiang et al. (2021) conducted gene sequencing, selected
seven candidate miRNAs, performed Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes pathway enrichment
analyses, and constructed UpSet plots and assessment scales.
Finally, they developed a model with an area under the receiver
operating characteristic (ROC) curve value of 0.91, a sensitivity of
90%, and a specificity of 80%. In addition, their model can distinguish
between patients with NPC at different clinical stages or with different
EBV infection status and healthy people (Jiang et al., 2021). Ramayanti
et al. (2019) found that BRAT13-3p, which binds to sEVs, is a
promising biomarker in hematologic minimally invasive
diagnostics, with an area under curve (AUC) value of 0.9 for
BART13-3p miRNA in NPC patients. They identified patients with
endemic and non-endemic nasopharyngeal cancer by measuring
serum EV-bound BART13-3p levels, which could even be used as
part of a screening strategy to diagnose NPC in endemic areas. In
conclusion, these studies suggest that some miRNAs in sEVs can be
used for the early diagnosis of NPC.

sEV proteins

Many studies have shown differences in the levels of proteins in
blood sEVs of NPC patients. An earlier proteomic analysis of plasma

sEVs in NPC patients showed upregulation of 51 proteins and
downregulation of 89 proteins (Chan et al., 2015). sEVs from
EBV-infected NPC cells contain hypoxia-induced factor-1α (HIF-
1α) and LMP1, which can accelerate tumor development and
metastasis. LMP1 has been shown to indirectly affect the
composition of sEVs (Meckes et al., 2013; Teow et al., 2017). In
addition, studies have identified both LMP1 and LMP2A, which are
encoded by EBV, in EBV-infected cells. A study developed a model,
called EVsum5, based on the combination of LMP1, LMP2A, and
the tumor markers programmed death 1 (PD-L1), epidermal growth
factor receptor (EGFR), and epithelial cell adhesion molecule
(EpCAM) to identify five EV subpopulations. Furthermore, the
study concluded that EVsum5 performed best in NPC diagnosis,
with an AUC value of 1.0, a sensitivity of 100%, and a specificity of
100% (Hu et al., 2022).

In addition, studies have shown that the basic leucine zipper
ATF-like transcription factor 2 (BATF2) gene is associated with a
variety of malignant mechanisms. Immunohistochemistry (IHC)
microarrays have been performed to determine the diagnostic value
of BATF2 protein expression in NPC tissue. The results showed that
BATF2 is downregulated in NPC, and the performance of serum and
sEV BATF2 levels in the diagnosis of NPC was assessed using
receiver operating characteristic (ROC) curve analysis. Interestingly,
the sensitivity, specificity, and AUC value of plasma-derived sEV
BATF2 in distinguishing between NPC patients and healthy controls
were 81%, 82%, and 0.8983, respectively (Cui et al., 2021). In
addition, several studies have shown that CD109 is highly
expressed in both NPC cell lines and tumor tissues (Zhou et al.,
2019). Applying the novel aptamer-CRISPR/Cas12a assay, Li et al.
demonstrated that CD109+ EV and EGFR+ EV levels are much
higher in NPC supernatant and plasma than in their normal
counterparts. It is suggested that serum CD109+ and EGFR+ EVs
could be used as biomarkers for nasopharyngeal cancer. A
probability curve was constructed for the combination of CD109+

and EGFR+ tumor-derived EVs based on binary logistic regression
(Logit (<b12>p = NPC) = −13.348 + 0.002 CD109 + 0.004 EGFR),
with an AUC of 0.934, a sensitivity of 84.1%, and a specificity of 85%
for NPC versus healthy subjects (Jia et al., 2016; Sakakura et al., 2016;
Sunagawa et al., 2016; Mii et al., 2019; Li H. et al., 2021). Circulating
EV procyclin A (CYPA), with peptidyl prolyl cis-trans isomerase
(PPIase) activity, is involved in protein folding and transport, binds
to membrane receptors or intracellular membrane chaperones, and
activates downstream signaling pathways (Saleh et al., 2016). sEVs
have much higher CYPA levels than plasma and are novel and
promising biomarkers for NPC, with an AUC value of 0.844;
combining CYPA protein analysis with EBV-VCA-IgA antibody
assays can significantly improve the diagnosis of nasopharyngeal
cancer (Yang et al., 2014; Liu et al., 2019).

Plasma sEVs in the prognosis of NPC

Previous studies have found that the occurrence and
development of NPC are closely associated with differentially
expressed RNAs and proteins in sEVs. These molecules can
influence the occurrence, metastasis, chemoresistance, and
recurrence of NPC and are expected to serve as potential
diagnostic markers (Wang et al., 2017).
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Confirmation of metastasis

Metastasis is not only a major obstacle to the clinical management
of NPC but also a major cause of death in patients with NPC. Early
diagnosis of NPC is important to improve patient survival.

