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Recently, emerging evidence has indicated that aberrant enhancers, especially super-
enhancers, play pivotal roles in the transcriptional reprogramming of multiple cancers,
including hepatocellular carcinoma (HCC). In this study, we performed integrative analyses
of ChIP-seq, RNA-seq, and whole-genome bisulfite sequencing (WGBS) data to identify
intergenic differentially expressed enhancers (DEEs) and genic differentially methylated
enhancers (DMEs), along with their associated differentially expressed genes (DEE/DME-
DEGs), both of which were also identified in independent cohorts and further confirmed by
HiC data. Functional enrichment and prognostic model construction were conducted to
explore the functions and clinical significance of the identified enhancer aberrations. We
identified a total of 2,051 aberrant enhancer-associated DEGs (AE-DEGs), which were
highly concurrent in multiple HCC datasets. The enrichment results indicated the
significant overrepresentations of crucial biological processes and pathways implicated
in cancer among these AE-DEGs. A six AE-DEG-based prognostic signature, whose ability
to predict the overall survival of HCC was superior to that of both clinical phenotypes and
previously published similar prognostic signatures, was established and validated in
TCGA-LIHC and ICGC-LIRI cohorts, respectively. In summary, our integrative analysis
depicted a landscape of aberrant enhancers and associated transcriptional dysregulation
in HCC and established an aberrant enhancer-derived prognostic signature with excellent
predictive accuracy, which might be beneficial for the future development of epigenetic
therapy for HCC.
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INTRODUCTION

Liver cancer is the sixth most common malignant tumor and the
third leading cause of cancer-related deaths, accounting for
approximately 700,000 deaths annually worldwide and poses a
severe health threat and economic burden to the world (Likhitsup
and Parikh, 2020; Sung et al., 2021). This is especially true in
China, which has the largest HCC risk population (HBV carriers)
throughout the world. The latest epidemiological report showed
that primary liver cancer is the fourth most common tumor in
China (Feng et al., 2019) and the vast majority of liver cancers are
HCCs. Since there are usually no evident symptoms in the early
developmental state of liver cancer, patients are often diagnosed
in the late stage of liver cancer, resulting in an extremely high
probability of death (Grandhi et al., 2016). Although the survival
duration of early- and intermediate-stage HCCs has improved
over the past decades, the prognosis for advanced-stage HCC
patients has remained poor, with no significant improvement.
Even with the survival benefits of several first- and second-line
therapeutic options available for patients with advanced HCC,
such as sorafenib and lenvatinib, the median survival time of
intermediate to advanced HCC is only 1–2 years (Marrero et al.,
2018). Clinical studies of immune checkpoint inhibitors have
yielded promising survival benefits, although the suppressive
milieu and tumor immunosurveillance escape mechanisms in
the liver still dampen the effectiveness of immunotherapy
(Nakano et al., 2020). Hence, there is an urgent need to
explore the underlying genetic and epigenetic mechanisms
implicated in hepatocarcinogenesis to identify potential
targets/biomarkers for the diagnosis, treatment and prognosis
of HCC.

Cancer is a complex disease involving both genetic mutations
and epigenetic aberrations. By definition, epigenetics refers to
heritable states of gene activities that do not involve alteration of
DNA sequence itself. Epigenetic changes such as DNA
hypermethylation or hypomethylation, dysregulation of
histone modification patterns, chromatin remodeling, and
aberrant expression of noncoding RNAs are demonstrated to
be involved in the initiation and progression of HCC (Wahid
et al., 2017). Unlike genetic mutations, epigenetic alterations are
reversible and various drugs targeting epigenetic regulators have
exhibited viable therapeutic potential for solid tumors in both
preclinical and clinical studies (Cheng et al., 2019). A better
understanding of the epigenetic mechanisms underlying
hepatocarcinogenesis will facilitate the discovery of new targets
and biomarkers for HCC therapy.

Like most malignancies, HCC is also characterized by
widespread abnormal gene expression. Enhancers are distal,
noncoding genomic regulatory elements with multiple
transcription factor binding sites that interact with promoters
to enhance the transcription of target genes. Nucleosomes in the
neighborhood of active enhancers usually contain histones with
iconic posttranslational modifications, such as H3 lysine
monomethylation (H3K4me1) and H3 lysine acetylation
(H3K27ac) at their amino termini (Shlyueva et al., 2014).
Super-enhancers are large clusters of enhancers that
synergistically promote gene transcription (Herranz et al.,

2014). Emerging evidence shows that cancer cells can acquire
super-enhancers in the vicinity of key oncogenes, such as MYC
and TAL1, during the development of cancer (Hnisz et al., 2013;
Herranz et al., 2014; Mansour et al., 2014). Moreover, pancancer
studies of TCGA data also showed wide-spread aberrant super-
enhancer activities in cancers (Chen et al., 2018a; Chen and Liang,
2020).

