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Neurodegenerative diseases affect millions of people worldwide and there are

currently no cures. Two types of common neurodegenerative diseases are

Alzheimer’s (AD) and Parkinson’s disease (PD). Single-cell and single-nuclei RNA

sequencing (scRNA-seq and snRNA-seq) have become powerful tools to

elucidate the inherent complexity and dynamics of the central nervous

system at cellular resolution. This technology has allowed the identification

of cell types and states, providing new insights into cellular susceptibilities and

molecular mechanisms underlying neurodegenerative conditions. Exciting

research using high throughput scRNA-seq and snRNA-seq technologies to

study AD and PD is emerging. Herein we review the recent progress in

understanding these neurodegenerative diseases using these state-of-the-

art technologies. We discuss the fundamental principles and implications of

single-cell sequencing of the human brain. Moreover, we review some

examples of the computational and analytical tools required to interpret the

extensive amount of data generated from these assays. We conclude by

highlighting challenges and limitations in the application of these

technologies in the study of AD and PD.
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Introduction

Neurodegenerative diseases are characterized by a chronic

and progressive structural and functional degeneration of cells in

the central or peripheral nervous system, leading to massive

neuronal loss. Unfortunately, there are currently no effective

treatments for neurodegenerative diseases nor biomarkers for

their early detection (Heemels, 2016). Data from the Global

Burden of Diseases (GBD, 2020) demonstrates that

Alzheimer’s and Parkinson’s diseases are the top

neurodegenerative disorders contributing to the highest

disability-adjusted life years (DALY) among the groups aged

75 or older (GBD 2019 Diseases and Injuries Collaborators,

2020). These common neurodegenerative diseases are

predominantly idiopathic and have overlapping clinical and

pathological features. Genome-wide association studies

(GWAS) have identified genetic variants related to the risk of

developing Alzheimer’s disease (AD) and Parkinson’s disease

(PD). However, our understanding of the specific cell types

dysregulated in these diseases remains elusive.

High throughput single-cell and single-nuclei mRNA

sequencing (scRNA-seq/snRNA-seq) technologies have

pioneered a new era of exploration into the diversity of brain

cell types at the molecular level. Previously, the study of brain

cells was limited to bulk assays in which the amount of RNA is

averaged among all cells masking cell-type-specific gene

expression (Colantuoni et al., 2011; Hawrylycz et al., 2012;

Miller et al., 2014; Zhang et al., 2016). However, brain cells

are heterogenous and functionally complex. ScRNA-seq/snRNA-

seq technologies have provided an unprecedented opportunity to

systematically investigate the expression of thousands of genes

and cells, identifying cell subpopulations, and reconstructing

temporal and spatial dynamics of gene expression. To this

end, a comprehensive understanding of the brain cellular

subtypes and their expression profiles in healthy physiological

context and neurodegenerative conditions is required. Currently,

scRNA-seq and snRNA-seq studies of mouse and human brains

depict yields ranging from thousands of cells up to 1.3 million

cells (Yao and van Velthoven, 2021). However, the scope of these

studies can still be improved in the future given that the adult

human brain has approximately 170 billion cells including a

similar proportion of neuronal and non-neuronal cells (Azevedo

et al., 2009). Exciting insights have been achieved with scRNA-

seq and snRNA-seq in the field of human oligodendrocyte cell

diversity (Marques et al., 2016), and functional states of human

microglia (Masuda et al., 2019) among others. Furthermore,

recent advances allow the correlation of molecular features

with cellular processes such as proliferation leading to

neurogenesis in the adult mouse hippocampus (Habib et al.,

2016), as well as anatomical location and electrophysiological

characteristics in the murine thalamus (Li et al., 2020).

Herein we will review the recent progress in understanding

neurodegenerative diseases using single-cell sequencing. We will

particularly focus on AD and PD. We will discuss the

fundamental principles and implications of scRNA-seq and

snRNA-seq of the human brain. Furthermore, we will briefly

describe some examples of the computational and analytical tools

used to interpret the extensive amount of data generated from

these assays. Also, we will focus on pioneering human

transcriptomic studies which have addressed the cellular

heterogeneity of the brain regions mainly affected in AD and

PD. Finally, we will highlight challenges and limitations in the

application of these technologies in the study of AD and PD.

Single-cell/nuclei transcriptomic
experimentation

The first step in performing scRNA-seq/snRNA-seq is to

identify the brain region of interest. Human brain cells or cell

nuclei may be isolated from several sources: fresh tissue, archived

organs, or from cells differentiated in vitro (Figure 1A). Samples

from fresh tissue are collected from resection surgeries, biopsies,

or autopsies (Gradišnik et al., 2021), while samples from archived

organs are obtained from postmortem frozen or formalin-fixed

paraffin-embedded brain sections (Wang et al., 2013). If frozen

postmortem brains are selected, the best option is to collect the

transcripts to be sequenced from the nucleus (snRNA-seq)

because freezing ruptures the plasma membrane, thus

complicating the isolation of intact cells and therefore

increasing the probability of capturing degraded transcripts

from the cytoplasm (Krishnaswami et al., 2016; Slyper et al.,

2020; Maitra et al., 2021). Similarly, it is highly recommended to

perform snRNA-seq instead of scRNA-seq on samples obtained

from formalin-fixed tissues since the fixation process often

damages the integrity of various cellular structures, leading to

the detection of heavily degraded cytoplasmic RNA (Esteve-

Codina et al., 2017). Furthermore, very recent protocols have

optimized the extraction of cell nuclei for sequencing from

formalin-fixed tissues, including brain (Chung et al., 2022;

Vallejo et al., 2022). An alternative sample source is in vitro

differentiation of either embryonic stem cells (ESCs) or

reprogrammed induced pluripotent stem cells (iPSCs), which

are a reliable source of biological material since the processes of

artificial induction to the desired cell lineage highly recapitulates

the molecular processes that occur in the organism during the

development and maturation of cells (Marei et al., 2017).

Moreover, some studies have already compared through

scRNA-seq the transcriptomes of differentiated cells (e.g.,

dopaminergic neurons) from iPSCs and ESCs to the

transcriptomes of cells obtained from human brain tissue to

assess the fidelity of in vitro-derived cells, observing that these

cells retain the characteristics from their in vivo counterparts (La

Manno et al., 2016; Fernandes et al., 2020). Additionaly, some

protocols optimized for scRNA-seq/snRNA-seq of in vitro

differentiated cells recommend collecting the cells of interest
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by FACS sorting to increase the reliability of the procedure

(Cuomo et al., 2020).

As mentioned above, the selection of the sequencing

method may depend on the conservation status of the

sample, but also on the type of cells to be analyzed. Single-

cell isolation from brain represents a challenge because

neurons are very sensitive to enzymatic and mechanical

dissociation methods. Brain samples can be meticulously

collected, for example using laser microdissection, and then

carefully processed with an enzymatic or mechanical digestion

method to obtain a single-cell suspension. However, as

mentioned, there are at least two challenges when

performing brain cell dissociation. First, since neuronal

axons, dendrites, and synapses form an intricate and highly

connected network in the brain, their dissociation may affect

cellular integrity and even modify transcriptional profiles by

upregulation of stress-induced artifacts (Denisenko et al.,

2020). Second, neuronal transcripts residing in distal

cellular compartments will most likely be lost upon

dissociation (Cajigas et al., 2012; Tushev et al., 2018).

These issues may lead to an underrepresentation of

neuronal populations with respect to glial cells, which are

more resistant to dissociation procedures as has been observed

in single-cell suspensions obtained from human brain cortex

(Darmanis et al., 2015). Therefore, careful consideration must

be taken when selecting a cell dissociation method. Isolating

single nuclei instead of single cells is a better option to analyze

tissues that cannot be easily dissociated. Thus, an advantage of

snRNA-seq is that it can capture transcripts from cells that are

more susceptible to death in the process of dissociation for

example, neurons from the brain cortex (Tasic et al., 2018).

Moreover, nuclei isolation protocols are fast and do not

require protease digestion or heating, reducing the

probability of aberrant transcription (Lacar et al., 2016);

also, nuclei protocols allow the profiling of large cells

(<40 µm) that do not fit through microfluidics sequencing

methods (Denisenko et al., 2020) and can be combined with

gene regulatory studies, for example the assay for transposase-

accessible chromatin sequencing (ATAC-seq). Despite all

these advantages, an important concern for performing

FIGURE 1
Overview of human brain single-cell and single-nuclei experimental methodology. (A) Tissue for isolating single-cells or single-nuclei may be
obtained fresh from resection surgeries or autopsies, archived from frozen or formalin-fixed paraffin-embedded postmortem brains, or from
neuronal cell cultures differentiated from iPSC or embryonic stem cells. (B) Plate-based and droplet-based single-cell and single-nuclei separation
methods. (C) Data preprocessing methods include demultiplexing, read alignment, and quantification. Demultiplexing consists of the
identification and removal of barcodes from sequencing reads. Read alignment is the process of mapping reads to a reference genome and/or
transcriptome. Quantification involves the determination of the number of read counts per gene for each cell identified.
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snRNA-seq is that nuclear transcripts represent only a

percentage of the total cell’s mRNA, as demonstrated

through a study of large and small pyramidal mouse

neurons (Bakken et al., 2018). Notwithstanding, numerous

studies (mostly in mice) have demonstrated that snRNA-seq is

comparable to scRNA-seq; for example, although more

transcripts were detected in individual whole cells than

nuclei isolated from the primary visual cortex of mice, the

independent analysis of the scRNA-seq and snRNA-seq

datasets demonstrated that the same neuronal subtypes can

be similarly discriminated with both sequencing methods

(Bakken et al., 2018). Similar results were observed in

another study where both sequencing methods were

compared using samples isolated from mouse whole brain

cortex (Ding et al., 2020), suggesting that snRNA-seq is useful

and reliable for cellular diversity characterization of brain

tissues. Hence, this method has been used extensively to

profile and classify mouse brain cells (Yao and Liu, 2021).

Regarding transcriptome coverage, researchers have

demonstrated that snRNA-seq of mouse neural stem cells

and hippocampal neurons detects 66% and 82% of the

protein coding genes respectively, while the amount of gene

expression variation was similar when measured between

single nuclei and single cells (Grindberg et al., 2013).

Furthermore, in human organs outside the nervous system

such as kidney and pancreas, single-cell and single-nucleus

methods yielded equivalent gene detection sensitivity with a

significant percentage of transcripts detected in scRNA-seq

and not detected in snRNA-seq corresponding to

mitochondrial and stress-induced genes (Wu et al., 2019;

Basile et al., 2021).

Once a single-cell/nucleus suspension is obtained, a

method to physically separate them is used. Two common

separation methods are plate-based cell sorting and droplet-

based microfluidics (Figure 1B). In plate-based methods, cells

or nuclei are isolated by fluorescence activated cell sorting

(FACS) or nuclei sorting (FANS) into wells (Tasic et al., 2016)

where lysis and library preparation are performed. With this

method, samples can be stained to enable the exclusion of

dead cells or enrichment of cells labeled with specific

antibodies against cell surface or intracellular markers

(Baran-Gale, Chandra and Kirschner, 2018). Droplet-based

methods separate cells into nanoliter-size lipid droplets,

where cells are lysed and library preparation takes place

(Macosko et al., 2015). Library construction consists of

capturing transcripts, labeling them with cell or nuclei-

specific barcodes, reverse-transcribing them into cDNA,

and amplifying them. Additionally, protocols may also label

captured transcripts with unique molecular identifiers (UMIs)

before amplification, this approach results in more accurate

quantification of counts (Zheng et al., 2017). UMIs are

random oligonucleotide barcodes of a fixed length and they

are used to tag original transcripts and distinguish them from

PCR duplicates (Islam et al., 2014). Droplet-based sequencing

methods use lower reaction volumes and yield higher

throughputs compared to plate-based methods (Forsberg

et al., 2018). However, due to methodological differences,

these technologies differ in the way they quantify

transcripts. Droplet-based methods incorporate UMIs to

either 5′ or 3′ ends, thus, they do not distinguish between

gene isoforms. Contrastingly, plate-based methods capture

the full-length transcripts including exons and splice

junctions (Tasic et al., 2016; Gupta et al., 2018). Another

decision to consider is the addition of spike-in RNA. Spike-ins

are non-biological RNA molecules of known sequence which

are added to each cell’s lysate in the same known

concentration (Jiang et al., 2011). Spike-ins undergo all

library preparation processes and thus they are very useful

for normalization under the assumption that they are present

in every cell in the same amount (Stegle, Teichmann and

Marioni, 2015). However, the incorporation of spike-ins is not

easy. For example, the concentration of the added spike-ins

must be precisely calibrated to obtain optimal results, since

small variations may lead to biased estimation. Spike-ins

should be considered to contribute to 1%–5% of the total

number of mRNA molecules in the sample (Robinson and

Oshlack 2010; Grün and van Oudenaarden 2015).

Furthermore, spike-ins are prone to degradation and may

be captured less efficiently than endogenous transcripts in

scRNA-seq/snRNA-seq experiments. Additionally, the

inclusion of spike-ins is often complicated when using

droplet-based separation methods (Haque et al., 2017;

Svensson et al., 2017). Therefore, careful consideration

should be taken when selecting the separation method.

Key computational steps of single-
cell/single-nuclei sequencing data
analysis

Sequencing datasets, whether derived from single cells or

nuclei are represented by matrixes in which rows correspond

to features (e.g. thousands of genes or transcripts) and

columns to barcodes (cells or nuclei). Data analysis may

be challenging and requires the implementation of

sophisticated computational methods some of which have

different statistical assumptions (Kharchenko, 2021).

Moreover, computational standards for single-cell/nucleus

sequencing data analysis are still lacking, whereby

researchers must be very careful when selecting the

appropriate computational analysis methods. Excellent

reviews focused on detailing the best practices for

computational data analysis and interpretation have

been published (Luecken and Theis, 2019; Andrews et al.,

2021; Slovin et al., 2021). In this section, we will describe

some of the more general steps required for analyzing
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scRNA-seq or snRNA-seq datasets (referred to as single-cell

datasets because the same type of computational analysis is

applied for both sequencing methods) and their downstream

analysis.

Data preprocessing

In this first data analysis step, sequenced reads are

summarized into a count matrix. Generally, preprocessing

pipelines include demultiplexing and barcode correction,

alignment to reference genome or transcriptome,

quantification, and quality control (Figure 1C). Some common

preprocessing pipelines are CellRanger (Zheng et al., 2017) and

Optimus (https://data.humancellatlas.org/pipelines/optimus-

workflow) supporting 10x Chromium datasets, dropEst

(Petukhov et al., 2018) and DropSeqTools (https://github.com/

broadinstitute/Drop-seq) developed for droplet-based protocols,

and zUMIs (Parekh et al., 2018) compatible with all UMI-based

protocols. A benchmark of common preprocessing methods is

described in (You et al., 2021). Demultiplexing consists on the

identification and removal of barcodes from sequencing reads. In

this process, reads are grouped together by barcode similarity.

However, since synthetic techniques of barcode generation are

prone to deletion errors, the next process is barcode correction.

Corrupted barcodes undergo an error correction by comparing

their sequences to a set of known barcodes, provided in the

library preparation kit (Macosko et al., 2015). If the assay was

performed including UMIs, demultiplexing will attach the UMI

sequence to the read name. The number of different UMIs per

cell is an important metric to distinguish empty droplets/wells

and outliers (Islam et al., 2014). Finally, PCR duplicates are

removed, and read counts are assigned to individual genes and

cells.

FIGURE 2
Overview of common data processing steps with examples of relevant software tools. (A) Example of threshold assignment for the minimum
number of genes per cell as part of the quality control. Cells with a small number of detected genes are likely empty wells/droplets or non-viable
cells. (B) Normalization of gene expression based on cell depth. (C) Filtering out genes with low variability is part of the feature selection. (D)
Dimensionality reduction. (E) Calculation of a distance matrix based on cell-cell gene expression similarity metrics. A comprehensive list of
software packages for single-cell data analysis is included in https://github.com/seandavi/awesome-single-cell. References to example tools are
listed in Supplementary Table S2.

Frontiers in Cell and Developmental Biology frontiersin.org05

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://data.humancellatlas.org/pipelines/optimus-workflow
https://data.humancellatlas.org/pipelines/optimus-workflow
https://github.com/broadinstitute/Drop-seq
https://github.com/broadinstitute/Drop-seq
https://github.com/seandavi/awesome-single-cell
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


The last step in preprocessing is determining the quality of

the captured cells/nuclei. Quality control considers three metrics:

the number of counts per cell (barcode) also referred to as count

depth, the number of genes per cell, and the fraction of counts per

cell which mapped to mitochondrial genes (Ilicic et al., 2016;

Griffiths, Scialdone and Marioni, 2018). Users assign thresholds

to these metrics to filter out potentially non-viable cells or

doublets (Figure 2A). It is important to note that threshold

assignment for filtering cells should be selected cautiously

since the behavior of these metrics may be of biological

relevance. Cells with an elevated number of genes with a high

number of counts are potential doublets. Doublets may occur

when two or more cells/nuclei are captured in the same well or

droplet. Computational methods for detecting doublets have

been developed: Doublet Finder (McGinnis, Murrow and

Gartner, 2019), Scrublet (Wolock, Lopez and Klein, 2019),

DoubletDecon (DePasquale et al., 2019), and scds (Bais and

Kostka, 2020). Another relevant aspect of quality control unique

to droplet-based methods is the probability that some droplets

will not be able to capture a viable cell or nucleus, but rather

capture ambient RNA that was present in the cell suspension

(Hong et al., 2022). These empty droplets must be filtered out for

downstream analysis and some tools such as EmptyDrops or

scCB2 have been developed to discriminate real cells from

background barcodes (Lun et al., 2019; Ni et al., 2020).