It has been shown that overexpression of miR-34c in sEVs inhibits
the development of NPC by targeting β-catenin, which is involved in
proliferation, migration, invasion, and EMT (Okada et al., 2019; Wan
et al., 2020). Lu et al. (2018) showed that sEVs overexpressing miR-9
inhibit angiogenesis and metastasis in NPC by targeting the pro-
angiogenic protein MDK and regulating the PDK/AKT signaling
pathway. In addition, another study showed that the glycolytic
regulator PFKFB3 is overexpressed in NPC and that sEVs
associated with NPC are highly enriched in PFKFB3, which could
activate the ERK/AKT pathway and affect the proliferation, migration,
and apoptosis of NPC cells (Gu et al., 2017). Hypoxic NPC cells secrete
sEVs containing HIF-1α-activated matrix metalloproteinase-13
(MMP-13), which enhances migration and invasiveness, induces
microenvironmental changes, and promotes NPC invasiveness (You
et al., 2015). Yin et al. (2021) found thatHIF-1α in adipocytes promotes
CNE-2 cell metastasis by inhibiting miR-433-3p expression in hypoxic
adipocyte-derived EVs (Shan et al., 2018). Furthermore, it has been
demonstrated that EGFR is highly expressed in tumor tissues from
distant metastatic NPC patients and is associated with a reduction in
reactive oxygen species (ROS). Importantly, EGFR-enriched EVs
promote the metastatic potential of NPC cells by downregulating
intracellular ROS levels via the PI3K/AKT pathway (Li et al., 2020).
sEVs secreted by NPC cells are rich in HAX1, which can be an
important biomarker for NPC metastasis. HAX1 is associated with
lymph node metastasis, metastasis classification, clinical staging, and
poor prognosis. HAX1 regulates the focal adhesion kinase (FAK)
pathway, affects microvascular formation, and promotes NPC
metastasis by increasing the translation efficiency of integrin β6
(ITGB6) (You et al., 2016; You et al., 2022).

Identification of chemoradiotherapy
resistance

Nasopharyngeal cancer treatment includes surgery and non-
surgical treatment modalities. Non-surgical treatments include
radiation therapy, radiation plus chemotherapy, and molecular
targeted therapy. Since NPC is highly sensitive to radiotherapy
and chemotherapy, the main treatment for patients with early
and locally advanced NPC is single radiotherapy or combined
chemotherapy and radiotherapy (Adelstein et al., 2017; Colevas
et al., 2018; Guan et al., 2020). In most cases, early-stage NPC
requires only radiation therapy (Chen L. et al., 2019). The main
obstacle to radiation therapy is inherent and acquired radiation
resistance of cancer cells. Chemotherapy resistance is also a major
obstacle in curing patients with recurrent NPC (Guan et al., 2020;
Shan et al., 2022). Cisplatin is one of the commonly used
chemotherapeutic agents for NPC and many other cancers
(Riddell, 2018). Expression levels of miR-106a-5p in sEVs are
significantly increased in the last cycle of cisplatin-based
chemotherapy, and miR-106a-5p is enriched in cisplatin-resistant
cell-derived EVs and promotes cisplatin resistance in NPC cells in
vivo by regulating the ARNT2/AKT axis (Li J. et al., 2021). Recently,

it has been shown that sEV endoplasmic reticulum-resident protein
44 (ERp44), which is produced upon endoplasmic reticulum (ER)
stress in NPC cells, is involved in resistance to chemotherapy with
platinum drugs, suggesting that ERp44 might be a new therapeutic
target (Xia et al., 2021).

CircMYC, a newly identified circRNA in circulating sEVs of
NPC patients, is significantly expressed in radiotherapy-resistant
cells, and knockdown of circMYC increases the radiosensitivity of
cells, suggesting that circMYC overexpression contributes to
radiotherapy resistance. Luo et al. evaluated its diagnostic
performance and reported an AUC value of 0.945, a sensitivity of
90.24%, and a specificity of 94.51%, suggesting that sEV circMYC
can be used as a biomarker to discriminate between radioresistant
and radiosensitive NPC patients (Luo et al., 2020). It was found that
EVs of LMP1-positive NPC cells could influence the infected host
and modulate the tumor microenvironment to enhance the
radioresistance of NPC cells. Transmitted LMP1 subsequently
exerts its oncogenic effects by activating P38 MAPK signaling in
the recipient cells, and inhibition of P38 activity effectively restores
the sensitivity of NPC cells to ionizing radiation (Zhang et al., 2019).
In addition, it has also been shown that tumor-derived EVs may
enhance the radiosensitivity of NPC by delivering miR-142-5p to
radiotherapy-resistant NPC cells to inhibit the HGF/c-Met and
EGF/EGFR pathways (Zhu et al., 2022). Interestingly, it has also
been found that miR-34c-5p when overexpressed in sEVs can
directly target the 3′-UTR region of β-linked protein mRNA and
reduce the expression level of β-linked protein, thereby improving
the resistance of NPC cells to radiation therapy (Wan et al., 2020).
Overall, sEVs and their contents are potential indicators to
differentiate NPC patients with or without radiotherapy
resistance and are expected to be new therapeutic targets.