In HCC, Wong et al. demonstrated that the super-enhancer
landscape and components of the trans-acting super-enhancer
complex, composed of CDK7, BRD4, EP300, and MED1, were
significantly altered (Tsang et al., 2019). Additionally, Deng et al.
reported an aberrant landscape of active enhancers developed in
cirrhosis and conserved in hepatocarcinogenesis (Yang et al.,
2020). However, those two studies lacked a comprehensive
collection of enhancers in the liver, reliable identification of
enhancer target genes, and replication of enhancer aberrations
in independent cohorts.

In the present study, through the integration of transcriptome
and epigenome data, we aimed to: 1) manually curate a
comprehensive catalog of enhancers in the liver; 2)
systematically identify and replicate enhancer aberrations and
associated target genes in HCC; and 3) explore the function and
prognostic significance of identified aberrant enhancers.

MATERIALS AND METHODS

Patient Data and Tissues Collection
Paired tumor tissues and adjacent non-tumor tissues used in this
study were collected from 33 HCC patients who underwent
hepatectomy at the First Affiliated Hospital, Zhejiang
University School of Medicine. Board-certified pathologists
reviewed each specimen to confirm that all frozen sections
were histologically consistent with tumor or non-tumor
tissues. This study was approved by the Institutional Review
Board of The First Affiliated Hospital. Written informed consent
was obtained from each participant.

High-Throughput Sequencing and
Computational Preprocessing
DNAmethylation and gene expression of 33 pairs of tumour and
adjacent tissues were assessed by whole-genome bisulfite
sequencing (WGBS) and mRNA-seq on the Illumina X Ten
platform with standard procedures. After quality control, clean
WGBS reads were aligned with the reference genome (hg38)
using Bismark (v. 0.16.1) (Krueger and Andrews, 2011) with
default parameters. The harvested count data for each strand were
combined for methylation level estimation. Differentially
methylated loci (DML) and differentially methylated regions
(DMRs) were detected with customized R scripts like our
previous WGBS study (Huang et al., 2021). For RNAseq data,
clean reads that passed quality control were aligned with the hg38
genome, and the reference transcriptome was downloaded from
GENCODE (v. 29) (Harrow et al., 2012) with STAR (v. 2.5.2a)
(Dobin et al., 2013). Estimated raw count gene expression from
STAR was imported into DESeq2 (Love et al., 2014) for
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differential expression analysis. STAR generated alignment BAM
files were utilized as input for enhancer RNA (eRNA) expression
quantification via bedtools (v. 2.27.1) (Quinlan and Hall, 2010).
More details about high-throughput sequencing and
bioinformatic preprocessing can be found in the
Supplementary Methods.

Curation of a Comprehensive Catalog of
Enhancers in Liver
Eleven histone ChIP-seq liver relevant samples were collected
from the public domain. Specifically, bed files containing the
pseudo-replicated peaks identified from six H3K4me1- and
H3K27ac-based ChIPseq profiled samples (i.e., one HepG2,
one Hepatocyte, and four normal adult liver tissue samples)
were downloaded from ENCODE (Consortium, 2004). For
each ENCODE sample, regions with overlapped H3K27ac and
H3K4me1 peaks were annotated as active enhancers, and regions
with only H3K4me1 peaks were considered as primed enhancers.
In one case of an adult liver ENCODE sample without H3K27ac
profiling data, H3K4me1 peaks were included as enhancers
(primed or active). Four types of histone (including H3K4me1
and H3K27ac) ChIP-seq profiling-based ChromHMM state
annotation files of five adult liver tissue samples (i.e., one
normal liver sample and two tumor and matched adjacent
cirrhosis samples from two HCC patients) were retrieved from
the recent integrative epigenomic study on HCC (Hlady et al.,
2019). Specifically, regions whose ChromHMM states were
annotated as “poised enhancer” (refers to regions with only
H3K4me1 peaks) were included as primed enhancers, and
regions annotated as “active enhancer” (refer to regions with
both H3K4me1 and H3K27ac) were collected as active enhancers.
All (active or primed) enhancers from each sample were merged
together via bedtools (Quinlan and Hall, 2010). Afterwards,
enhancers with a lenth of <50 bp or overlapped with any
promoter (upstream 1,500 bp to downstream 500 bp from
TSS) were excluded from further analysis. The concurrence of
each merged enhancer was estimated as the number of ChIP-seq
samples in which themerged enhancer was annotated as a primed
or active enhancer. In other words, a merged enhancer with
higher concurrence represents a more highly conserved and
reliable enhancer among those 11 liver-related ChIP-seq samples.