Finally, it is also important to consider that ambient RNA can

also be present in droplets containing cells and can be detected in

combination with endogenous cellular RNA, thus contaminating

the single-cell dataset (Hong et al., 2022). For this purpose,

computational tools including DecontX and SoupX can be

used to estimate contamination levels and to separate

endogenous RNA reads from ambient RNA reads (Yang et al.,

2020; Young and Behjati, 2020).

Normalization

Variations in cell lysis, reverse transcription efficiency, and

stochastic molecular sampling during sequencing may generate

differences in identical cells’ sequencing depths (number of

detected genes per cell) (Hicks et al., 2018). Furthermore,

single-cell datasets suffer from increased sparsity, which

means a high proportion of zero read counts derived from

both biological and technical reasons (Kharchenko, Silberstein

and Scadden, 2014; Lun, Bach and Marioni, 2016). Thus,

normalization methods aim at removing technical biases while

preserving real biological variation. After normalization accurate

relative gene expression abundances between cells are obtained

and gene counts are comparable between cells (Figure 2B). There

are two broad categories of normalization methods depending on

whether spike-ins were added during library preparation. Data

sets with spike-ins are generally normalized using the counts of

these RNAs as a reference to scale cell counts assuming that the

same number of these molecules was added to each cell.

However, adding the same quantity of spike-ins to all cells is

technically challenging, especially in droplet-based protocols.

Thus, other normalization methods have been implemented.

These other methods rely on the assumption that the majority

of genes are not differentially expressed. In this sense, a

commonly used global linear normalization method adopted

from bulk RNA-seq analysis is count depth scaling. This

method calculates counts per million (CPM) assuming that all

sampled cells have an equal number of mRNA molecules.

Nevertheless, this is insufficient and may bias comparisons

when differentially expressed genes (DEGs) are present

(Robinson and Oshlack, 2010). Instead, methods based on

count ratios between cells are more robust to DEGs, for

example, the median of ratios and the trimmed mean of M

values (TMM) implemented in DESeq and EdgeR respectively

(Robinson and Oshlack, 2010; Love, Huber and Anders, 2014).

Algorithms based on quantile normalization define scaling

factors based on each cell’s count distribution (e.g. upper

quartile) or by fitting to a reference distribution (e.g. full

quantile). Still, these methods are biased due to the high

proportion of zero counts affecting the count ratios and gene

expression distribution (Vallejos et al., 2017). A method

developed specifically for single-cell RNA-seq was proposed

by Lun et al. to account for cellular heterogeneity and zero

counts (Lun, Bach and Marioni, 2016). In this method, the

authors used a strategy where expression values are summed

across pools of cells for normalization, then cell-specific size

factors are deconvolved from pool factors. This method is

implemented in the scran R library (http://bioconductor.org/

packages/scran) and it has proven to yield more accurate scaling

factors than others because it reduces the incidence of zeros by

counts summation across pooled cells (Lun, Bach and Marioni,

2016; Vieth et al., 2019). Other normalization methods not

relying on global scaling factors have been proposed, for

example, SCnorm (Bacher et al., 2017). In this approach, zero

values are filtered out and then two stages of quantile regressions

are used for normalization, one to group genes based on their

dependence on sequencing depth and the other to estimate scale

factors within each group (Bacher et al., 2017). However, it is

important to mention that removing or reducing zeros from

datasets may lead to biases (especially where a low-abundance

gene is expressed in many cells), thereby ignoring potential

information (Linderman et al., 2022). For this reason, some

authors have proposed to evaluate relative gene expression by

determining the percentage of cells with non-zero expression for

a specific gene instead of using normalized gene counts where

zeros were reduced or removed from the dataset (Booeshaghi and

Pachter, 2021).

Non-linear normalization methods have also been developed

to account for the multiple sources of variation in single-cell data

(Cole et al., 2019). The majority of these algorithms attempt to

model read counts according to a parametric distribution.
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Technical covariates such as read depth and counts per gene can

be used to adjust the model. A commonly used non-linear

normalization method was implemented in the R package

SCTransform (Hafemeister and Satija, 2019). In this approach,

authors fit cell counts to a negative binomial distribution and use

sequencing depth as a covariate in their linear regression model.

SCTransform outperforms global scaling methods and it has

recently been included in Seurat, an R toolkit for single-cell

genomics (https://satijalab.org/seurat/) (Satija et al., 2015).

Another recently developed method based on negative

binomial distribution is the R package Dino (Brown et al.,

2021). In this method (specially designed for UMI-based

protocols), normalization is performed by correcting the full

expression distribution of each gene for library size dependent

variation, rather than only correcting mean expression as most of

the existing methods do, resulting in a robust approach for

sample heterogeneity maintenance (Brown et al., 2021).

The distribution of gene counts is dramatically skewed with

both an elevated fraction of zero counts and a reduced number of

genes with high read counts. Thus, normalizing for gene counts

(z-score) aims at improving gene comparisons within and

between cells placing them in a similar scale. After

normalization, a common practice is to transform data counts

using a log(x+1) function. Although data counts do not follow a

log-normal distribution (Vieth et al., 2017), this transformation is

useful for downstream analysis, for example, differential

expression. However, it has been demonstrated that log-

transformation may introduce systematic errors leading to

spurious differential expression effects (Lun, 2018). These

artifacts are more dramatic when there are big differences

between cells’ size factors and the read depth is low.

Therefore, caution is suggested when interpreting clusters and

trajectories derived from datasets with these conditions.

Furthermore, it is also relevant to mention that a growing

number of computational methods such as MAGIC, SAVER,

or kNN-smoothing (van Dijk et al., 2018; Huang et al., 2018;

Almanjahie et al., 2021) have been proposed to resolve the

increased sparsity observed in single-cell datasets by imputing

data (thereby named as imputation methods) to values that are

missing or unobservable, thus improving the analysis of datasets

with an elevated fraction of zero counts (Patruno et al., 2021).

Some imputation methods directly address the sparsity of the

single-cell datasets by using probabilistic models to distinguish

biological from technical zeros and then adding values only to the

technical ones. Meanwhile, other methods adjust all zero and

non-zero values by smoothing or diffusing gene expression

values in cells with similar expression profiles (Hou et al.,

2020). Albeit imputation methods represent a potential

alternative for single-cell analysis, they have the challenge of

imputing data accurately while preserving true biological zeros.

Also, although to date there are no quantitative benchmarks to

evaluate such methods, recent studies has shown that some

imputation methods can outperform non-imputation methods

in recovering gene expression, however, imputation methods did

not improve performance in downstream analysis, particularly in

clustering and trajectory analysis, therefore these methods should

be used with caution (Hou et al., 2020; Patruno et al., 2021;

Linderman et al., 2022).

Typically, toolkits implement more than one normalization

method. For example, Seurat’s LogNormalize function, uses a

global-scaling normalization method by dividing counts for each

cell by the total counts for that cell, multiplying by a scale factor

(10,000 by default), and transforming data with a natural-log

function (Satija et al., 2015). An overview of common

normalization methods, their characteristics and limitations

are depicted in Supplementary Table S1. The selection of the

normalizationmethod to use should be considered carefully since

it highly impacts downstream analysis.

Feature selection, dimensionality
reduction, and visualization

Single-cell datasets have a high number of features (genes or

transcripts). Many of these features or genes contain zero counts

(“dropouts”) for the majority of cells or their count values are not

informative towards explaining the biological variability.

Dropout events do not signify a lack of expression, instead,

they potentially represent a failure in the detection of a

transcript (Qiu, 2020). Therefore, in the feature selection step,

the researcher must decide which genes to keep (Figure 2C).

Generally, the top most variable genes (1,000–5,000) are the ones

that may be useful in explaining cell-to-cell variability (Luecken

and Theis, 2019; Yip, Sham and Wang, 2019). After selecting the

most variable features, the dimensionality of expression matrices

(number of rows or genes) can further be reduced from

thousands to less than 100 using linear or non-linear feature

projections (Figure 2D). Several dimensionality reduction

techniques are available, however, a popular one is principal

component analysis (PCA). PCA performs linear combinations

of genes that maximize the residual variance of such

combinations. The top principal components (PC) explain the

majority of the data variation. Each PC, also referred to as

“metagene” is a linear combination of several genes. PCA is

useful for downstream analysis (e.g., clustering), however since

single-cell data is inherently non-linear, PCA is not the best

option for data visualization, even though it is very efficient in

reducing dimensions. PCA depicts limitations derived from the

fact that the computation of the PCs is not related to the

underlying statistical structure of single-cell data. Since single

cells can havemore zero read counts than others (due to technical

factors), PCA may identify this difference as one of the top PCs

(Kharchenko, 2021). Instead, manifold learning methods are

preferred for dimensionality reduction and data visualization.

A manifold is a topological or geometric space that locally

resembles a Euclidean space. Moreover, the manifold
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hypothesis states that high-dimensional data lie in low-

dimensional manifolds embedded in high-dimensional space

(Fefferman, Mitter and Narayanan, 2016). Two commonly

used manifold-learning methods for dimensionality reduction

and visualization include t-distributed stochastic neighbor

embedding (t-SNE) (Bonin-Font, Ortiz and Oliver, 2008) and

Uniform Approximation and Projection Method (UMAP)

(McInnes et al., 2018). In t-SNE, high-dimensional data are

mapped into two dimensions allowing neighboring similar

cells to remain close and distant cells to remain far in the

low-dimensional space. t-SNE requires setting the parameter

denominated “perplexity” to control the width of the Gaussian

function used to determine the similarity between cells. Differing

perplexity parameters may yield different number of clusters

(Wattenberg, Viégas and Johnson, 2016). A caveat of t-SNE is

that it fails to capture the global geometry of the data,

fragmenting natural progressions or trajectories (Kobak and

Berens, 2019). This is especially problematic when single-cell

datasets were obtained from cell classes with a meaningful

hierarchy, e.g. progenitor and differentiated cell

subpopulations, and induction time points. Another

commonly used alternative is the UMAP. UMAPs create a

fuzzy graph from the data matrix to reflect its topology and

then build a low-dimensional graph using the weight of the edges.

UMAP has been demonstrated to provide the fastest run times as

well as the ability to process large numbers of cells (Becht et al.,

2018), and it is recommended as a best practice for exploratory

data visualization since some studies have shown that it better

preserves the global structure of the data (Becht et al., 2018;

Luecken and Theis, 2019), albeit other studies indicate that

UMAP has the same performance as t-SNE in preserving the

global structure, and is only superior to this latter method in the

initial implementations for data embedding (Kobak and

Linderman, 2021). Finally, it is important to emphasize that

both t-SNE and UMAP are only used for dimension reduction

and data visualization and not for downstream analysis such as

clustering.

Clustering

One of the most popular applications of single-cell

transcriptomics is clustering or grouping cells based on

transcriptional similarity (Figure 3). Clustering allows

researchers to determine the number of subpopulations with

distinct molecular signatures in a sample. Furthermore, based on

expression profiles, researchers can infer cluster identities and

arrange them in a hierarchy (Cuevas-Diaz Duran et al., 2017;

Zeng and Sanes, 2017). Grouping cells based on similarity is

performed using two approaches: clustering algorithms and

FIGURE 3
Overview of scRNA-seq and snRNA-seq downstream analysis. Examples of relevant software tools used for each application are included.
References to example tools are listed in Supplementary Table S2. Adapted from (Cuevas-Diaz Duran, Wei and Wu, 2017) © Cuevas-Diaz Duran, Wei
and Wu, 2017.
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community detection methods. Clustering algorithms group cells

based on a distance metric (Figure 2E), however, due to the high

dimensionality of data, distances between cells can be very

similar. This is known as the “curse of dimensionality”

(Bellman, 1961) and it may be overcome by feature selection

and dimensionality reduction. Since t-SNE and UMAP methods

highly compress multidimensional data in two dimensions, they

are not recommended for clustering analysis. Moreover, it has

been suggested that t-SNE and UMAP may introduce significant

distortion to the data (Chari et al., 2021), although efforts have

been made to combine PCA with t-SNE to make it more suitable

for clustering (Kobak and Berens, 2019). Therefore, PCA or some

of its variants like weighted PCA (WPCA) or SpatialPCA are

highly used for dimensionality reduction prior to clustering

(Tsuyuzaki et al., 2020; Liu et al., 2022). Clustering

algorithms, based on unsupervised machine learning methods

use a distance calculation, for example, Euclidean, cosine

similarity, or Pearson’s and Spearman’s correlation, to

determine intracluster distances. Cells are assigned to clusters

where similarity distances are minimized. A common clustering

method used is k-means, which iteratively assigns cells into k

clusters where the distance from a cell to a cluster centroid is the

lowest. Numerous applications of k-means clustering have been

developed with different distance metrics (Grün et al., 2015;

Kiselev et al., 2017; Hicks et al., 2021). K-means clustering

requires the number of clusters as input, thus users may need

to run several scenarios and determine the best choice. A

shortcoming of k-means clustering methods is that they tend

to identify round clusters of equal size, missing out on rare cell

subpopulations (Kiselev, Andrews and Hemberg, 2019). To

overcome the drawback of k-means clustering, community

detection algorithms have been implemented successfully.

Community detection algorithms rely on representing

single-cell data as graphs with nodes and edges. These

methods construct K-nearest neighbor graphs (KNN) from a

low-dimensional space. Cells are represented as nodes and they

are connected by edges to their K most similar nodes using a

distance metric, typically Euclidean. Densely connected nodes

are identified as clusters through community detection methods,

which are faster than other clustering methods and can scale up

to millions of cells (Rosvall and Bergstrom, 2008). Community

detection-based methods outperform k-means clustering

methods in large-scale datasets, and one of the most

commonly used is the Louvain community detection

algorithm (Blondel et al., 2008). This method identifies

communities under the premise that cells in each group will

have more links between them than what is expected from the

total number of links. In this way, the algorithm optimizes a

modularity function (number of links) by iteratively assigning

nodes to different communities (Blondel et al., 2008). Louvain

community detection is implemented in SCANPY (Wolf,

Angerer and Theis, 2018) and Seurat toolkit (Satija et al.,

2015). Although the Louvain logarithm is very popular, some

authors have identified flaws, resulting in badly connected

communities, so the use of the Leiden algorithm has been

proposed as an alternative (Traag et al., 2019). In contrast to

Louvain, the Leiden algorithm can split clusters instead of only

merging them; furthermore, by relying on a fast local move

approach, the Leiden algorithm runs faster than the Louvain

algorithm (Anuar et al., 2021) and it is also included in Seurat

toolkit (Satija et al., 2015).

Density-based clustering methods identify cell clusters by

recognizing contiguous regions of high-density of cells. These

methods can identify cell clusters with arbitrary shapes and sizes.

The most popular density-based clustering method is Density

Based Spatial Clustering of Applications with Noise (DBSCAN)

(Ester et al., 1996). These methods do not need an a priori

number of clusters, however, density parameters must be

provided. A caveat of these methods is that they assume that

all clusters have similar densities. Nonetheless, DBSCAN was

included in early versions of Seurat (Satija et al., 2015) and

GiniClust (Jiang et al., 2016) for the detection of rare cell types.

Alternative approaches based on matrix decomposition have

also been proposed, for example, Nonnegative Matrix

Factorization (NMF). NMF has conventionally been used to

decompose high-dimensional transcriptional data (genes) into

interpretable features (meta-genes). Nevertheless, NMF has been

successfully implemented to find clusters of cells from a samples-

by-genes matrix (Shao and Höfer, 2017; Duren et al., 2018;

Kotliar et al., 2019; Wu et al., 2020).