Prediction of recurrence

Despite the availability of effective treatment strategies for NPC,
relapse is a common challenge. Therefore, accurate and timely
monitoring of recurrence is crucial to prolong the survival of
NPC patients. There is a growing body of evidence that RNA
and protein molecules in sEVs are strongly associated with the
prognosis of NPC. Studies have shown that high levels of circMYC
in tumor-derived sEVs may be associated with NPC recurrence.
CircMYC can interact with the tumor suppressor genes miR-20b-5p
and let-7e-3p to target the CRY2 gene, which is involved in cell
proliferation and apoptosis processes such as EMT, AKT signaling,
and p53 signaling in tumors (Huber et al., 2016; Rahman et al., 2019;
Luo et al., 2020). CYPA levels are much higher in sEVs of NPC
patients than in serum, and CYPA can be used for prognosis and
monitoring of EBV-associated NPC (Liu et al., 2019). Moreover,
sEV miR-24-3p mediates T cell suppression through inhibition of
FGF11, is involved in tumorigenesis, and may serve as a potential
prognostic biomarker for NPC (Ye et al., 2016).

Discussion

In recent years, sEVs have become an active research topic as
non-invasive diagnostic and prognostic markers for NPC. sEV-
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derived miRNAs and proteins have been reported to play various
roles in inflammation, cellular communication, tumor proliferation,
angiogenesis, and metastasis. These functions highlight their
potential as biomarkers (Mao et al., 2018). Nasopharyngeal
cancer, which is associated with a high mortality rate, is often at
an advanced stage when diagnosed. The main goal of early screening
is to reduce the rate of missed diagnosis and keep the rate of
misdiagnosis within an acceptable range (Ramsey et al., 2019;
Feng et al., 2020). The false-positive rate of EBV-associated
antibody testing limits the effectiveness of nasopharyngeal cancer
screening andmay have only limited value in screening patients with
early-stage disease or in predicting cancer progression in those with
elevated IgA antibodies (Ji et al., 2014).

sEV RNAs and proteins hold great promise as diagnostic
markers for NPC (Table 1).

sEV markers have an important role in metastasis, prognosis,
and radiotherapy resistance. Models based on combinations of
multiple miRNAs provide a direction for using sEVs as efficient
and accurate tumor markers in the future. Screening for the
differential expression of proteins in tumor tissues and
circulating sEVs is also a promising tool. In the entire process of
cancer development, the early up- or downregulation of multiple
markers in sEVs in NPC has an indispensable role in the prognosis
of the disease. For example, the metastasis and migration capabilities
of tumor cells are used for therapeutic selection of radiotherapy
modalities, identification of therapeutic targets, and prediction of
the risk of tumor recurrence.

sEVs have great advantages as new tumor markers. They contain
a variety of bioactive molecules, have little serum interference, are
highly stable, do not degrade in the extracellular environment, can
be detected in a variety of humoral environments, are non-invasive
to extract, and can be developed as carriers for drug and nucleic acid
delivery using their biocompatibility and permeability (Arrighetti
et al., 2019; Pullan et al., 2019; Tang et al., 2020). Therefore, sEVs are
extremely attractive as new biomarkers. Of course, they also have
some limitations. First of all, the accurate acquisition of sEVs from
samples is a necessity. Current isolation and extraction techniques
still have some limitations, such as cumbersome steps, and they are
time-consuming and costly. Targeting receptor cells with sEVs

remains very challenging (Luo and Yi, 2021). Moreover, it is
necessary to further analyze the origin of sEVs in the blood of
EBV-positive and -negative NPC patients. Therefore, in the future,
we hope we will be able to more accurately identify specific sEVs in
patients with different NPC types.

The identification of generic biomarkers based on sEVs in
patients with NPC has not yet been achieved. We think that a
mixture of models based on several miRNAs or proteins is more
advantageous than using only one marker since it increases
accuracy. To further address this issue, comparative studies with
larger sample sizes are necessary. sEVs are expected to be a source of
biomarkers for NPC, and it is hoped that soon, non-invasive
diagnosis and extensive screening of patients based on sEVs can
be achieved. It is expected that future studies will provide evidence
for the large-scale clinical application of sEVs.
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TABLE 1 Summary of the performance of blood small extracellular vesicles in NPC diagnosis.

Name Exp Source AUC p-value Other Ref.

miR-140-3p + miR-192-5p + miR-223a-3p + miR-24-3p + let-
7b-5p

↑ Serum --- --- Increased in NPC tissue Zou et al. (2020)

miR-34-5p + miR-409-3p ↓ Plasma 0.91 <0.05 Used for early diagnosis Jiang et al. (2021)

+ miR-205-5p ↑

BART13-3p ↑ Serum --- --- Used for early diagnosis Ramayanti et al. (2019)

LMP1 + LMP2A + PD-1 + EGFR + EpCAM ↑ Plasma 1.0 <0.001 Used for early diagnosis Hu et al. (2022)

BATF2 ↓ Serum 0.8983 <0.05 Decreased in NPC tissue Cui et al. (2021)

CD109 + EGFR ↑ Serum 0.934 <0.05 Used for early diagnosis and
prognosis

Li H. et al. (2021)

CYPA ↑ Serum 0.844 <0.0001 Increased in NPC tissue Liu et al. (2019)

↑, increased; ↓, decreased; ---, unrevealed; Ref., Reference; Exp, expression.
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