Identification of Intergenic Differentially
Expressed Enhancers and Associated
Differentially Expressed Genes
The collected enhancers in the liver were divided into two
groups, namely, intergenic enhancers and genic enhancers,
according to their genomic locations. For intergenic
enhancers, the read count-based expression levels of eRNAs
were estimated via the “coverage”module of bedtools (Quinlan
and Hall, 2010). A paired t-test was applied to the normalized
expression (log2 transformed fragment per million, log2 FPM)
of each eRNA to identify significant differentially expressed
eRNA (|log2 fold change of FPM| > 0.5 and BH-FDR < 0.05).
Intergenic enhancers with significant differential expression of

eRNA were defined as intergenic differentially expressed
enhancers (intergenic DEEs). Nearby (TSS located ± 1 Mb
from the center of corresponding intergenic DEEs)
differentially expressed genes (DEG) (|log2 fold change
(LFC)|> 0.5 and BH-FDR < 0.05) displayed a significant
correlation (Spearman Rho ≥ 0.7 and Bonferroni-corrected
p-value < 0.01) with eRNA expression were identified as
intergenic DEE-associated DEGs (intergenic DEE-DEGs).

Replication of Intergenic DEE-DEGs
For independent replication of intergenic DEE-DEGs, four
HCC RNA-seq datasets were downloaded from the GEO:
GSE77314 (paired tumor and adjacent nontumor tissue
samples from 50 HCC patients) (Liu et al., 2016),
GSE124535 (paired tumor and adjacent nontumor tissue
samples from 35 HCC patients) (Jiang et al., 2019),
GSE148355 (62 tumor and 47 adjacent nontumor samples)
(Yoon et al., 2021), and GSE77509 (paired tumor and adjacent
nontumor samples from 20 HCC patients) (Yang et al., 2017).
The same protocols in the discovery cohort were applied to
detect intergenic DEEs and associated DEE-DEGs in these four
datasets. Afterward, identified intergenic DEEs and DEE-
DEGs from each dataset were compared with those from
the discovery cohort to calculate the concurrence of each
intergenic DEE and DEE-DEG. Specifically, the concurrence
of each DEE was calculated as one plus the number of GEO
datasets in which the DEE was successfully replicated, while
the concurrence of each DEE-DEG was calculated as one plus
the number of GEO datasets in which the corresponding DEE
and DEG were significant and the correlation between them
was also significant.

Assessment of the Roles of Epigenetic
Modification Aberrations in Intergenic DEEs
Intergenic DEEs that overlapped with at least one DMR and
displayed significant methylation-eRNA Spearman correlation
(BH-FDR < 0.05) were defined as methylation-associated DEEs,
and corresponding DEE-DEGs were classified as methylation-
associated DEE-DEGs. Meanwhile, we further investigated the
dysregulation of histone posttranslational modification (PTM)
modifiers and their potential implications in those identified
intergenic enhancer aberrations. Top differentially expressed
histone PTM modifiers (|LFC| > 1 and BH-FDR < 5%) in the
discovery cohort were screened out for subsequent coexpression
analyses to determine the ratios of DEEs and DEE-DEGs that
significantly correlated (|Spearman correlation coefficient| > 0.5
and BH-FDR < 5%) with the mRNA expression of those histone
PTM modifiers.