Cluster characterization

Cluster annotation consists of finding a set of genes denoted

as the “gene signature” for each cluster (Figure 3). It is important

to note that the transcriptional differences found do not always

correspond to cell types since other variables such as cell-state

and cell-cycle can have a greater influence on transcription

(Buettner et al., 2015). Furthermore, differences in the cellular

state may cause cells of the same type to be assigned to different

clusters. Thus, interpreting cell clusters is not trivial and

researchers must rely on external reference databases, for

example, the Human Cell Atlas (Regev et al., 2017) or, on the

expression of marker genes derived from literature. DEGs may be

obtained by comparing the gene expression of cells belonging to a

cluster to all other cells. Due to the nature of unsupervised

clustering methods, clusters will always depict DEGs (Luecken

and Theis, 2019). Upregulated genes are ranked using statistical

tests such as t-tests or Wilcoxon rank-sum test and the top-

ranking genes are referred to as “marker genes” (genes that have a

high expression only in one cluster). Then, these marker genes

are manually compared to available information in the literature

or in reference databases to annotate cell type labels for each

detected cluster (Zhang et al., 2019). Nevertheless, the manual

characterization of clusters is prone to error since marker genes
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are often expressed in multiple clusters and correspond to

multiple cell types. In addition, negative marker genes should

also be considered for the annotation of cell types (Ianevski et al.,

2022). In this context, other approaches for cluster

characterization rely on an automatic annotation of cell types

(Nguyen and Griss, 2022). These computational methods are

based on different principles. For example, scmap is a method

that assigns cell type labels to clusters by projecting cells to cell

type landmarks, then inferring unknown cells by proximity to

already known cell types in the embedded space (Kiselev et al.,

2018). Another approach is to correlate marker genes in

annotated clusters of cells with unannotated clusters, this is

implemented in the methods scCATCH (Shao et al., 2020),

CIPR (Ekiz et al., 2020), ScType (Ianevski et al., 2022) and

clustifyr (Fu et al., 2020). Meanwhile, other methods such as

CellO use machine learning for cell type classification of cell

clusters by considering the rich hierarchical structure of known

cell types (Bernstein et al., 2020). A caveat on the use of marker

genes in automated methods is that performance heavily relies on

gene lists provided as markers for specific cell types that in some

cases were manually constructed, or on marker databases that are

still suboptimal both in coverage and specificity (Ianevski et al.,

2022). More extensive reviews about methods for cluster

characterization and cell type annotation providing guidelines

and recommendations for their use are available (Clarke et al.,

2021); Pasquini et al., 2021; Nguyen and Griss, 2022).

Finally, it is relevant to mention that DEGs are also used for

functional enrichment analysis to identify biologically relevant

functions. Importantly, marker genes representing each detected

cluster should be used for experimental validation, for example,

RT-qPCR, cytometry, or in situ imaging.

Trajectory inference

An application of single-cell transcriptomics is trajectory

inference. These computational methods are based on the

premise that single-cell data is a snapshot of a continuous

biological process that drives the observed heterogeneity

(Trapnell, 2015). Cells are assigned a pseudo time or

numerical value that measures the distance of a cell in a

dynamic biological process, for example, a differentiation

process (Cannoodt, Saelens and Saeys, 2016). Transition

stages can be defined when cells are ordered according to

their pseudo time, this is known as pseudo temporal ordering

(Figure 3). Trajectory inference methods work by

implementing a dimensionality reduction and a trajectory

modeling step (Cannoodt, Saelens and Saeys, 2016).

Trajectory modeling uses a graph representation of the data

and finds a path that connects nodes (cells or groups of cells)

(Moon et al., 2018). Different path-finding algorithms have

been implemented and several of them rely on knowing a

priori the location of the “root cell” (Bendall et al., 2014; Shin

et al., 2015; Matsumoto and Kiryu, 2016; Setty et al., 2016;

Welch, Hartemink and Prins, 2016). There are also methods

that do not require a priori knowledge and generate the

longest path connecting all nodes in the graph (Trapnell

et al., 2014; Ji and Ji, 2016). The resulting graphs can be

represented using linear trajectories, showing for example the

differentiation trajectory of a progenitor cell towards an

intermediate state, and then ending in a differentiated stage

(Deconinck et al., 2021). Methods such as SCORPIUS

(Cannoodt et al., 2016) and MATCHER (Welch et al.,

2017) are specific to linear trajectories. Likewise, cyclical

trajectories (for cell cycle modeling, for example) can be

inferred from methods like ElPiGraph (Albergante et al.,

2020). Nevertheless, cell differentiation in some

developmental events is not linear, and may include

branching points (Deconinck et al., 2021); therefore,

Slingshot (Street et al., 2018) and Monocle (Trapnell et al.,

2014) are commonly used methods for modeling this type of

events. Meanwhile, recent methods such as PAGA (Wolf et al.,

2019) or TinGa (Todorov et al., 2020) are able to extend the

modeling trajectory to allow the inclusion of loops or even

separated trajectories. Finally, other approaches that model

developmental processes in a probabilistic manner to infer

trajectories are also available. One of them is Ouija, an

approach that uses Bayesian probability to learn pseudo

time from a small set of known or suspected marker genes

(Campbell and Yau, 2019). SCORPIUS, MATCHER,

ElPiGraph, Slingshot, Monocle, PAGA, and Ouija methods

are included in the collection of R packages dynverse (https://

dynverse.org/), which is also useful for comparing trajectory

inference methods to select the most suitable method (Saelens

et al., 2019).

Kinetics of transcription

Additional information can be obtained from cells’ mRNA

lifecycle kinetics to infer the state of a cell before and after the

time of measurement. Researchers have demonstrated in bulk

RNA-seq that transcriptional data can be used to quantify the

relative abundance of mRNA molecules at different lifecycle

stages (Zeisel et al., 2011). Authors applied this idea to scRNA-

seq in an mRNA kinetic model called RNA velocity, where the

time derivative of gene expression is calculated (La Manno

et al., 2018). RNA velocity distinguishes between nascent pre-

mRNAs (unspliced) and mature mRNAs (spliced) from single-

cell datasets. Thus, RNA velocity can quantify cellular

transitions and reveal transient cellular states in a

heterogeneous population. Moreover, it has been

demonstrated thar RNA velocity information can be also

useful for trajectory inference (Zhang and Zhang, 2021). An

overview of the challenges of RNA velocity modeling is

discussed in (Bergen et al., 2021).
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Gene regulatory networks

Numerous computational methods have been developed to

infer gene regulatory networks (GRN) using single-cell datasets

(Pratapa et al., 2020). GRN have been used to identify cell types

and states (Moignard et al., 2015; Aibar et al., 2017; Chan, Stumpf

and Babtie, 2017; van Dijk et al., 2018). The underlying principle

of GRN is that the coordinated function of a limited number of

transcription factors and co-factors regulates numerous

downstream targets determining the transcriptional state of a

cell. Graphs are used for the visual representation of GRNs where

nodes are genes and edges are interactions (activation or

inhibition). These graphs are undirected since edges are

bidirectional. However, given the inherent stochastic

variations (e.g. transcriptional bursting), sparsity of gene

expression at single-cell resolution, drop-outs, and technical

variations, deriving GRN from single-cell datasets is

challenging (Raj and van Oudenaarden, 2008; Grün, Kester

and van Oudenaarden, 2014; Stegle, Teichmann and Marioni,

2015). One of the main approaches of these methods is inferring

networks through gene co-expression. For example, Single-Cell

rEgulatory Network Inference and Clustering (SCENIC) finds

modules of genes co-expressed with transcription factors and

filters them to retain only those modules in which target genes

have significant motif enrichment (Aibar et al., 2017). Pratapa

et al. recently performed a systematic evaluation of 12 algorithms

for inferring GRNs using synthetic networks, datasets from

curated models from literature, and datasets from

experimental single-cell transcriptomics (Pratapa et al., 2020).

The authors published a series of recommendations and

implemented a framework (https://github.com/murali-group/

BEELINE) to evaluate the selected GRN methods.

Single-cell/nuclei sequencing for
understanding Alzheimer’s disease

Alzheimer’s disease (AD) is the most common cause of

dementia worldwide with a prevalence expected to reach

113 million by 2050 (Wu et al., 2017). AD is clinically

characterized by a progressive decline in memory, language,

problem-solving and cognitive skills (Dubois et al., 2010). The

core pathological hallmarks of AD are the extracellular

deposition of β-amyloid (Aβ) plaques and the accumulation of

neuronal fibrillary tangles (NFTs). NFTs are aggregates of Tau

protein and Apolipoprotein E. The accumulation of Aβ plaques

and NFTs is cytotoxic and causes synapse and neuron loss.

Consequently, another pathological hallmark of AD is a

widespread neuronal loss specifically in the cortex and

hippocampus (McKhann et al., 1984). Increasing evidence

suggests that neuroinflammation is also a major contributor

to the pathogenesis of AD (Heneka et al., 2015). Pro-

inflammatory cytokines, markers of reactive astrocytes and

activated microglia, have been found in AD brains of both

postmortem humans and transgenic mouse models

(Bamberger et al., 2003; Olabarria et al., 2010; Medeiros and

LaFerla, 2013). However, the use of anti-inflammatory drugs to

treat AD has been unsuccessful mainly because both microglial

activation and reactive astrogliosis are complex multi-stage

processes that yield diverse phenotypes (Monterey et al.,

2021). Thus, it is evident that neuroinflammation is a

complex response that involves diverse cell types (neurons,

astrocytes, and microglia) with different molecular alterations

as well as the crosstalk between them.

Microarray and bulk RNA-seq studies of AD brains have

revealed downregulation of neuronal functions and upregulation

of immune responses (Heneka et al., 2015; Canter, Penney and

Tsai, 2016; De Strooper and Karran, 2016; Nativio et al., 2018).

Thus, interactions between the triad (neurons, astrocytes, and

microglia) are an important part of the pathophysiology of AD.

Other pathways found to be dysregulated are energy metabolism,

synaptic transmission, myelin-axon interactions, cytoskeletal

dynamics, and protein misfolding (Ginsberg et al., 2000;

Colangelo et al., 2002; Blalock et al., 2004; Miller, Oldham

and Geschwind, 2008). It is important to note that AD

pathology starts in brain regions involved in learning,

memory, perception, and emotion (entorhinal cortex,

amygdala, and hippocampus) and progresses throughout the

cortex (Braak and Braak, 1991, 1996). Interestingly, the

hippocampus depicts regional vulnerability with

CA1 pyramidal neurons more severely affected than CA2,

CA3, and CA4 neighbors (Padurariu et al., 2012). Dissecting

the cellular identities and correlating with their vulnerability to

degeneration and their contribution to neuroinflammation is

fundamental for understanding AD pathogenesis and it can open

new avenues for the development of therapeutics. Here, we

review recent pioneering single-cell and single-nuclei human

transcriptomic studies aimed at studying the cellular

heterogeneity involved in Alzheimer’s disease (Table 1).

There are several limitations to performing scRNA-seq/

snRNA-seq from frozen postmortem brains, for example, the

difficulty of acquiring postmortem brain samples and the low

quality due to the degradation of mRNA. The quality of RNA is

typically evaluated using the RNA integrity number (RIN), which

is the result of numerous factors, including postmortem interval

(PMI: time between death and brain processing), patient’s

medical condition previous to death, storage conditions, as

well as storage time (White et al., 2018). The mRNA

degradation is tissue-specific, transcript-specific, and molecule-

specific (Nagy et al., 2015; Sobue et al., 2016; Zhu et al., 2017). As

expected, transcripts with a lower expression will degrade faster;

this is why performing snRNA-seq on postmortem brains is

more challenging than bulk RNA-seq. Studies have also

demonstrated that miRNAs have a higher PMI-dependent

resistance to degradation than other biomolecules (Nagy et al.,

2015). There is no clear correlation between the PMI and RIN
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values obtained from postmortem brain samples. Thus, the

general recommendation when requesting tissue from a brain

bank is to require similar RIN values, rather than PMI.

Severely affected brain regions in AD are characterized by

massive neuronal loss. Therefore, sequencing regions with a high

neuronal deficit may bias cell proportions since they rely on

assigning cells to clusters that might not have a correct

representation. This problem was solved by Mathys et al. in

one of the first studies that provided insights into the

heterogeneity of AD in cortical regions with single-cell

resolution (Mathys et al., 2019). Researchers profiled

80,660 nuclei isolated from prefrontal cortices obtained from

48 human postmortem brains with varying degrees of AD

pathology, including controls. Interestingly, the analysis of cell

profiles from all combined samples yielded cell types, markers,

and cell-type proportions highly consistent with another human

cortex snRNA-seq study of neurotypical controls (Lake et al.,

2018). Mathys et al. found a total of 8 major transcriptional

clusters(each with subclusters) including excitatory neurons,

inhibitory neurons, astrocytes, oligodendrocytes, microglia,

oligodendrocyte precursor cells (OPC), endothelial cells, and

pericytes. When comparing samples with AD-pathology

against no-pathology, 1031 DEGs were found in total in

different cell types (Mathys et al., 2019). DEGs specific to

excitatory and inhibitory neurons were mostly downregulated

whereas oligodendrocytes, astrocytes, and microglia depicted

more than 50% of upregulated DEGs. Notably, authors found

transcriptional dysregulation due to AD pathology in all cell

types, with sex-dependent differences. Dysregulation was highest

in the early AD stages, and it was mostly cell-type-specific.

Conversely, in late AD stages, upregulated DEGs were

common to several cell types denoting a global response

(Mathys et al., 2019).

One of the first cortical regions that depict neurofibrillary

inclusions and neuronal loss at the early stages of AD is the

entorhinal cortex. Grubman et al. characterized the heterogeneity

underlying this early affected region using postmortem human

brains (Grubman et al., 2019). Authors sequenced 13,214 nuclei

isolated from entorhinal cortex tissue, dissected from 6 AD

individuals and 6 sex and age-matched controls. Their results

demonstrated the presence of all 6 known brain cell types

(microglia, astrocytes, neurons, OPC, oligodendrocytes, and

endothelial cells) of which astrocytes, endothelial cells, and

microglia showed the highest gene expression differences

between controls and AD. Researchers also demonstrated that

specific transcription factors have alterations in opposite

directions in different cell subpopulations. For example, in

AD, APOE was found downregulated in OPC and

upregulated in astrocytes and microglia (Grubman et al.,

2019). This is an example of the advantage of using snRNA-

seq over bulk RNA-seq; it is possible to detect transcripts with

opposite regulation.

TABLE 1 Selected examples of recent scRNA-seq or snRNA-seq studies in AD. Prefrontal cortex (PFC), Entorhinal cortex (ECtx), Dorsolateral prefrontal
cortex (DLPFC), temporal neocortex (TNC), parietal lobe (PL), and superior frontal gyrus (SFG). Oligodendrocyte precursor cells (OPC),
oligodendrocytes (Oligo), astrocytes (Astro), microglia (Mgl), inhibitory neurons (InN), excitatory neurons (ExN), and endothelial cells (EC).

Source Brain
region

Cell
type
addressed

Condition Number
of cells
(nuclei)
analyzed

Subpopulations found Single
nuclei
or cell

Major
findings

Ref.

Frozen
postmortem
brain

PFC All cells 24 controls and
24 age-matched
individuals with
varying degrees
of AD

80,660 41 clusters: 13 ExN, 12 InN,
4 Astro, 5 Oligo, 3 OPC, 4 Mgl

Nuclei Gene expression in
ExN, InN, Astro, Oligo
and Mgl is
dysregulated in AD
brains

Mathys et al.
(2019)

Frozen
postmortem
brain

ECtx All cells 6 AD individuals
and 6 sex and age-
matched controls

13,214 8 clusters: MGL, Astro,
neurons, Oligo, OPC, EC,
hybrid, and unidentified

Nuclei Astro, EC, and Mgl
showed the highest
gene expression
differences between
controls and AD

Grubman
et al. (2019)

Frozen
postmortem
brain

ECtx,
SFG

All cells 10 individuals with
different Braak
stages (0, 2, and 6)

106,136 7 broad clusters (ExN, InN,
Astro, Oligo, OPC, Mgl, and
EC) with 9 and 11 specific
subpopulations of ExN in the
ECtx and SFG

Nuclei Some subpopulations
of ExN in the ECtx and
SFG are more
susceptible to
degeneration

Leng et al.
(2021)

Autopsy brains
and surgical
resection

DLPFC
and TNC

Mgl 3 controls, 4 MCI,
and 10 AD
individuals

16,242 9 Mgl subpopulations Cell Mgl subtypes are
altered in AD brain

Olah et al.
(2020)

Frozen
postmortem
brain

PL All cells 2 individuals with
sporadic AD and
1 carrying a
mutation in PSEN1

30,000 14 clusters of cells: 6 ExN,
2 InN, Astro, Oligo, OPC,
EC, Mgl

Nuclei ExN proportion is
reduced in samples of
sporadic AD

Del-Aguila
et al. (2019)
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Damage to the parietal lobe is common in the early stages of

AD, however, its role in the development of AD remains elusive.

Del-Aguila et al. transcriptionally profiled single-nuclei isolated

from the parietal lobes of an individual carrying a known

mutation in PSEN1 gene (p.A79V) and 2 relatives with

sporadic AD (Del-Aguila et al., 2019). Samples were obtained

from postmortem brains and a total of 30,000 nuclei were

sequenced. Authors identified and annotated 14 clusters

including 6 subclasses of excitatory neurons, 2 inhibitory

neurons, oligodendrocytes, astrocytes, microglia, OPC, and

endothelial cells. A reduced proportion of excitatory neurons

was observed after comparing the proportion of cells in each

cluster between the mutation carrier sample against the sporadic

AD samples (Del-Aguila et al., 2019). Furthermore, Del-Aguila

et al. performed a pseudo time gene expression reconstruction

using TSCAN (Ji and Ji, 2016). This method was implemented

using the transcriptomic profile of microglial cells and it allowed

authors to capture the sequence of activation and transition to

disease-associated microglia (DAM) cells. The expression

profiles of DAM cells were obtained from a previous study

(Keren-Shaul et al., 2017). Interestingly, the authors found

that 79 genes of the DAM markers were significantly

associated with a temporal trajectory. This is the first study

that analyzed DAM markers in single-nuclei microglia profiles

obtained from AD brains carrying a known mutation.