Identification of Genic Differentially
Methylated Enhancers and Associated
Differentially Expressed Genes
Reliable genic enhancers (concurrence among the 11 ChIP-seq
samples ≥2) that overlapped (lengthoverlap ≥ 200 bp, lengthoverlap/
lengthenhancer ≥ 0.3, and with at least 5 CpGs) with at least one
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DMR were identified as potential genic differentially
methylated enhancers (genic DMEs). For each potential
genic DME, their associated DEGs were screened via the
Spearman correlation test. Nearby (distance of enhancer to
TSS ≤ ± 1 Mb) DEGs (|LFC|> 0.5 and BH-FDR < 0.05) that
show significant correlation (|Rho| ≥ 0.5 and FDR ≤ 0.01)
between gene expression and DNA methylation level were
identified as genic DEE-associated DEGs (genic DME-DEGs).
Genic DME candidates with at least one associated DEG were
identified as genic DMEs.

Replication of Genic DMEs and DME-DEGs
The normalized gene expression and DNA methylation level
matrix of TCGA-LIHC were retrieved via the RTCGA R package
(Kosinski and Biecek, 2015). For each genic DEE-DEG pair
identified in the discovery cohort, we examined the
significance of differential methylation, differential expression,
and Spearman correlation between DNA methylation and gene
expression in TCGA-LIHC. A genic DEE-DEG pair was
considered as “successful replication” only when there was
simultaneous significant differential methylation, differential
expression, and a significant correlation between methylation
and expression in TCGA-LIHC. Considering the platform
limitation of the 450 k methylation array in covering enhancer
CpG, we classified all replication failures of DEE-DEGs into two
groups: 1) “type I failure” refers to replication failure due to the
lack of CpG for corresponding genic DMEs in TCGA-LIHC, and
2) “type II failure” refers to replication failure except type I failure.
The raw replication rate of genic DEE-DEGs was calculated as the
ratio of genic DEE-DEGs that achieved successful replication,
while the platform-adjusted replication rate was defined as:
CountSuccessful replication/(CountSuccessful replication + CountType II

failure)*100.

Functional Enrichment of Aberrant
Enhancer-Associated Differentially
Expressed Genes
AE-DEGs were defined as the union of those identified intergenic
DEE-DEGs and genic DME-DEGs. Pathway/gene ontology (GO)
enrichment analyses of upregulated and downregulated AE-
DEGs were performed via the online web tool Metascape
(Zhou et al., 2019). In addition, 10 cancer hallmark gene sets
were downloaded from the Cancer Hallmark Gene (CHG)
database (Zhang et al., 2020a). The enrichment degrees of AE-
DEGs for cancer hallmarks were evaluated through a
hypergeometric test followed by BH-FDR multitest
correction in R.

Bioinformatic Confirmation of AE-DEGs
Using Public Hi-C Data
The bed files containing topologically associated domains
(TADs) and chromatin loops of Hi-C-profiled HepG2 and
one normal adult liver tissue sample were downloaded from
the 3D Genome Browser (http://3dgenome.fsm.
northwestern.edu/) (Wang et al., 2018). Each pair of AE

and AE-DEG was examined to determine whether both the
enhancer and its associated DEG were located in the same
TAD or located in the two elements of a chromatin loop,
respectively.

Establishment of an AE-Derived Prognostic
Model
Clinical phenotype data, including overall survival (OS) time
and status, were retrieved from the integrated TCGA
pancancer clinical data resource (Liu et al., 2018a).
Univariate Cox proportional hazards regression analysis was
conducted to screen for AE-DEGs associated with the OS of
HCC patients in TCGA-LIHC via the function “coxph” in the
R package “survival” (Therneau, 2020). AE-DEGs with
univariate Cox p-value < 0.05 were incorprated into the
least absolute shrinkage and selection operator (LASSO)
regression model by using the glmnet package (Friedman
et al., 2010) for identification of the most prominent
survival-associated AE-DEGs in TCGA-LIHC. Afterward,
the multivariate proportional hazards Cox regression model
was employed to establish a gene signature for predicting the
OS of HCC patients. Multivariate Cox regression-derived
coefficients (β) were used to calculate the risk score as
follows: risk score = (βgene1 * normalized expression level of
gene1 + βgene2 * normalized expression level of gene2 + . . . +
βgeneN * normalized expression of geneN) (Lossos et al., 2004).
Based on the optimal cutoff of risk score determined by
minimizing log-rank test p-value, HCC patients were
divided into high- and low-risk groups, whose differences in
OS probability across time were visualized through a Kaplan-
Meier survival curve by using the function “ggsurvplot” in the
survminer package (Alboukadel Kassambara, 2021). The
prognostic performance of the risk score was evaluated by
time-dependent receiver operating characteristic (ROC) curve
analysis via the function “survivalROC” in the survivalROC
package (Patrick, 2013). The independent prognostic role of
the identified gene signature in TCGA-LIHC was assessed by
building a multivariate Cox regression model including the
risk group, age, gender, and pathologic tumor-node-metastasis
(TNM) stage of each patient. All factors that passed through
the multivariate Cox regression model were utilized for the
construction of a predictive nomogram via the rms package
(RMS, 2021). Calibration plots and time-dependent ROC
curves were applied to assess the predictive performance of
the established nomogram.

Validtion of the AE-Derived Prognostic
Model
Regarding the independent validation of the prognostic
signature, clinical phenotypes and gene expression data of
the International Cancer Genome Consortium Liver Cancer-
RIKEN (LIRI-JP) were downloaded from the ICGC website.
Multivariate Cox regression-derived coefficients from TCGA-
LIHC were used to calculate the corresponding risk score for
each patient in ICGC-LIRI. Similarly, ICGC-LIRI patients
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were divided into high- and low-risk groups according to the
cutoff determined by minimizing the log-rank test p-value.
Comparison of the difference in OS probability, evaluation of

predictive performance, and assessment of predictive
independence were performed with identical procedures
employed for TCGA-LIHC.

FIGURE 1 | The schematic flowchart of the present study.

FIGURE 2 | A comprehensive catalog of enhancers in the liver. (A) Count of active and primed enhancers in each liver-relevant ChIP-seq sample. (B) Length
distribution of enhancers in each liver-relevant ChIP-seq sample. (C) Proportions of long enhancers in three types of liver-relevant ChIP-seq samples. And (D)Distribution
of the concurrence of all merged enhancers among 11 liver-relevant ChIP-seq samples.
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TABLE 1 | Characteristics and enhancer identification strategies applied for 11 liver-relevant ChIP-seq samples.

Sample
name

Source H3K4me1 H3K27ac Enhancer
identification strategy

HepG2 ENCODE (Consortium, 2004) √ √ H3K4me1 only (primed enhancer) + H3K4me1 and H3K27ac (active
enhancer)Hepatocyte √ √

LiverAdult 1 √ √
LiverAdult 2 √ √
LiverAdult 3 √ √
LiverAdult 4 √ X H3K4me1 (primed or active enhancer)

LiverAdult 5 The integrative epigenomic HCC study (Hlady et al.,
2019)

√ √ H3K4me1 only (primed enhancer) + H3K4me1 and H3K27ac (active
enhancer)Cirrhosis 1 √ √

Cirrhosis 2 √ √
Tumor 1 √ √
Tumor 2 √ √

FIGURE 3 | Distinct patterns of activated and repressed intergenic enhancers in HCC. (A) (left) Distribution of the concurrence of identified intergenic DEEs among
five RNA-seq datasets and (right) distribution of the number of associated intergenic DEE-DEG of each DEE. (B) (left) Distribution of the concurrence of identified
intergenic DEE-DEGs among five RNA-seq datasets and (right) distribution of the number of associated DEE of each DEE-DEG. (C) Gene clusters associated with
aberrant super-enhancers. Only gene clusters with at least five DEE-DEGs and super-enhancers with at least five DEEs were displayed. Activated DEEs and DEE-
DEGs are shown in red color, and repressed DEEs and DEE-DEGs are shown in blue.
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RESULTS

Comprehensive Collection of Enhancers in
the Liver
The procedures of this study are shown in the schematic
flowchart (Figure 1). Among 11 liver-relevant ChIP-seq
profiled samples, we identified numerous enhancers whose
counts ranged from 96,124 to 163,953 (Figure 2A; Table S1.1).
On average, there were 124,838 enhancers in each sample, among
which approximately one third (32.08%) were active enhancers
with both H3K4me1 and H3K27ac peak signals (Table 1;
Supplementary Table S1.1). Interestingly, there was a higher
proportion of long enhancers (length > 3 kb) in nonnormal
samples (i.e., tumoral and cirrhosis samples), and the median
widths of classical enhancers (length ≤ 3 kb) were also higher than
those of normal samples (Figures 2B,C; Supplementary Table
S1.2). Specifically, the mean percentages of long enhancers
(>3 kb) in tumor samples, adjacent cirrhosis samples, and
normal liver samples were 10.17, 12.93, and 1.97%,
respectively (Figure 2C). After combining these enormous
enhancers, we obtained a comprehensive catalog of 223,007
unique enhancers in the liver. Over one half (53.64%) of them
were concurrent enhancers that consistently existed in at least
two samples (Figure 2D; Supplementary Table S1.3). In
addition, genomic location-based annotation showed that
approximately 29.84% (66,551/223,007) of those 223,007
enhancers were located in intergenic regions (Supplementary
Table S1.3).