A recent pioneering study adopted an interesting strategy to

delineate the progression of AD in specific cell types (Leng et al.,

2021). Leng et al. isolated 42,528 and 63,608 single nuclei from

the entorhinal cortex and superior frontal gyrus respectively;

samples were obtained from 10 human postmortem brains with

varying degrees of AD-tau neuropathological progression

(inferred from the Braak stage). The entorhinal cortex and

superior frontal gyrus regions were selected because they are

affected in the early and late stages of AD correspondingly (Braak

and Braak, 1991). Leng et al. found 9 and 11 subpopulations of

excitatory neurons in the entorhinal cortex and the superior

frontal gyrus respectively depicting region-specific genes.

Authors found subpopulations of neurons in both regions

which were more vulnerable to degeneration in the early and

late stages. Furthermore, marker genes potentially responsible for

these selective vulnerabilities were derived and validated. For

example, the relative abundance of a subpopulation of excitatory

neurons in the entorhinal cortex showed a striking decrease in

Braak stage 2 samples compared to Braak stage 0, suggesting their

susceptibility to neurodegeneration in early stages (Leng et al.,

2021). By correlating the degree of degeneration with the region,

cell subpopulations, transcriptional profiles, and relative

abundances, researchers were able to determine subpopulation

selective vulnerabilities.

Given that mounting evidence suggests a microglial role in

aging and AD pathology, Olah et al. profiled 13,368 single live

cells isolated from the dorsolateral prefrontal cortices of autopsy

samples from individuals with mild cognitive impairment or AD

pathology (Olah et al., 2020). Additionally, 2,874 cells used as

controls were isolated from temporal neocortices of individuals

undergoing intractable epilepsy surgeries. The authors used a

previously published protocol involving FACS to purify

microglial cells using antibodies for CD11b and CD45 (Olah

et al., 2018). Single cells were isolated using droplet technology

(Olah et al., 2020). Interestingly, researchers found 9 distinct

microglial clusters and validated 4 of them histologically using

marker genes. Since samples were obtained from individuals

without dementia, the authors used a gene set enrichment

approach to link microglial subclusters to diseases. One

microglial cluster was found to be altered in AD and it was

validated in the single nucleus RNA-seq study by Mathys et al.

(Mathys et al., 2019).

Single-cell/nuclei sequencing for
understanding Parkinson’s disease

Parkinson’s disease (PD) is one of the most common slowly

progressive neurodegenerative movement disorders but is very

challenging at advanced stages. A histological hallmark of PD is

the accumulation of fibrillar aggregates called Lewy bodies,

enriched in α - Synuclein misfolded protein (Wakabayashi

et al., 2007). Another important characteristic of PD is the

degeneration of dopaminergic neurons (DaNs) in the

substantia nigra pars compacta (SNpc). Loss of these neurons

leads to PD motor symptoms such as rigidity, resting tremor,

slowness in movement (bradykinesia), and postural instability

(Bloem, Okun and Klein, 2021).

Midbrain DaNs have important roles in the regulation of

voluntary movement, reward, and emotion. These brain cells

are highly heterogeneous even though they share a common

neurotransmitter phenotype and lie in close proximity within

the ventral midbrain. The current classification of DaNs is

based on topographical features, for example, anatomical

location and axonal innervation targets. Traditionally, three

distinct types of midbrain DaNs are considered: A8, A9, and

A10 located in the retrorubral field (RRF), SNpc, and ventral

tegmental (VTA) areas respectively (Bentivoglio and Morelli,

2005). DaNs depict heterogeneous susceptibilities to

neurodegeneration, specifically to PD. A9 DaNs project their

axons into the dorsal striatum through the nigrostriatal

pathway, and they are involved in the control of involuntary

movement. Although A9 DaNs are the primarily degenerated

cell type in PD (Lees, Hardy and Revesz, 2009), other cell types

such as astrocytes and microglia have also been implicated in

neurodegeneration and PD pathogenesis [reviewed in (Brück

et al., 2016; Booth, Hirst and Wade-Martins, 2017)]. A8 and

A10 DaNs depict projections into the ventral striatum and the

prefrontal cortex, and they are involved in the regulation of

emotion and reward. Degeneration of A8 and A10 DaNs is

associated with schizophrenia, drug addiction, and depression
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(Tzschentke and Schmidt, 2000), highlighting the different

functions of dopamine in specific brain regions. An

important characteristic of human DaNs is that they have up

to one million axon terminals, many of which reach long

distances from the soma, with projections to the putamen,

and the caudate nuclei, compared to neocortical neurons

which have up to tens of thousands of synapses (Bolam and

Pissadaki, 2012). Thus, this uniquely massive, unmyelinated

axonal branching renders ventral midbrain DaNs under a high

energy demand compared to neurons from other regions

contributing to their vulnerability (Pissadaki and Bolam,

2013). The molecular mechanisms that underlie the

phenotypic and functional differences between ventral

midbrain DaNs are largely unknown. Limited access to all

these brain regions makes single-cell studies experimentally

challenging. Here, we review recent pioneering single-cell and

single-nuclei human transcriptomic studies aimed at

elucidating the cellular heterogeneity involved in Parkinson’s

disease (Table 2).

Researchers have contributed to profiling the cellular

heterogeneity with single-cell resolution of the SN using

postmortem brains of both healthy and PD individuals. One

of the earliest single-nuclei transcriptomic studies of the SN was

published by Agarwal et al. (Agarwal et al., 2020) who sequenced

10,706 and 5,943 nuclei from the middle frontal gyrus and SN,

respectively. Researchers obtained 12 region-matched samples

from 5 human postmortem brains without neurological disease.

A transcriptomic cellular atlas was compiled from the

identification of cell-type-specific gene expression patterns in

10 distinct cell subpopulations found in SN: 2 types of astrocytes,

3 subtypes of oligodendrocytes, endothelial cells, microglia cells,

oligodendrocyte precursor cells, DaNs, and GABAergic neurons.

Significant associations were found between PD genetic risks

(obtained from GWAS) and specific SN subpopulation gene

profiles (DaNs and oligodendrocytes) (Agarwal et al., 2020).

In another study, researchers developed a computational

method called LIGER (linked inference of genomic

experimental relationships) to enable the combination and

TABLE 2 Selected examples of recent scRNA-seq or snRNA-seq studies in PD. Middle frontal gyrus (MFG), and substantia nigra (SN). Oligodendrocyte
precursor cells (OPC), oligodendrocytes (Oligo), astrocytes (Astro), microglia (Mgl), macrophages (Macro), inhibitory neurons (InN), excitatory
neurons (ExN), endothelial cells (EC), dopaminergic neurons (DaNs), fibroblasts (Fibro), mural cells (MC), pericytes (Peri), neuroblasts (NB) and young
neurons (yNeu).

Source Brain
region

Cell
type
addressed

Condition Number
of cells
(nuclei)
analyzed

Number
of subpopulations
found

Single
cell
or
nuclei

Major
findings

Ref.

Frozen
postmor-
tem brains

MFG
and SN

All cells 5 controls 16,649 10 clusters in SN: 2 Astro,
3 Oligo, EC, Mgl, OPC, DaNs,
and GABAergic neurons

Nuclei Gene expression of
DaNs and Oligo from
the SN are associated to
PD genetic risks

Agarwal
et al. (2020)

Frozen
postmor-
tem brains

SN All cells 7 controls 44,274 24 clusters: 3 Astro, Fibro, MC,
EC, 3 Mgl, 7 neurons including
DaNs, 5 Oligo, 2 OPC

Nuclei Cell-type-specific
expression patterns in
mouse SN are highly
similar to human SN

Welch et al.
(2019)

Frozen
postmor-
tem brains

Mid-
brain

All cells 6 idiopathic PD
individuals and 5 age
and sex-matched
controls

41,435 12 clusters: 5 neurons (InN,
ExN, GABAergic, DaNs,
CADPS2 high), OPCs, Oligo,
Astro, ependymal, Peri, EC,
and Mgl

Nuclei Dysregulation of gene
expression is observed in
neuronal and glial cells
of brains with
idiopathic PD

Smajić et al.
(2021)

Frozen
postmor-
tem brains

Mid-
brain

All cells 8 controls and 10 age-
matched and PMI-
matched individuals
with PD or Lewy body
dementia

387,483 10 clusters of DaNs in controls,
and 68 in PD including DaNs,
ExN, InN, Astro, OPC, Oligo,
EC/Peri, and Mgl/Macro

Nuclei Some DaNs subtypes are
more susceptible to
degeneration than
others

Kamath
et al. (2022)

iPSC None DaNs WT and SNCA-A53T
mutant iPSC
differentiated into
DaNs

15,325 6 clusters: 2 neuron progenitors
and 4 DaNs

Cells DaNs have different
degrees of sensitivity

Fernandes
et al. (2020)

iPSC None TH + DaNs 3 WT and 2 PD
individuals with GBA-
N370S mutation

146 Not applicable Cells HDAC4 is the common
early repressor of
downregulated genes
in PD

Lang et al.
(2019)

iPSC
midbrain
organoids

None All cells 1 WT and a cell line
with isogenic LRRK2-
p.Gly2019Ser
insertion

10,475 8 clusters: NB, yNeu, DaNs,
non-DaNs, glia, progenitors,
Peri, EC

Cells PD-related mutations
disrupt midbrain
development

Zagare et al.
(2022)
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analysis of single-cell datasets from different individuals, species,

regions, conditions, and molecular origin (genomic, epigenomic,

and spatial) (Welch et al., 2019). To test their method, Welch

et al. generated snRNA-seq from 44,274 single-nuclei isolated

from the SN of 7 frozen postmortem brains (healthy controls). A

total of 24 cell clusters were identified: 3 subtypes of astrocytes,

fibroblasts, mural cells, endothelial cells, 3 microglia types,

7 neuron classes including DaNs, 5 oligodendrocytes, and

2 oligodendrocyte precursor cell subtypes (Welch et al., 2019).

Next, the authors compared their SN dataset with a published

single-cell dataset obtained from the SN of healthy mice

(Saunders et al., 2018) and found a high correlation in the

cell-type-specific expression patterns between these species.

Gene ontology (GO) analysis of highly correlated human-

mouse gene pairs yielded significantly enriched gene sets

related to brain cell identity and molecular functions (Welch

et al., 2019). Conversely, gene pairs with the lowest correlation

were enriched in DNA repair and chromatin remodeling

functions, suggesting species differences in epigenetic

regulatory functions (Welch et al., 2019). Although this

comparison between species was performed on healthy

individuals, the approach proposed by this study can be

implemented in future studies to compare samples obtained

from rodent models of PD with samples obtained from PD

human patients (Duty and Jenner, 2011). Moreover, regarding

the comparison between species, Geirsdottir et al. demonstrated

through single-cell analysis and by using ortholog conjectures

that humanmicroglial cells depict significant heterogeneity when

compared among other vertebrate species, and in addition,

microglia-specific gene expression profiles depicted significant

susceptibility for PD and AD (derived from human GWAS) in

primates and humans (Geirsdottir et al., 2019).

Additionally, in a recent study, researchers profiled

41,435 single nuclei from postmortem midbrains of

6 individuals diagnosed with idiopathic PD (IPD) and 5 age

and sex-matched controls (Smajić et al., 2021). In this study

Smajic et al. demonstrated that the dysregulation in IPD is not

exclusive to DaNs of the SN, but also different cell types show

alterations in other brain regions. Authors found a neuronal cell

cluster present only in IPD midbrains, concomitant to reduced

numbers of oligodendrocytes in IPD samples. Moreover, an

increased microglial subpopulation of the SN in IPD depicted

an amoeboid shape, suggesting an activated state (Smajić et al.,

2021).

Another comprehensive study recently available was

performed by Kamath et al., 2021, (Kamath et al., 2022). This

is the first study that profiled hundreds of thousands of nuclei

(184,673 and 202,810) obtained from postmortem midbrains of

both controls and individuals diagnosed with PD or Lewy body

dementia (LBD). Researchers purified nuclei using fluorescence-

activated nuclei sorting (FANS) and a nuclear receptor

(NURR1 or NR4A2) previously found to be essential for the

survival of DaNs in mice (Zetterström et al., 1997; Saunders et al.,

2018). The deep sequencing strategy and the data analysis

method (LIGER) used allowed researchers to identify

10 clusters of DaNs in both controls and PD/LBD individuals.

Interestingly, the authors used a method to accurately determine

cell proportions thus, eliminating technical confounders, for

example, batch effects and individual variations (MASC:

mixed effect association of single cells), and found that one of

the DaNs clusters was significantly reduced in PD samples, while

another one was increased. These observations were validated

through single-molecule fluorescence in situ hybridization

(smFISH). Overall, these results confirm the existence of

diverse subpopulations of DaNs with different degeneration

susceptibilities.

The development of iPSCs and their application for disease

modeling has resulted in powerful methodologies to study

human complex pathologies. Reprogramming somatic cells

from individuals carrying known PD-related mutations to

iPSCs has been used to differentiate DaNs in vitro, generating

a valuable source of cells that would otherwise be accessible only

from postmortem brains, where the progression of PD is already

at its endpoint. Thus, modeling PD in vitro through the

differentiation of iPSCs to form DaNs, allows the discovery of

biomarkers at the onset of disease, and facilitates drug testing

(Laperle et al., 2020). However, one limitation of such studies is

the high degree of heterogeneity and cellular variability.

Variability has been reported in several aspects including iPSC

differentiation potential, DNA methylation, transcriptional

profiles, and even cell morphologies due to differences

between donors, experiments, and genetic stability (Kilpinen

et al., 2017; Volpato and Webber, 2020). To overcome these

limitations, scRNA-seq and snRNA-seq are currently being used

first, to compare the similarity of cells differentiated from iPSCs

with those found in vivo, and then to elucidate the cellular

heterogeneity at the onset of PD by using dopaminergic

neurons differentiated from iPSCs. In this context, La Manno

et al. demonstrated through scRNA-seq that dopaminergic

neurons generated from human iPSC recapitulated key stages

of in vivo midbrain development, retained the expression of

markers genes, and conserved the cellular heterogeneity observed

in vivo (La Manno et al., 2016).

In a recent study by Fernandes et al., researchers generated a

common PD mutation (A53T in SNCA gene) in a human iPSC

line (Human induced pluripotent stem cell initiative, Sanger

Institute) and induced both WT and A53T-SNCA iPSC into

DaNs using a widely accepted induction protocol (Fernandes

et al., 2020). After 6 weeks, more than 15,000 cells were profiled

from scRNA-seq, and using the expression of known marker

genes, 6 clusters were found: 2 neuronal progenitors, and

4 dopaminergic neuron subpopulations. Also, authors found

overlapping clusters between their clusters and those found in

a study of substantia nigra from 7 human adult postmortem

brains (Welch et al., 2019), particularly in clusters characterized

by the positive expression of Tyrosine Hydroxylase, thus
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suggesting that in vitroDaNs are representative of corresponding

in vivo DaNs. Finally, induced cells were tested with cytotoxic

drugs and genetic stressors and the proportion of cells in clusters

changed, suggesting that clusters presented varying degrees of

sensitivity (Fernandes et al., 2020).

To overcome the difficulties inherent to cellular

heterogeneity of iPSC neuronal induction, Lang et al. sorted

iPSC-derived DaNs using FACS with the Tyrosine Hydroxylase

intracellular marker (Lang et al., 2019). The authors derived

iPSCs and performed both bulk and single-cell RNA-seq from

two individuals carrying a known PD mutation (GBA-N370S)

and three controls. Although the number of profiled cells after

sorting was reduced (146 cells), authors were able to identify

DEGs. Notably, cells segregated between control and PD along

the second component of the PCA plot. By combining DEGs

found with bulk and scRNA-seq and clustering single cells with

the Single-cell consensus clustering (SC3) method (Kiselev et al.,

2017) authors obtained a core set of 60 DEGs, with the majority

downregulated in PD. Using this small set of core genes, the

authors implemented the Ouija method to infer single-cell

pseudo times (Campbell and Yau, 2019). As a result, authors

suggested a “continuous disease axis” of gene expression

variation with 60 core genes mostly downregulated. The

authors used ingenuity pathway analysis (IPA) (Krämer et al.,

2014) to build regulatory gene networks and found that the

Histone deacetylase HDAC4 was the common early repressor of

the core set of genes. Pharmacological modulation of

HDAC4 rescued PD-related phenotypes, including ER stress

(Lang et al., 2019). These results show that even with a low

number of cells, it is possible to find molecular drivers of a

specific PD phenotype, through purification before sequencing,

and a comprehensive data analysis using the appropriate

computational methods.

Cerebral organoids have emerged as a useful 3D model for

neural differentiation studies since they recapitulate certain

aspects of brain development and disease-associated

phenotypes (Lancaster et al., 2013). For example, by

comparing neural precursors differentiated in 2D vs. 3D by

scRNA-seq, it was recently established that midbrain

organoids presented lower levels of cellular senescence and

mitochondrial stress, which correlated with resistance to toxic

challenges, robust synaptic contacts, and functionality of DaNs

(Kim et al., 2021). Furthermore, another study found by single-

cell analysis demonstrated that midbrain organoids maintain the

same neuronal heterogeneity observed in vivo, indicating that

organoids are a useful system for the in vitro study of

neurodegenerative diseases (Smits et al., 2020). Thus,

pathological features have been analyzed in brain organoids

generated from isogenic iPSCs that carry a PD-related

mutation in LRRK2. In such context, scRNA-seq experiments

showed clear differences between the normal and mutated iPSCs.

The LRRK2 p.Gly2019Ser mutation disrupted normal

development, resulting in incomplete differentiation and

reduced viability (Zagare et al., 2022). These studies show that

midbrain organoids and scRNA-seq constitute an excellent

system to study different cellular and molecular aspects

related to PD.

Discussion

In the last decade, impressive progress has been achieved

through the use of scRNA-seq/snRNA-seq to elucidate the

transcriptional and regional heterogeneity of brain cells. These

developments have transformed our understanding of brain cell

diversity and their interplay in neurodegenerative disease

conditions. Even though methods for scRNA-seq/snRNA-seq

have been well developed, several limitations and challenges

remain. One example is the source of brain cells. Fresh brain

samples mainly from resection surgeries are scarce and the best

alternatives are either postmortem brains or differentiated iPSCs.

The integrity of the nuclear transcripts obtained from

postmortem brains must be carefully determined and brain

samples should have similar RIN values. Also, it is important

to have access to brain donors’ clinical information including the

degree of neurodegeneration to adequately form groups or model

covariables. A well-designed experiment including age, sex, and

degree of degeneration-matched controls is very important to

reduce the number of variables affecting gene expression.

Additionally, since AD and PD are characterized by

progressive neurodegeneration and loss of neurons in different

regions, identifying the cell subtypes whose proportions are

altered in AD or PD is challenging. Researchers rely on

algorithms that automatically preprocess and normalize the

datasets assigning cells to clusters. However, different

algorithms or parameter choices can lead to divergent results.

Careful consideration must be employed when selecting which

methods to use for data analysis and experimental validation may

be needed. Furthermore, the preparation of single cells or nuclei

in suspension is also a major challenge when sequencing

transcripts obtained from brain cells or nuclei. Particularly for

single-cell suspensions, it is difficult to isolate intact brain cells

because they are embedded in a complex and interconnected

network. Also, neurons are very sensitive to cell dissociation

methods, therefore scRNA-seq datasets may show an

underrepresentation of neuronal types with respect to glial

cells (Darmanis et al., 2015). Therefore, since nuclei isolation

protocols are faster and they represent the best alternative when

the tissue is degraded, frozen or formalin-fixed (Lacar et al.,

2016), snRNA-seq is an excellent alternative for profiling of brain

cells. In addition, studies have demonstrated that snRNA-seq

results are comparable to scRNA-seq results (Bakken et al., 2018).

Another important caveat of scRNA-seq and snRNA-seq

is that by isolating cells or nuclei, their spatial information and

connectivity are lost. Transcriptional profiles can convey

information about a cell’s identity and the interplay with

Frontiers in Cell and Developmental Biology frontiersin.org16

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


other cells, however, the information about neighboring cells

or their proximity to pathologies (e.g. tau fibrillary tangles,

Lewy bodies) is unknown. To address this deficiency, an

emerging high-throughput alternative is spatial

transcriptomics (Ståhl et al., 2016). Spatial transcriptomic

methods are now being used to resolve the location of cells,

for example, smFISH and Slide-Seq (Raj et al., 2008;

Rodriques et al., 2019). However, it is important to

consider that through spatial transcriptomics it is difficult

to obtain conclusions with single-cell resolution because these

methods consist of profiling spots distributed throughout a

histological sample and each spot covers various cells (Noel

et al., 2022). Furthermore, the analysis of spatial

transcriptomics data can be challenging since detailed

computational methods for their study do not exist or are

still in development (Atta and Fan, 2021). Thus, in the near

future, scRNA-seq/snRNA-seq technologies should be

combined with other multi-omics and with spatial

transcriptomics to provide a holistic understanding.

Overall, AD and PD brain scRNA-seq and snRNA-seq are

providing new insights, for example, identifying cell

subpopulations that are more vulnerable to degeneration and

cellular transcriptional profiles specific to the affected regions.

Particularly, the identification of cell subpopulations and the

overall characterization of cell heterogeneity in brain regions

affected by AD or PD is valuable for understanding why some

neuronal or glial cell types are more susceptible to degeneration

than others, as well to better understand how gene expression is

regulated at the single-cell level in a pathological state of the

brain. Besides, the comparison of the information obtained from

single-cell datasets with data obtained, for example, from GWAS,

can provide insights for the identification of specific cell subtypes

or genes that may provide the risk of neurodegenerative diseases

development. The construction of cell trajectories can show the

progression of cellular degeneration as the disease progresses,

and infer cell types that are lost while others are enriched. Thus,

future advancements in this area will facilitate the discovery of

potential and novel therapeutic targets.

Author contributions

RC-DD and JQW contributed to the idea conception and

overall review design. RC-DD and JCG-O wrote the manuscript.

All authors revised and approved the final manuscript.

Funding

This work was supported by grants from the National

Institutes of Health R01 NS088353, R21EY028647-01, and

Amy and Edward Knight Fund-the UTHSC Senator Lloyd

Bentsen Stroke Center. Research in the laboratory of IV is

supported by UNAM-PAPIIT IN219122 and Conacyt 64382.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

884748/full#supplementary-material

References

Agarwal, D., Sandor, C., Volpato, V., Caffrey, T. M., Monzon-Sandoval, J.,
Bowden, R., et al. (2020). A single-cell atlas of the human substantia nigra
reveals cell-specific pathways associated with neurological disorders. Nat.
Commun. 11 (1), 4183. doi:10.1038/s41467-020-17876-0

Aibar, S., Gonzalez-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,
Hulselmans, G., et al. (2017). Scenic: Single-cell regulatory network inference and
clustering. Nat. Methods 14 (11), 1083–1086. doi:10.1038/nmeth.4463

Albergante, L., Mirkes, E., Bac, J., Chen, H., Martin, A., Faure, L., et al. (2020).
Robust and scalable learning of complex intrinsic dataset geometry via ElPiGraph.
Entropy 22 (3), 296. doi:10.3390/e22030296

Almanjahie, I., Alahmari, W., Laksaci, A., and Rachdi, M. (2021). Computational
aspects of the kNN local linear smoothing for some conditional models in high
dimensional statistics. Commun. Statistics - Simul. Comput. doi:10.1080/03610918.
2021.1923745

Andrews, T., Kiselev, V. Y., McCarthy, D., and Hemberg, M. (2021). Tutorial:
Guidelines for the computational analysis of single-cell RNA sequencing data. Nat.
Protoc. 16 (1), 1–9. doi:10.1038/s41596-020-00409-w

Anuar, S. H. H., Abas, Z. A., Yunos, N. M., Mohd Zaki, N. H., Hashim, N. A.,
Mokhtar, M. F., et al. (2021). Comparison between Louvain and leiden algorithm
for network structure: A review. J. Phys. Conf. Ser. 2129, 012028. doi:10.1088/1742-
6596/2129/1/012028

Atta, L., and Fan, J. (2021). Computational challenges and opportunities in
spatially resolved transcriptomic data analysis. Nat. Commun. 12 (1), 5283. doi:10.
1038/s41467-021-25557-9

Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L.,
Leite, R. E. P., et al. (2009). Equal numbers of neuronal and nonneuronal cells make
the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513 (5),
532–541. doi:10.1002/cne.21974

Frontiers in Cell and Developmental Biology frontiersin.org17

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://www.frontiersin.org/articles/10.3389/fcell.2022.884748/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.884748/full#supplementary-material
https://doi.org/10.1038/s41467-020-17876-0
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.3390/e22030296
https://doi.org/10.1080/03610918.2021.1923745
https://doi.org/10.1080/03610918.2021.1923745
https://doi.org/10.1038/s41596-020-00409-w
https://doi.org/10.1088/1742-6596/2129/1/012028
https://doi.org/10.1088/1742-6596/2129/1/012028
https://doi.org/10.1038/s41467-021-25557-9
https://doi.org/10.1038/s41467-021-25557-9
https://doi.org/10.1002/cne.21974
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


Bacher, R., Chu, L. F., Leng, N., Gasch, A. P., Thomson, J. A., Stewart, R. M., et al.
(2017). SCnorm: Robust normalization of single-cell RNA-seq data. Nat. Methods
14 (6), 584–586. doi:10.1038/nmeth.4263

Bais, A. S., and Kostka, D. (2020). scds: computational annotation of doublets in
single-cell RNA sequencing data. Bioinforma. Oxf. Engl. 36 (4), 1150–1158. doi:10.
1093/bioinformatics/btz698

Bakken, T. E., Hodge, R. D., Miller, J. A., Yao, Z., Nguyen, T. N., Aevermann, B.,
et al. (2018). Single-nucleus and single-cell transcriptomes compared in matched
cortical cell types. PloS one 13 (12), e0209648. doi:10.1371/journal.pone.0209648

Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J., and Landreth, G. E.
(2003). A cell surface receptor complex for fibrillar beta-amyloid mediates microglial
activation. J. Neurosci. 23 (7), 2665–2674. doi:10.1523/jneurosci.23-07-02665.2003

Baran-Gale, J., Chandra, T., and Kirschner, K. (2018). Experimental design for
single-cell RNA sequencing. Brief. Funct. Genomics 17 (4), 233–239. doi:10.1093/
bfgp/elx035

Basile, G., Kahraman, S., Dirice, E., Pan, H., Dreyfuss, J. M., and Kulkarni, R. N.
(2021). Using single-nucleus RNA-sequencing to interrogate transcriptomic
profiles of archived human pancreatic islets. Genome Med. 13 (1), 128. doi:10.
1186/s13073-021-00941-8

Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I., Ng, L. G., et al. (2018).
Dimensionality reduction for visualizing single-cell data using UMAP. Nat.
Biotechnol. 37, 38–44. doi:10.1038/nbt.4314

Bellman, R. E. (1961). Adaptive control processes: A guided tour. Princeton
University Press.

Bendall, S. C., Davis, K. L., Amir, E. A. D., Tadmor,M. D., Simonds, E. F., Chen, T.
J., et al. (2014). Single-cell trajectory detection uncovers progression and regulatory
coordination in human B cell development. Cell 157 (3), 714–725. doi:10.1016/j.cell.
2014.04.005

Bentivoglio, M., andMorelli, M. (2005). Chapter I the organization and circuits of
mesencephalic dopaminergic neurons and the distribution of dopamine receptors
in the brain. Handb. Chem. Neuroanat. 21, 1–107. doi:10.1016/S0924-8196(05)
80005-3

Bergen, V., Soldatov, R. A., Kharchenko, P. V., and Theis, F. J. (2021). RNA
velocity-current challenges and future perspectives. Mol. Syst. Biol. 17 (8), e10282.
doi:10.15252/msb.202110282

Bernstein, M., Ma, Z., Gleicher, M., and Dewey, C. N. (2020). CellO:
Comprehensive and hierarchical cell type classification of human cells with the
cell ontology. iScience 24 (1), 101913. doi:10.1016/j.isci.2020.101913

Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., and
Landfield, P. W. (2004). Incipient Alzheimer’s disease: Microarray correlation
analyses reveal major transcriptional and tumor suppressor responses. Proc.
Natl. Acad. Sci. U. S. A. 101 (7), 2173–2178. doi:10.1073/pnas.0308512100

Bloem, B. R., Okun, M. S., and Klein, C. (2021). Parkinson’s disease. Lancet
(London, Engl. 397, 2284–2303. doi:10.1016/S0140-6736(21)00218-X

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. 2008 (10), P10008.
doi:10.1088/1742-5468/2008/10/P10008

Bolam, J. P., and Pissadaki, E. K. (2012). Living on the edge with toomanymouths
to feed: Why dopamine neurons die.Mov. Disord. 27 (12), 1478–1483. doi:10.1002/
mds.25135

Bonin-Font, F., Ortiz, A., and Oliver, G. (2008). Visual navigation for mobile
robots: A survey. J. Intell. Robot. Syst. 53 (3), 263–296. doi:10.1007/s10846-008-
9235-4

Booeshaghi, A., and Pachter, L. (2021). Normalization of single-cell RNA-seq
counts by log(x + 1)* or log(1 + x). Bioinformatics 37 (15), 2223–2224. doi:10.1093/
bioinformatics/btab085

Booth, H. D. E., Hirst, W. D., and Wade-Martins, R. (2017). The role of astrocyte
dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci. 40 (6), 358–370.
doi:10.1016/j.tins.2017.04.001

Braak, H., and Braak, E. (1996). Development of Alzheimer-related
neurofibrillary changes in the neocortex inversely recapitulates cortical
myelogenesis. Acta Neuropathol. 92 (2), 197–201. doi:10.1007/s004010050508

Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathol. 82 (4), 239–259. doi:10.1007/BF00308809

Brown, J., Ni, Z., Mohanty, C., Bacher, R., and Kendziorski, C. (2021). Normalization
by distributional resampling of high throughput single-cell RNA-sequencing data.
Bioinformatics 37, 4123–4128. doi:10.1093/bioinformatics/btab450

Brück, D., Wenning, G. K., Stefanova, N., and Fellner, L. (2016). Glia and alpha-
synuclein in neurodegeneration: A complex interaction. Neurobiol. Dis. 85,
262–274. doi:10.1016/j.nbd.2015.03.003

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F.
J., et al. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell
RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33
(2), 155–160. doi:10.1038/nbt.3102

Cajigas, I. J., Tushev, G., Will, T. J., tom Dieck, S., Fuerst, N., and Schuman, E. M.
(2012). The local transcriptome in the synaptic neuropil revealed by deep
sequencing and high-resolution imaging. Neuron 74 (3), 453–466. doi:10.1016/j.
neuron.2012.02.036

Campbell, K., and Yau, C. (2019). A descriptive marker gene approach to single-
cell pseudotime inference. Bioinformatics 35 (1), 28–35. doi:10.1093/
bioinformatics/bty498

Cannoodt, R., Saelens, W., and Saeys, Y. (2016). Computational methods for
trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46 (11),
2496–2506. doi:10.1002/eji.201646347

Canter, R. G., Penney, J., and Tsai, L.-H. (2016). The road to restoring neural
circuits for the treatment of Alzheimer’s disease. Nature 539 (7628), 187–196.
doi:10.1038/nature20412

Chan, T. E., Stumpf, M. P. H., and Babtie, A. C. (2017). Gene regulatory network
inference from single-cell data using multivariate information measures. Cell Syst. 5
(3), 251–267. e3. doi:10.1016/j.cels.2017.08.014

Chari, T., Banerjee, J., and Pachter, L. (2021). The specious art of single-cell
genomics. bioRxiv (Preprint). doi:10.1101/2021.08.25.457696

Chung, H., Melnikov, A., McCabe, C., Drokhlyansky, E., Van Wittenberghe, N.,
Magee, E. M., et al. (2022). SnFFPE-Seq: Towards scalable single nucleus RNA-seq
of formalin-fixed paraffin-embedded (FFPE) tissue. bioRxiv, Prepr. (Accesed
September 22, 2022). doi:10.1101/2022.08.25.505257

Clarke, Z., Andrews, T. S., Atif, J., Pouyabahar, D., Innes, B. T., MacParland, S. A.,
et al. (2021). Tutorial: Guidelines for annotating single-cell transcriptomic maps
using automated and manual methods. Nat. Protoc. 16 (6), 2749–2764. doi:10.1038/
s41596-021-00534-0

Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J.
(2002). Gene expression profiling of 12633 genes in alzheimer hippocampal CA1:
Transcription and neurotrophic factor down-regulation and up-regulation of
apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70 (3), 462–473.
doi:10.1002/jnr.10351

Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011).
Temporal dynamics and genetic control of transcription in the human prefrontal
cortex. Nature 478 (7370), 519–523. doi:10.1038/nature10524

Cole, M. B., Risso, D., Wagner, A., DeTomaso, D., Ngai, J., Purdom, E., et al.
(2019). Performance assessment and selection of normalization procedures for
single-cell RNA-seq. Cell Syst. 8 (4), 315–328. e8. doi:10.1016/j.cels.2019.
03.010

Cuevas-Diaz Duran, R., Wei, H., and Wu, J. Q. (2017). Single-cell RNA-
sequencing of the brain. Clin. Transl. Med. 6 (1), 20. doi:10.1186/s40169-017-
0150-9

Cuomo, A., Seaton, D. D., McCarthy, D. J., Martinez, I., Bonder, M. J., Garcia-
Bernardo, J., et al. (2020). Single-cell RNA-sequencing of differentiating iPS cells
reveals dynamic genetic effects on gene expression. Nat. Commun. 11 (1), 810.
doi:10.1038/s41467-020-14457-z

Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer, L. M., et al.
(2015). A survey of human brain transcriptome diversity at the single cell level. Proc.
Natl. Acad. Sci. U. S. A. 112 (23), 7285–7290. doi:10.1073/pnas.1507125112

De Strooper, B., and Karran, E. (2016). The cellular phase of Alzheimer’s disease.
Cell 164 (4), 603–615. doi:10.1016/j.cell.2015.12.056

Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B., and Saeys, Y. (2021).
Recent advances in trajectory inference from single-cell omics data. Curr. Opin.
Syst. Biol. 27, 100344. doi:10.1016/j.coisb.2021.05.005

Del-Aguila, J. L., Li, Z., Dube, U., Mihindukulasuriya, K. A., Budde, J. P.,
Fernandez, M. V., et al. (2019). A single-nuclei RNA sequencing study of
Mendelian and sporadic AD in the human brain. Alzheimers Res. Ther. 11 (1),
71. doi:10.1186/s13195-019-0524-x

Denisenko, E., Guo, B. B., Jones, M., Hou, R., de Kock, L., Lassmann, T., et al.
(2020). Systematic assessment of tissue dissociation and storage biases in single-cell
and single-nucleus RNA-seq workflows. Genome Biol. 21 (1), 130. doi:10.1186/
s13059-020-02048-6

DePasquale, E. A. K., Schnell, D. J., Van Camp, P. J., Valiente-Alandi, I., Blaxall, B.
C., Grimes, H. L., et al. (2019). DoubletDecon: Deconvoluting doublets from single-
cell RNA-sequencing data. Cell Rep. 29 (6), 1718–1727. e8. doi:10.1016/j.celrep.
2019.09.082

Ding, J., Adiconis, X., Simmons, S. K., Kowalczyk, M. S., Hession, C. C.,
Marjanovic, N. D., et al. (2020). Systematic comparison of single-cell and

Frontiers in Cell and Developmental Biology frontiersin.org18

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://doi.org/10.1038/nmeth.4263
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1093/bioinformatics/btz698
https://doi.org/10.1371/journal.pone.0209648
https://doi.org/10.1523/jneurosci.23-07-02665.2003
https://doi.org/10.1093/bfgp/elx035
https://doi.org/10.1093/bfgp/elx035
https://doi.org/10.1186/s13073-021-00941-8
https://doi.org/10.1186/s13073-021-00941-8
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1016/S0924-8196(05)80005-3
https://doi.org/10.1016/S0924-8196(05)80005-3
https://doi.org/10.15252/msb.202110282
https://doi.org/10.1016/j.isci.2020.101913
https://doi.org/10.1073/pnas.0308512100
https://doi.org/10.1016/S0140-6736(21)00218-X
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/mds.25135
https://doi.org/10.1002/mds.25135
https://doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1093/bioinformatics/btab085
https://doi.org/10.1093/bioinformatics/btab085
https://doi.org/10.1016/j.tins.2017.04.001
https://doi.org/10.1007/s004010050508
https://doi.org/10.1007/BF00308809
https://doi.org/10.1093/bioinformatics/btab450
https://doi.org/10.1016/j.nbd.2015.03.003
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1016/j.neuron.2012.02.036
https://doi.org/10.1016/j.neuron.2012.02.036
https://doi.org/10.1093/bioinformatics/bty498
https://doi.org/10.1093/bioinformatics/bty498
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1038/nature20412
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1101/2021.08.25.457696
https://doi.org/10.1101/2022.08.25.505257
https://doi.org/10.1038/s41596-021-00534-0
https://doi.org/10.1038/s41596-021-00534-0
https://doi.org/10.1002/jnr.10351
https://doi.org/10.1038/nature10524
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1186/s40169-017-0150-9
https://doi.org/10.1186/s40169-017-0150-9
https://doi.org/10.1038/s41467-020-14457-z
https://doi.org/10.1073/pnas.1507125112
https://doi.org/10.1016/j.cell.2015.12.056
https://doi.org/10.1016/j.coisb.2021.05.005
https://doi.org/10.1186/s13195-019-0524-x
https://doi.org/10.1186/s13059-020-02048-6
https://doi.org/10.1186/s13059-020-02048-6
https://doi.org/10.1016/j.celrep.2019.09.082
https://doi.org/10.1016/j.celrep.2019.09.082
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38 (6), 737–746. doi:10.
1038/s41587-020-0465-8

Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., Dekosky, S. T.,
Barberger-Gateau, P., et al. (2010). Revising the definition of Alzheimer’s
disease: A new lexicon. Lancet. Neurol. 9 (11), 1118–1127. doi:10.1016/S1474-
4422(10)70223-4

Duren, Z., Chen, X., Zamanighomi, M., Zeng, W., Satpathy, A. T., Chang, H. Y.,
et al. (2018). Integrative analysis of single-cell genomics data by coupled
nonnegative matrix factorizations. Proc. Natl. Acad. Sci. U. S. A. 115 (30),
7723–7728. doi:10.1073/pnas.1805681115

Duty, S., and Jenner, P. (2011). Animal models of Parkinson’s disease: A source of
novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 164 (4),
1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

Ekiz, H., Conley, C. J., Stephens, W. Z., and O’Connell, R. M. (2020). Cipr: A web-
based R/shiny app and R package to annotate cell clusters in single cell RNA
sequencing experiments. BMC Bioinforma. 21 (1), 191. doi:10.1186/s12859-020-
3538-2

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). “A density-based algorithm
for discovering clusters in large spatial databases with Noise,” in proceedings of the
second international conference on knowledge discovery and data mining (KDD’96)
(Munich, Germany: AAAI Press), 226–231.

Esteve-Codina, A., Arpi, O., Martinez-Garcia, M., Pineda, E., Mallo, M., Gut, M.,
et al. (2017). A comparison of RNA-seq results from paired formalin-fixed paraffin-
embedded and fresh-frozen glioblastoma tissue samples. PloS one 12 (1), e0170632.
doi:10.1371/journal.pone.0170632

Fefferman, C., Mitter, S., and Narayanan, H. (2016). Testing the manifold
hypothesis. J. Amer. Math. Soc. 29 (4), 983–1049. doi:10.1090/jams/852

Fernandes, H. J. R., Patikas, N., Foskolou, S., Field, S. F., Park, J. E., Byrne, M. L.,
et al. (2020). Single-cell transcriptomics of Parkinson’s disease human in vitro
models reveals dopamine neuron-specific stress responses. Cell Rep. 33 (2), 108263.
doi:10.1016/j.celrep.2020.108263

Forsberg, E. M., Huan, T., Rinehart, D., Benton, H. P., Warth, B., Hilmers, B., et al.
(2018). Data processing, multi-omic pathway mapping, and metabolite activity
analysis using XCMS Online. Nat. Protoc. 13 (4), 633–651. doi:10.1038/nprot.
2017.151

Fu, R., Gillen, A. E., Sheridan, R. M., Tian, C., Daya, M., Hao, Y., et al. (2020).
clustifyr: an R package for automated single-cell RNA sequencing cluster
classification. F1000Res. 9, 223. doi:10.12688/f1000research.22969.1

GBD (2020). Global burden of 369 diseases and injuries in 204 countries and
territories, 1990-2019: A systematic analysis for the global burden of disease study
2019. Lancet (London, Engl. 396 (10258), 1204–1222. doi:10.1016/S0140-6736(20)
30925-9 (

Geirsdottir, L., David, E., Keren-Shaul, H., Weiner, A., Bohlen, S. C., Neuber, J.,
et al. (2019). Cross-species single-cell analysis reveals divergence of the primate
microglia program. Cell 179 (7), 1609–1622. e16. doi:10.1016/j.cell.2019.11.010

Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H., and Trojanowski, J. Q.
(2000). Expression profile of transcripts in Alzheimer’s disease tangle-bearing
CA1 neurons. Ann. Neurol. 48 (1), 77–87. doi:10.1002/1531-8249(200007)48:
1<77:aid-ana12>3.0.co;2-a
Gradišnik, L., Bosnjak, R., Bunc, G., Ravnik, J., Maver, T., and Velnar, T. (2021).

Neurosurgical approaches to brain tissue harvesting for the establishment of cell
cultures in neural experimental cell models. Mater. (Basel, Switz. 14 (22), 6857.
doi:10.3390/ma14226857

Griffiths, J. A., Scialdone, A., andMarioni, J. C. (2018). Using single-cell genomics
to understand developmental processes and cell fate decisions. Mol. Syst. Biol. 14
(4), e8046. doi:10.15252/msb.20178046

Grindberg, R., Yee-Greenbaum, J. L., McConnell, M. J., Novotny, M.,
O’Shaughnessy, A. L., Lambert, G. M., et al. (2013). RNA-sequencing from
single nuclei. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 19802–19807. doi:10.1073/
pnas.1319700110

Grubman, A., Chew, G., Ouyang, J. F., Sun, G., Choo, X. Y., McLean, C., et al.
(2019). A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s
disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22 (12),
2087–2097. doi:10.1038/s41593-019-0539-4

Grün, D., Kester, L., and van Oudenaarden, A. (2014). Validation of noise models
for single-cell transcriptomics. Nat. Methods 11 (6), 637–640. doi:10.1038/nmeth.
2930

Grün, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., et al.
(2015). Single-cell messenger RNA sequencing reveals rare intestinal cell types.
Nature 525 (7568), 251–255. doi:10.1038/nature14966

Grün, D., and van Oudenaarden, A. (2015). Design and analysis of single-cell
sequencing experiments. Cell 163 (4), 799–810. doi:10.1016/j.cell.2015.10.039

Gupta, I., Collier, P. G., Haase, B., Mahfouz, A., Joglekar, A., Floyd, T., et al.
(2018). Single-cell isoform RNA sequencing characterizes isoforms in thousands of
cerebellar cells. Nat. Biotechnol. 36, 1197–1202. doi:10.1038/nbt.4259

Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-Davidi, I., Trombetta,
J. J., et al. (2016). Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult
newborn neurons. Sci. (New York, N.Y.) 353 (6302), 925–928. doi:10.1126/science.
aad7038

Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of
single-cell RNA-seq data using regularized negative binomial regression. Genome
Biol. 20 (1), 296. doi:10.1186/s13059-019-1874-1

Haque, A., Engel, J., Teichmann, S. A., and Lonnberg, T. (2017). A practical guide
to single-cell RNA-sequencing for biomedical research and clinical applications.
Genome Med. 9 (1), 75. doi:10.1186/s13073-017-0467-4

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., et al. (2012). An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature 489 (7416), 391–399. doi:10.1038/nature11405

Heemels, M.-T. (2016). Neurodegenerative diseases. Nature 539 (7628), 179.
doi:10.1038/539179a

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F.,
Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet.
Neurol. 14 (4), 388–405. doi:10.1016/S1474-4422(15)70016-5

Hicks, S. C., Liu, R., Ni, Y., Purdom, E., and Risso, D. (2021). mbkmeans: Fast
clustering for single cell data using mini-batch k-means. PLoS Comput. Biol. 17 (1),
e1008625. doi:10.1371/journal.pcbi.1008625

Hicks, S. C., Townes, F. W., Teng, M., and Irizarry, R. A. (2018). Missing data and
technical variability in single-cell RNA-sequencing experiments. Biostat. Oxf. Engl.
19 (4), 562–578. doi:10.1093/biostatistics/kxx053

Hong, R., Koga, Y., Bandyadka, S., Leshchyk, A., Wang, Y., Akavoor, V., et al.
(2022). Comprehensive generation, visualization, and reporting of quality control
metrics for single-cell RNA sequencing data. Nat. Commun. 13 (1), 1688. doi:10.
1038/s41467-022-29212-9

Hou, W., Ji, Z., Ji, H., and Hicks, S. C. (2020). A systematic evaluation of single-
cell RNA-sequencing imputation methods. Genome Biol. 21 (1), 218. doi:10.1186/
s13059-020-02132-x

Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., et al. (2018).
Saver: Gene expression recovery for single-cell RNA sequencing. Nat. Methods 15
(7), 539–542. doi:10.1038/s41592-018-0033-z

Ianevski, A., Giri, A. K., and Aittokallio, T. (2022). Fully-automated and ultra-fast
cell-type identification using specific marker combinations from single-cell
transcriptomic data. Nat. Commun. 13 (1), 1246. doi:10.1038/s41467-022-28803-w

Ilicic, T., Kim, J. K., Kolodziejczyk, A. A., Bagger, F. O., McCarthy, D. J., Marioni,
J. C., et al. (2016). Classification of low quality cells from single-cell RNA-seq data.
Genome Biol. 17, 29. doi:10.1186/s13059-016-0888-1

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., et al. (2014).
Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods
11 (2), 163–166. doi:10.1038/nmeth.2772

Ji, Z., and Ji, H. (2016). Tscan: Pseudo-time reconstruction and evaluation in single-cell
RNA-seq analysis. Nucleic Acids Res. 44 (13), e117. doi:10.1093/nar/gkw430

Jiang, L., Chen, H., Pinello, L., and Yuan, G. C. (2016). GiniClust: Detecting rare
cell types from single-cell gene expression data with gini index. Genome Biol. 17 (1),
144. doi:10.1186/s13059-016-1010-4

Jiang, L., Schlesinger, F., Davis, C. A., Zhang, Y., Li, R., Salit, M., et al. (2011).
Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21 (9),
1543–1551. doi:10.1101/gr.121095.111

Kamath, T., Abdulraouf, A., Burris, S., Gazestani, V., Nadaf, N., Vanderburg, C.,
et al. (2021). bioRxiv. Available at:. doi:10.1101/2021.06.16.448661A molecular
census of midbrain dopaminergic neurons in Parkinson’s disease448661

Kamath, T., Abdulraouf, A., Burris, S. J., Langlieb, J., Gazestani, V., Nadaf, N. M.,
et al. (2022). Single-cell genomic profiling of human dopamine neurons identifies a
population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25 (5),
588–595. doi:10.1038/s41593-022-01061-1

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld,
R., Ulland, T. K., et al. (2017). A unique microglia type Associated with restricting
development of Alzheimer’s disease. Cell 169 (7), 1276–1290. e17. doi:10.1016/j.cell.
2017.05.018

Kharchenko, P. V., Silberstein, L., and Scadden, D. T. (2014). Bayesian approach
to single-cell differential expression analysis. Nat. Methods 11 (7), 740–742. doi:10.
1038/nmeth.2967

Kharchenko, P. V. (2021). The triumphs and limitations of computational
methods for scRNA-seq. Nat. Methods 18 (7), 723–732. doi:10.1038/s41592-021-
01171-x

Frontiers in Cell and Developmental Biology frontiersin.org19

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1016/S1474-4422(10)70223-4
https://doi.org/10.1016/S1474-4422(10)70223-4
https://doi.org/10.1073/pnas.1805681115
https://doi.org/10.1111/j.1476-5381.2011.01426.x
https://doi.org/10.1186/s12859-020-3538-2
https://doi.org/10.1186/s12859-020-3538-2
https://doi.org/10.1371/journal.pone.0170632
https://doi.org/10.1090/jams/852
https://doi.org/10.1016/j.celrep.2020.108263
https://doi.org/10.1038/nprot.2017.151
https://doi.org/10.1038/nprot.2017.151
https://doi.org/10.12688/f1000research.22969.1
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1016/j.cell.2019.11.010
https://doi.org/10.1002/1531-8249(200007)48:1<77:aid-ana12>3.0.co;2-a
https://doi.org/10.1002/1531-8249(200007)48:1<77:aid-ana12>3.0.co;2-a
https://doi.org/10.3390/ma14226857
https://doi.org/10.15252/msb.20178046
https://doi.org/10.1073/pnas.1319700110
https://doi.org/10.1073/pnas.1319700110
https://doi.org/10.1038/s41593-019-0539-4
https://doi.org/10.1038/nmeth.2930
https://doi.org/10.1038/nmeth.2930
https://doi.org/10.1038/nature14966
https://doi.org/10.1016/j.cell.2015.10.039
https://doi.org/10.1038/nbt.4259
https://doi.org/10.1126/science.aad7038
https://doi.org/10.1126/science.aad7038
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13073-017-0467-4
https://doi.org/10.1038/nature11405
https://doi.org/10.1038/539179a
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1371/journal.pcbi.1008625
https://doi.org/10.1093/biostatistics/kxx053
https://doi.org/10.1038/s41467-022-29212-9
https://doi.org/10.1038/s41467-022-29212-9
https://doi.org/10.1186/s13059-020-02132-x
https://doi.org/10.1186/s13059-020-02132-x
https://doi.org/10.1038/s41592-018-0033-z
https://doi.org/10.1038/s41467-022-28803-w
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1038/nmeth.2772
https://doi.org/10.1093/nar/gkw430
https://doi.org/10.1186/s13059-016-1010-4
https://doi.org/10.1101/gr.121095.111
https://doi.org/10.1101/2021.06.16.448661
https://doi.org/10.1038/s41593-022-01061-1
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/s41592-021-01171-x
https://doi.org/10.1038/s41592-021-01171-x
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Alasoo, K., Ashford, S., et al.
(2017). Common genetic variation drives molecular heterogeneity in human iPSCs.
Nature 546 (7658), 370–375. doi:10.1038/nature22403

Kim, S. W., Woo, H. J., Kim, E. H., Kim, H. S., Suh, H. N., Kim, S. H., et al.
(2021). Neural stem cells derived from human midbrain organoids as a stable
source for treating Parkinson’s disease: Midbrain organoid-NSCs (Og-NSC) as
a stable source for PD treatment. Prog. Neurobiol. 204, 102086. doi:10.1016/j.
pneurobio.2021.102086

Kiselev, V. Y., Andrews, T. S., and Hemberg, M. (2019). Challenges in
unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20 (5),
273–282. doi:10.1038/s41576-018-0088-9

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T.,
et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods
14 (5), 483–486. doi:10.1038/nmeth.4236

Kiselev, V. Y., Yiu, A., and Hemberg, M. (2018). scmap: projection of single-cell
RNA-seq data across data sets. Nat. Methods 15 (5), 359–362. doi:10.1038/nmeth.
4644

Kobak, D., and Berens, P. (2019). The art of using t-SNE for single-cell
transcriptomics. Nat. Commun. 10 (1), 5416. doi:10.1038/s41467-019-13056-x

Kobak, D., and Linderman, G. C. (2021). Initialization is critical for preserving
global data structure in both t-SNE and UMAP. Nat. Biotechnol. 39 (2), 156–157.
doi:10.1038/s41587-020-00809-z

Kotliar, D., Veres, A., Nagy, M. A., Tabrizi, S., Hodis, E., Melton, D. A., et al.
(2019). Identifying gene expression programs of cell-type identity and cellular
activity with single-cell RNA-Seq. eLife 8, e43803. doi:10.7554/eLife.43803

Krämer, A., Green, J., Pollard, J., and Tugendreich, S. (2014). Causal analysis
approaches in ingenuity pathway analysis. Bioinformatics 30 (4), 523–530. doi:10.
1093/bioinformatics/btt703

Krishnaswami, S. R., Grindberg, R. V., Novotny, M., Venepally, P., Lacar, B.,
Bhutani, K., et al. (2016). Using single nuclei for RNA-seq to capture the
transcriptome of postmortem neurons. Nat. Protoc. 11 (3), 499–524. doi:10.
1038/nprot.2016.015

La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A.,
et al. (2016). Molecular diversity of midbrain development in mouse, human, and
stem cells. Cell 167 (2), 566–580. e19. doi:10.1016/j.cell.2016.09.027

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
et al. (2018). RNA velocity of single cells. Nature 560 (7719), 494–498. doi:10.1038/
s41586-018-0414-6

Lacar, B., Linker, S. B., Jaeger, B. N., Krishnaswami, S. R., Barron, J. J.,
Kelder, M. J. E., et al. (2016). Nuclear RNA-seq of single neurons reveals
molecular signatures of activation. Nat. Commun. 7, 11022. doi:10.1038/
ncomms11022

Lake, B. B., Chen, S., Sos, B. C., Fan, J., Kaeser, G. E., Yung, Y. C., et al. (2018).
Integrative single-cell analysis of transcriptional and epigenetic states in the human
adult brain. Nat. Biotechnol. 36 (1), 70–80. doi:10.1038/nbt.4038

Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M.
E., et al. (2013). Cerebral organoids model human brain development and
microcephaly. Nature 501 (7467), 373–379. doi:10.1038/nature12517

Lang, C., Campbell, K. R., Ryan, B. J., Carling, P., Attar, M., Vowles, J., et al.
(2019). Single-cell sequencing of iPSC-dopamine neurons reconstructs disease
progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes.
Cell stem Cell 24 (1), 93–106. e6. doi:10.1016/j.stem.2018.10.023

Laperle, A. H., SanceS, S., Yucer, N., Dardov, V. J., Garcia, V. J., Ho, R., et al.
(2020). iPSC modeling of young-onset Parkinson’s disease reveals a molecular
signature of disease and novel therapeutic candidates. Nat. Med. 26 (2), 289–299.
doi:10.1038/s41591-019-0739-1

Lees, A. J., Hardy, J., and Revesz, T. (2009). Parkinson’s disease. Lancet (London,
Engl. 373 (9680), 2055–2066. doi:10.1016/S0140-6736(09)60492-X

Leng, K., Li, E., Eser, R., Piergies, A., Sit, R., Tan, M., et al. (2021). Molecular
characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat.
Neurosci. 24 (2), 276–287. doi:10.1038/s41593-020-00764-7

Li, Y., Lopez-Huerta, V. G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S.
K., et al. (2020). Distinct subnetworks of the thalamic reticular nucleus. Nature 583
(7818), 819–824. doi:10.1038/s41586-020-2504-5

Linderman, G., Zhao, J., Roulis, M., Bielecki, P., Flavell, R. A., Nadler, B., et al.
(2022). Zero-preserving imputation of single-cell RNA-seq data. Nat. Commun. 13
(1), 192. doi:10.1038/s41467-021-27729-z

Liu, W., Liao, X., Yang, Y., Lin, H., Yeong, J., Zhou, X., et al. (2022). Joint
dimension reduction and clustering analysis of single-cell RNA-seq and
spatial transcriptomics data. Nucleic Acids Res. 50 (12), e72. doi:10.1093/
nar/gkac219

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550.
doi:10.1186/s13059-014-0550-8

Luecken, M. D., and Theis, F. J. (2019). Current best practices in single-cell RNA-
seq analysis: A tutorial. Mol. Syst. Biol. 15 (6), e8746. doi:10.15252/msb.20188746

Lun, A. (2018). bioRxiv, 404962. doi:10.1101/404962Overcoming systematic
errors caused by log-transformation of normalized single-cell RNA sequencing data

Lun, A., Riesenfeld, S., Andrews, T., Dao, T. P., Gomes, T.; participants in the
1st Human Cell Atlas Jamboree, et al. (2019). EmptyDrops: Distinguishing
cells from empty droplets in droplet-based single-cell RNA sequencing data.
Genome Biol. 20 (1), 63. doi:10.1186/s13059-019-1662-y

Lun, A. T. L., Bach, K., andMarioni, J. C. (2016). Pooling across cells to normalize
single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75.
doi:10.1186/s13059-016-0947-7

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al.
(2015). Highly parallel genome-wide expression profiling of individual cells using
nanoliter droplets. Cell 161 (5), 1202–1214. doi:10.1016/j.cell.2015.05.002

Maitra, M., Nagy, C., Chawla, A., Wang, Y. C., Nascimento, C., Suderman, M.,
et al. (2021). Extraction of nuclei from archived postmortem tissues for single-
nucleus sequencing applications. Nat. Protoc. 16 (6), 2788–2801. doi:10.1038/
s41596-021-00514-4

Marei, H., AlthAni, A., LaShen, S., CenCiarelli, C., and Hasan, A. (2017).
Genetically unmatched human iPSC and ESC exhibit equivalent gene expression
and neuronal differentiation potential. Sci. Rep. 7 (1), 17504. doi:10.1038/s41598-
017-17882-1

Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A.,
Xiao, L., et al. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and
adult central nervous system. Sci. (New York, N.Y.) 352 (6291), 1326–1329. doi:10.
1126/science.aaf6463

Masuda, T., Sankowski, R., Staszewski, O., Böttcher, C., Amann, L., Sagar, et al.
(2019). Spatial and temporal heterogeneity of mouse and human microglia at
single-cell resolution. Nature 566 (7744), 388–392. doi:10.1038/s41586-019-0924-x

Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z.,
et al. (2019). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570
(7761), 332–337. doi:10.1038/s41586-019-1195-2

Matsumoto, H., and Kiryu, H. (2016). SCOUP: A probabilistic model based on
the ornstein-uhlenbeck process to analyze single-cell expression data during
differentiation. BMC Bioinforma. 17 (1), 232. doi:10.1186/s12859-016-1109-3

McGinnis, C. S., Murrow, L. M., and Gartner, Z. J. (2019). DoubletFinder:
Doublet detection in single-cell RNA sequencing data using artificial nearest
neighbors. Cell Syst. 8 (4), 329–337. e4. doi:10.1016/j.cels.2019.03.003

McInnes, L., Healy, J., Saul, N., and GroBberger, L. (2018). Umap: Uniform
manifold approximation and projection. J. Open Source Softw. 3 (29), 861. doi:10.
21105/joss.00861

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E.
M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-
ADRDA work group under the auspices of department of Health and human
services task force on Alzheimer’s disease. Neurology 34 (7), 939–944. doi:10.1212/
wnl.34.7.939

Medeiros, R., and LaFerla, F. M. (2013). Astrocytes: Conductors of the alzheimer
disease neuroinflammatory symphony. Exp. Neurol. 239, 133–138. doi:10.1016/j.
expneurol.2012.10.007

Miller, J. A., Ding, S. L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., et al. (2014).
Transcriptional landscape of the prenatal human brain. Nature 508 (7495),
199–206. doi:10.1038/nature13185

Miller, J. A., Oldham, M. C., and Geschwind, D. H. (2008). A systems level
analysis of transcriptional changes in Alzheimer’s disease and normal aging.
J. Neurosci. 28 (6), 1410–1420. doi:10.1523/JNEUROSCI.4098-07.2008

Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson, A. C.,
et al. (2015). Decoding the regulatory network of early blood development from single-cell
gene expression measurements. Nat. Biotechnol. 33 (3), 269–276. doi:10.1038/nbt.3154

Monterey, M. D., Wei, H., Wu, X., and Wu, J. Q. (2021). The many faces of
astrocytes in Alzheimer’s disease. Front. Neurol. 12, 619626. doi:10.3389/fneur.
2021.619626

Moon, K. R., Stanley, J. S., Burkhardt, D., van Dijk, D., Wolf, G., and
Krishnaswamy, S. (2018). Manifold learning-based methods for analyzing
single-cell RNA-sequencing data. Curr. Opin. Syst. Biol. 7, 36–46. doi:10.1016/j.
coisb.2017.12.008

Nagy, C., Maheu, M., Lopez, J. P., Vaillancourt, K., Cruceanu, C., Gross, J. A., et al.
(2015). Effects of postmortem interval on biomolecule integrity in the brain.
J. Neuropathol. Exp. Neurol. 74 (5), 459–469. doi:10.1097/NEN.0000000000000190

Frontiers in Cell and Developmental Biology frontiersin.org20

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://doi.org/10.1038/nature22403
https://doi.org/10.1016/j.pneurobio.2021.102086
https://doi.org/10.1016/j.pneurobio.2021.102086
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.7554/eLife.43803
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1038/nprot.2016.015
https://doi.org/10.1038/nprot.2016.015
https://doi.org/10.1016/j.cell.2016.09.027
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/ncomms11022
https://doi.org/10.1038/ncomms11022
https://doi.org/10.1038/nbt.4038
https://doi.org/10.1038/nature12517
https://doi.org/10.1016/j.stem.2018.10.023
https://doi.org/10.1038/s41591-019-0739-1
https://doi.org/10.1016/S0140-6736(09)60492-X
https://doi.org/10.1038/s41593-020-00764-7
https://doi.org/10.1038/s41586-020-2504-5
https://doi.org/10.1038/s41467-021-27729-z
https://doi.org/10.1093/nar/gkac219
https://doi.org/10.1093/nar/gkac219
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1101/404962
https://doi.org/10.1186/s13059-019-1662-y
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1038/s41596-021-00514-4
https://doi.org/10.1038/s41596-021-00514-4
https://doi.org/10.1038/s41598-017-17882-1
https://doi.org/10.1038/s41598-017-17882-1
https://doi.org/10.1126/science.aaf6463
https://doi.org/10.1126/science.aaf6463
https://doi.org/10.1038/s41586-019-0924-x
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1212/wnl.34.7.939
https://doi.org/10.1212/wnl.34.7.939
https://doi.org/10.1016/j.expneurol.2012.10.007
https://doi.org/10.1016/j.expneurol.2012.10.007
https://doi.org/10.1038/nature13185
https://doi.org/10.1523/JNEUROSCI.4098-07.2008
https://doi.org/10.1038/nbt.3154
https://doi.org/10.3389/fneur.2021.619626
https://doi.org/10.3389/fneur.2021.619626
https://doi.org/10.1016/j.coisb.2017.12.008
https://doi.org/10.1016/j.coisb.2017.12.008
https://doi.org/10.1097/NEN.0000000000000190
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


Nativio, R., Donahue, G., Berson, A., Lan, Y., Amlie-Wolf, A., Tuzer, F., et al.
(2018). Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s
disease. Nat. Neurosci. 21 (4), 497–505. doi:10.1038/s41593-018-0101-9

Nguyen, V., and Griss, J. (2022). scAnnotatR: framework to accurately classify cell
types in single-cell RNA-sequencing data. BMC Bioinforma. 23 (1), 44. doi:10.1186/
s12859-022-04574-5

Ni, Z., Chen, S., Brown, J., and Kendziorski, C. (2020). CB2 improves power of cell
detection in droplet-based single-cell RNA sequencing data. Genome Biol. 21 (1),
137. doi:10.1186/s13059-020-02054-8

Noel, T., Wang, Q. S., Greka, A., and Marshall, J. L. (2022). Principles of spatial
transcriptomics analysis: A practical walk-through in kidney tissue. Front. Physiol.
12, 809346. doi:10.3389/fphys.2021.809346

Olabarria, M., Noristani, H. N., Verkhratsky, A., and Rodriguez, J. J. (2010).
Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model
of Alzheimer’s disease. Glia 58 (7), 831–838. doi:10.1002/glia.20967

Olah, M., Menon, V., Habib, N., Taga, M. F., Ma, Y., Yung, C. J., et al. (2020).
Single cell RNA sequencing of human microglia uncovers a subset associated with
Alzheimer’s disease. Nat. Commun. 11 (1), 6129. doi:10.1038/s41467-020-19737-2

Olah, M., Patrick, E., Villani, A. C., Xu, J., White, C. C., Ryan, K. J., et al. (2018). A
transcriptomic atlas of aged human microglia. Nat. Commun. 9 (1), 539. doi:10.
1038/s41467-018-02926-5

Padurariu, M., Ciobica, A., Mavroudis, I., Fotiou, D., and Baloyannis, S. (2012).
Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease
patients. Psychiatr. Danub. 24 (2), 152–158.

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., and Hellmann, I. (2018). zUMIs -
a fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience
7 (6). doi:10.1093/gigascience/giy059

Pasquini, G., Rojo Arias, J. E., Schafer, P., and Busskamp, V. (2021). Automated
methods for cell type annotation on scRNA-seq data. Comput. Struct. Biotechnol. J.
19, 961–969. doi:10.1016/j.csbj.2021.01.015

Patruno, L., Maspero, D., Craighero, F., Angaroni, F., Antoniotti, M., and
Graudenzi, A. (2021). A review of computational strategies for denoising and
imputation of single-cell transcriptomic data. Brief. Bioinform. 22 (4), bbaa222.
doi:10.1093/bib/bbaa222

Petukhov, V., Guo, J., Baryawno, N., Severe, N., Scadden, D. T., Samsonova, M.
G., et al. (2018). dropEst: pipeline for accurate estimation of molecular counts in
droplet-based single-cell RNA-seq experiments. Genome Biol. 19 (1), 78. doi:10.
1186/s13059-018-1449-6

Pissadaki, E. K., and Bolam, J. P. (2013). The energy cost of action potential
propagation in dopamine neurons: Clues to susceptibility in Parkinson’s disease.
Front. Comput. Neurosci. 7, 13. doi:10.3389/fncom.2013.00013

Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. M. (2020).
Benchmarking algorithms for gene regulatory network inference from single-cell
transcriptomic data.Nat. Methods 17 (2), 147–154. doi:10.1038/s41592-019-0690-6

Qiu, P. (2020). Embracing the dropouts in single-cell RNA-seq analysis. Nat.
Commun. 11 (1), 1169. doi:10.1038/s41467-020-14976-9

Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., and Tyagi, S.
(2008). Imaging individual mRNA molecules using multiple singly labeled probes.
Nat. Methods 5 (10), 877–879. doi:10.1038/nmeth.1253

Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: Stochastic
gene expression and its consequences. Cell 135 (2), 216–226. doi:10.1016/j.cell.2008.
09.050

Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., et al.
(2017). The human cell atlas. eLife 6, e27041. doi:10.7554/eLife.27041

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11 (3), R25. doi:10.
1186/gb-2010-11-3-r25

Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg,
C. R., et al. (2019). Slide-seq: A scalable technology for measuring genome-wide
expression at high spatial resolution. Sci. (New York, N.Y.) 363 (6434), 1463–1467.
doi:10.1126/science.aaw1219

Rosvall, M., and Bergstrom, C. T. (2008). Maps of random walks on complex
networks reveal community structure. Proc. Natl. Acad. Sci. U. S. A. 105 (4),
1118–1123. doi:10.1073/pnas.0706851105

Saelens, W., Cannoodt, R., Todorov, H., and Saeys, Y. (2019). A comparison of
single-cell trajectory inference methods. Nat. Biotechnol. 37 (5), 547–554. doi:10.
1038/s41587-019-0071-9

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., and Regev, A. (2015). Spatial
reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 (5), 495–502.
doi:10.1038/nbt.3192

Saunders, A., Macosko, E. Z., Wysoker, A., Goldman, M., Krienen, F. M., de
Rivera, H., et al. (2018). Molecular diversity and specializations among the cells of
the adult mouse brain. Cell 174 (4), 1015–1030. e16. doi:10.1016/j.cell.2018.07.028

Setty, M., Tadmor, M. D., Reich-Zeliger, S., Angel, O., Salame, T. M., Kathail, P.,
et al. (2016). Wishbone identifies bifurcating developmental trajectories from
single-cell data. Nat. Biotechnol. 34 (6), 637–645. doi:10.1038/nbt.3569

Shao, C., and Höfer, T. (2017). Robust classification of single-cell transcriptome
data by nonnegative matrix factorization. Bioinforma. Oxf. Engl. 33 (2), 235–242.
doi:10.1093/bioinformatics/btw607

Shao, X., Liao, J., Lu, X., Xue, R., Ai, N., and Fan, X. (2020). scCATCH: automatic
annotation on cell types of clusters from single-cell RNA sequencing data. IScience
23, 100882. doi:10.1016/j.isci.2020.100882

Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., et al. (2015).
Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult
neurogenesis. Cell stem Cell 17 (3), 360–72. doi:10.1016/j.stem.2015.07.013

Slovin, S., Carissimo, A., Panariello, F., Grimaldi, A., Bouche, V., Gambardella, G.,
et al. (2021). Single-cell RNA sequencing analysis: A step-by-step overview.
Methods Mol. Biol. 2284, 343–365. doi:10.1007/978-1-0716-1307-8_19

Slyper, M., Porter, C. B. M., Ashenberg, O., Waldman, J., Drokhlyansky, E., Wakiro, I.,
et al. (2020). A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen
human tumors. Nat. Med. 26 (5), 792–802. doi:10.1038/s41591-020-0844-1

Smajić, S., Prada-Medina, C. A., Landoulsi, Z., Ghelfi, J., Delcambre, S., Dietrich, C.,
et al. (2021). Single-cell sequencing of human midbrain reveals glial activation and a
Parkinson-specific neuronal state. Brain. 145, 964–978. doi:10.1093/brain/awab446

Smits, L., Magni, S., Kinugawa, K., Grzyb, K., Luginbuhl, J., Sabate-Soler, S., et al.
(2020). Single-cell transcriptomics reveals multiple neuronal cell types in human
midbrain-specific organoids. Cell Tissue Res. 382 (3), 463–476. doi:10.1007/s00441-
020-03249-y

Sobue, S., Sakata, K., Sekijima, Y., Qiao, S., Murate, T., and Ichihara, M. (2016).
Characterization of gene expression profiling of mouse tissues obtained during the
postmortem interval. Exp. Mol. Pathol. 100 (3), 482–492. doi:10.1016/j.yexmp.2016.
05.007

Ståhl, P. L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al.
(2016). Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Sci. (New York, N.Y.) 353 (6294), 78–82. doi:10.1126/science.aaf2403

Stegle, O., Teichmann, S. A., and Marioni, J. C. (2015). Computational and
analytical challenges in single-cell transcriptomics.Nat. Rev. Genet. 16 (3), 133–145.
doi:10.1038/nrg3833

Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., et al. (2018).
Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics.
BMC genomics 19 (1), 477. doi:10.1186/s12864-018-4772-0

Svensson, V., Natarajan, K. N., Ly, L. H., Miragaia, R. J., Labalette, C., Macaulay, I.
C., et al. (2017). Power analysis of single-cell RNA-sequencing experiments. Nat.
Methods 14 (4), 381–387. doi:10.1038/nmeth.4220

Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., Yao, Z., et al. (2016).
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat.
Neurosci. 19 (2), 335–346. doi:10.1038/nn.4216

Tasic, B., Yao, Z., Graybuck, L. T., Smith, K. A., Nguyen, T. N., Bertagnolli, D.,
et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas.
Nature 563 (7729), 72–78. doi:10.1038/s41586-018-0654-5

Todorov, H., Cannoodt, R., Saelens, W., and Saeys, Y. (2020). TinGa: Fast and
flexible trajectory inference with growing neural gas. Bioinformatics 36 (1), 66–74.
doi:10.1093/bioinformatics/btaa463

Traag, V., WaLtman, L., and van Eck, N. J. (2019). From Louvain to leiden:
Guaranteeing well-connected communities. Sci. Rep. 9 (1), 5233. doi:10.1038/
s41598-019-41695-z

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., et al. (2014).
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat. Biotechnol. 32 (4), 381–386. doi:10.1038/nbt.2859

Trapnell, C. (2015). Defining cell types and states with single-cell genomics.
Genome Res. 25 (10), 1491–1498. doi:10.1101/gr.190595.115

Tsuyuzaki, K., Sato, H., Sato, K., and Nikaido, I. (2020). Benchmarking principal
component analysis for large-scale single-cell RNA-sequencing. Genome Biol. 21
(1), 9. doi:10.1186/s13059-019-1900-3

Tushev, G., Glock, C., Heumuller, M., Biever, A., Jovanovic, M., and Schuman, E.
M. (2018). Alternative 3’ UTRs modify the localization, regulatory potential,
stability, and plasticity of mRNAs in neuronal compartments. Neuron 98 (3),
495–511. e6. doi:10.1016/j.neuron.2018.03.030

Tzschentke, T. M., and Schmidt, W. J. (2000). Functional relationship among
medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in

Frontiers in Cell and Developmental Biology frontiersin.org21

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://doi.org/10.1038/s41593-018-0101-9
https://doi.org/10.1186/s12859-022-04574-5
https://doi.org/10.1186/s12859-022-04574-5
https://doi.org/10.1186/s13059-020-02054-8
https://doi.org/10.3389/fphys.2021.809346
https://doi.org/10.1002/glia.20967
https://doi.org/10.1038/s41467-020-19737-2
https://doi.org/10.1038/s41467-018-02926-5
https://doi.org/10.1038/s41467-018-02926-5
https://doi.org/10.1093/gigascience/giy059
https://doi.org/10.1016/j.csbj.2021.01.015
https://doi.org/10.1093/bib/bbaa222
https://doi.org/10.1186/s13059-018-1449-6
https://doi.org/10.1186/s13059-018-1449-6
https://doi.org/10.3389/fncom.2013.00013
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41467-020-14976-9
https://doi.org/10.1038/nmeth.1253
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1016/j.cell.2018.07.028
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1093/bioinformatics/btw607
https://doi.org/10.1016/j.isci.2020.100882
https://doi.org/10.1016/j.stem.2015.07.013
https://doi.org/10.1007/978-1-0716-1307-8_19
https://doi.org/10.1038/s41591-020-0844-1
https://doi.org/10.1093/brain/awab446
https://doi.org/10.1007/s00441-020-03249-y
https://doi.org/10.1007/s00441-020-03249-y
https://doi.org/10.1016/j.yexmp.2016.05.007
https://doi.org/10.1016/j.yexmp.2016.05.007
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/nrg3833
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1038/nmeth.4220
https://doi.org/10.1038/nn.4216
https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.1093/bioinformatics/btaa463
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1186/s13059-019-1900-3
https://doi.org/10.1016/j.neuron.2018.03.030
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748


locomotion and reward. Crit. Rev. Neurobiol. 14 (2), 12–42. doi:10.1615/
critrevneurobiol.v14.i2.20

Vallejo, A. F., Harvey, K., Wang, T., Wise, K., Butler, L. M., Polo, J., et al.
(2022). snPATHO-seq: Unlocking the FFPE archives for single nucleus RNA
profiling. bioRxiv, Prepr. (Accesed September 21, 2022). doi:10.1101/2022.08.
23.505054

Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S., and Marioni, J. C. (2017).
Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat.
Methods 14 (6), 565–571. doi:10.1038/nmeth.4292

van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., et al. (2018).
Recovering gene interactions from single-cell data using data diffusion. Cell 174 (3),
716–729. e27. doi:10.1016/j.cell.2018.05.061

Vieth, B., Parekh, S., Ziegenhain, C., Enard, W., and Hellmann, I. (2019). A
systematic evaluation of single cell RNA-seq analysis pipelines. Nat. Commun. 10
(1), 4667. doi:10.1038/s41467-019-12266-7

Vieth, B., Ziegenhain, C., Parekh, S., Enard, W., and Hellmann, I. (2017).
powsimR: power analysis for bulk and single cell RNA-seq experiments.
Bioinforma. Oxf. Engl. 33 (21), 3486–3488. doi:10.1093/bioinformatics/btx435

Volpato, V., and Webber, C. (2020). Addressing variability in iPSC-derived
models of human disease: Guidelines to promote reproducibility. Dis. Model. Mech.
13 (1), dmm042317. doi:10.1242/dmm.042317

Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in
Parkinson’s disease: Molecules implicated in the formation and degradation of
alpha-synuclein aggregates. Neuropathology 27 (5), 494–506. doi:10.1111/j.1440-
1789.2007.00803.x

Wang, J., Gouda-Vossos, A., Dzamko, N., Halliday, G., and Huang, Y. (2013).
DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human
brain tissue. Neurosci. Bull. 29 (5), 649–654. doi:10.1007/s12264-013-1379-y

Wattenberg, M., Viégas, F., and Johnson, I. (2016). How to use t-SNE effectively.
Distill 1 (10). doi:10.23915/distill.00002

Welch, J. D., Hartemink, A. J., and Prins, J. F. (2017). MATCHER:manifold alignment
reveals correspondence between single cell transcriptome and epigenome dynamics.
Genome Biol. 18 (1), 138. doi:10.1186/s13059-017-1269-0

Welch, J. D., Hartemink, A. J., and Prins, J. F. (2016). Slicer: Inferring branched,
nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 17 (1),
106. doi:10.1186/s13059-016-0975-3

Welch, J. D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., andMacosko,
E. Z. (2019). Single-cell multi-omic integration compares and contrasts features of
brain cell identity. Cell 177 (7), 1873–1887. e17. doi:10.1016/j.cell.2019.05.006

White, K., Yang, P., Li, L., Farshori, A., Medina, A. E., and Zielke, H. R. (2018).
Effect of postmortem interval and years in storage on RNA quality of tissue at a
repository of the NIH NeuroBioBank. Biopreserv. Biobank. 16 (2), 148–157. doi:10.
1089/bio.2017.0099

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). Scanpy: Large-scale single-cell
gene expression data analysis. Genome Biol. 19 (1), 15. doi:10.1186/s13059-017-
1382-0

Wolf, F., Hamey, F. K., Plass,M., Solana, J., Dahlin, J. S., Gottgens, B., et al. (2019). Paga:
Graph abstraction reconciles clustering with trajectory inference through a topology
preservingmap of single cells.Genome Biol. 20 (1), 59–9. doi:10.1186/s13059-019-1663-x

Wolock, S. L., Lopez, R., and Klein, A. M. (2019). Scrublet: Computational
identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8 (4),
281–291. e9. doi:10.1016/j.cels.2018.11.005

Wu, H., Kirita, Y., Donnelly, E. L., and Humphreys, B. D. (2019). Advantages of
single-nucleus over single-cell RNA sequencing of adult kidney: Rare cell types and
novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30 (1), 23–32. doi:10.1681/
ASN.2018090912

Wu, P., An, M., Zou, H. R., Zhong, C. Y., Wang, W., and Wu, C. P. (2020). A
robust semi-supervised NMF model for single cell RNA-seq data. PeerJ 8, e10091.
doi:10.7717/peerj.10091

Wu, Y.-T., Beiser, A. S., Breteler, M. M. B., Fratiglioni, L., Helmer, C.,
Hendrie, H. C., et al. (2017). The changing prevalence and incidence of
dementia over time - current evidence. Nat. Rev. Neurol. 13 (6), 327–339.
doi:10.1038/nrneurol.2017.63

Yang, S., Corbett, S. E., Koga, Y., Wang, Z., Johnson, W. E., Yajima, M., et al.
(2020). Decontamination of ambient RNA in single-cell RNA-seq with DecontX.
Genome Biol. 21 (1), 57. doi:10.1186/s13059-020-1950-6

Yao, Z., Liu, H., Xie, F., Fischer, S., Adkins, R. S., Aldridge, A. I., et al. (2021). A
transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.
Nature 598 (7879), 103–110. doi:10.1038/s41586-021-03500-8

Yao, Z., van Velthoven, C. T. J., Nguyen, T. N., Goldy, J., Sedeno-Cortes, A. E.,
Baftizadeh, F., et al. (2021). A taxonomy of transcriptomic cell types across the
isocortex and hippocampal formation. Cell 184 (12), 3222–3241.e26. e26. doi:10.
1016/j.cell.2021.04.021

Yip, S. H., Sham, P. C., andWang, J. (2019). Evaluation of tools for highly variable
gene discovery from single-cell RNA-seq data. Brief. Bioinform. 20 (4), 1583–1589.
doi:10.1093/bib/bby011

You, Y., Tian, L., Su, S., Dong, X., Jabbari, J. S., Hickey, P. F., et al. (2021).
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows. Genome
Biol. 22 (1), 339. doi:10.1186/s13059-021-02552-3

Young, M., and Behjati, S. (2020). SoupX removes ambient RNA contamination
from droplet-based single-cell RNA sequencing data. GigaScience 9 (12), giaa151.
doi:10.1093/gigascience/giaa151

Zagare, A., Barmpa, K., Smajic, S., Smits, L. M., Grzyb, K., Grunewald, A., et al.
(2022). Midbrain organoids mimic early embryonic neurodevelopment and
recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am. J. Hum.
Genet. 109 (2), 311–327. doi:10.1016/j.ajhg.2021.12.009

Zeisel, A., Kostler, W. J., Molotski, N., Tsai, J. M., Krauthgamer, R., Jacob-Hirsch,
J., et al. (2011). Coupled pre-mRNA and mRNA dynamics unveil operational
strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol. 7, 529.
doi:10.1038/msb.2011.62

Zeng, H., and Sanes, J. R. (2017). Neuronal cell-type classification: Challenges,
opportunities and the path forward. Nat. Rev. Neurosci. 18 (9), 530–546. doi:10.
1038/nrn.2017.85

Zetterström, R. H., SoLomin, L., Jansson, L., Hoffer, B. J., Olson, L., and
Perlmann, T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Sci.
(New York, N.Y.) 276 (5310), 248–250. doi:10.1126/science.276.5310.248

Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., et al. (2019). CellMarker: A
manually curated resource of cell markers in human and mouse. Nucleic Acids Res.
47 (1), D721–D728. doi:10.1093/nar/gky900

Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D.,
et al. (2016). Purification and characterization of progenitor and mature human
astrocytes reveals transcriptional and functional differences with mouse. Neuron 89
(1), 37–53. doi:10.1016/j.neuron.2015.11.013

Zhang, Z., and Zhang, X. (2021). Inference of high-resolution trajectories in
single-cell RNA-seq data by using RNA velocity. Cell Rep. Methods 1 (6), 100095.
doi:10.1016/j.crmeth.2021.100095

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R.,
et al. (2017). Massively parallel digital transcriptional profiling of single cells. Nat.
Commun. 8, 14049. doi:10.1038/ncomms14049

Zhu, Y., Wang, L., Yin, Y., and Yang, E. (2017). Systematic analysis of gene
expression patterns associated with postmortem interval in human tissues. Sci. Rep.
7 (1), 5435. doi:10.1038/s41598-017-05882-0

Frontiers in Cell and Developmental Biology frontiersin.org22

Cuevas-Diaz Duran et al. 10.3389/fcell.2022.884748

https://doi.org/10.1615/critrevneurobiol.v14.i2.20
https://doi.org/10.1615/critrevneurobiol.v14.i2.20
https://doi.org/10.1101/2022.08.23.505054
https://doi.org/10.1101/2022.08.23.505054
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1038/s41467-019-12266-7
https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.1242/dmm.042317
https://doi.org/10.1111/j.1440-1789.2007.00803.x
https://doi.org/10.1111/j.1440-1789.2007.00803.x
https://doi.org/10.1007/s12264-013-1379-y
https://doi.org/10.23915/distill.00002
https://doi.org/10.1186/s13059-017-1269-0
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1089/bio.2017.0099
https://doi.org/10.1089/bio.2017.0099
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1681/ASN.2018090912
https://doi.org/10.1681/ASN.2018090912
https://doi.org/10.7717/peerj.10091
https://doi.org/10.1038/nrneurol.2017.63
https://doi.org/10.1186/s13059-020-1950-6
https://doi.org/10.1038/s41586-021-03500-8
https://doi.org/10.1016/j.cell.2021.04.021
https://doi.org/10.1016/j.cell.2021.04.021
https://doi.org/10.1093/bib/bby011
https://doi.org/10.1186/s13059-021-02552-3
https://doi.org/10.1093/gigascience/giaa151
https://doi.org/10.1016/j.ajhg.2021.12.009
https://doi.org/10.1038/msb.2011.62
https://doi.org/10.1038/nrn.2017.85
https://doi.org/10.1038/nrn.2017.85
https://doi.org/10.1126/science.276.5310.248
https://doi.org/10.1093/nar/gky900
https://doi.org/10.1016/j.neuron.2015.11.013
https://doi.org/10.1016/j.crmeth.2021.100095
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/s41598-017-05882-0
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.884748

	Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neur ...
	Introduction
	Single-cell/nuclei transcriptomic experimentation
	Key computational steps of single-cell/single-nuclei sequencing data analysis
	Data preprocessing
	Normalization
	Feature selection, dimensionality reduction, and visualization
	Clustering
	Cluster characterization
	Trajectory inference
	Kinetics of transcription
	Gene regulatory networks

	Single-cell/nuclei sequencing for understanding Alzheimer’s disease
	Single-cell/nuclei sequencing for understanding Parkinson’s disease
	Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