Activated and Repressed Intergenic
Enhancers Show Different Patterns in
Concurrence and Transcriptional
Regulation in HCC
In the discovery cohort, 23,601 of the 66,551 collected intergenic
enhancers displayed active transcription of eRNA, and 13,182 of
them were identified as intergenic DEEs, including 11,036
activated DEEs and 2,146 repressed DEEs (Figure 3A).
Through bioinformatic inferrence for target genes, 842
activated DEEs and 951 repressed DEEs were found to be
correlated with 423 upregulated DEE-DEGs, and 387
downregulated DEE-DEGs, respectively (Figure 3B;
Supplementary Table S2). Although the number of activated
DEEs was over fivefold that of repressed DEEs (11036 vs. 2,146),
each repressed DEE was found to be simultaneously associated
with more DEE-DEGs (Figure 3A). Specifically, 19.67% of
repressed DEEs displayed high correlations with multiple
DEE-DEGs, while only 2.28% of activated DEEs showed this
pattern (Figure 3A). Moreover, 387 downregulated and 423
upregulated DEE-DEGs also showed differences in terms of
the number of associated DEEs. Compared with upregulated
DEE-DEG, each downregulated DEE-DEG tended to be
simultaneously regulated by more DEEs (Figure 3B). Taken
together, we found a higher portion of potential
transcriptional master regulators among the repressed DEEs,
and more downregulated DEE-DEGs were simultaneously
associated with aberrant super-enhancers that were consisted

of multiple adjacent synergistic enhancers (Figure 3C). For
example, in 16q13, a cluster of 35 repressed intergenic DEEs
was identified as potential regulators of the metallothionein (MT)
family (i.e., each of the 35 DEEs was significantly correlated with
the expressions of all 12 metallothionein genes) (Figure 3C;
Table 2). A literature searching revealed that nine of those
12 MT genes were previously implicated in HCC (Table 2).
Besides, in chromosome 17, we also identified a super-
enhancer whose activation was correlated with upregulation of
10 DEGs including nine previously-reported oncogenes in HCC
or other cancers (Table 2). Beyond these, we also identified
another four gene clusters likely regulated by super-enhancers
on chromosomes 14, 2, 19, and 8 (Figure 3C).

Moreover, the identified intergenic DEEs and DEE-DEGs
were overall highly replicated in four independent GEO
datasets (Table 3). A total of 83.03% of activated DEEs, and
91.33% of repressed DEEs were observed in at least one GEO
dataset (i.e., concurrence ≥ 2) (Figure 3A). Furthermore, 54.85%
of upregulated DEE-DEGs and 85.01% of downregulated DEE-
DEGs were identified in at least one GEO dataset (Figure 3B).
Compared with activated DEEs and upregulated DEE-DEGs,
those repressed DEEs and downregulated DEE-DEGs were
more likely to be conserved in multiple GEO datasets
(i.e., concurrence higher than three) (Figures 3A,B). For
instance, 54.52% of repressed DEEs and 41.86% of
downregulated DEE-DEGs were consistently replicated in
more than three GEO datasets, while only 25.34% activated
DEEs and 13.71% upregulated DEE-DEGs were also observed
in three or more GEO datasets (Figures 3A,B).

Potential Roles of Epigenetic Modification
Aberrations in Identified Aberrant
Intergenic Enhancers
Through integration with matched WGBS data in the discovery
cohort, the differential expression of 10.61% of the activated
DEEs and 11.14% of the repressed DEEs was significantly
correlated with regional differential DNA methylation,
especially hypomethylation, in corresponding enhancers
(Figure 4A). Nevertheless, these differential methylation-
associated DEEs correlated with 34.04% of the upregulated
DEE-DEGs and 37.21% of the downregulated DEE-DEGs
(Figure 4B), suggesting that those methylation-associated
DEEs were more likely to be transcriptional master regulators
that targeted multiple genes. In addition to DNA methylation,
there was also substantial dysregulation of histone modification
in HCC. Three histone methyltransferases (EZH2, EHMT2, and
SMYD3), two demethylases (KDM5B and KDM6B), and two
deacetylases (HDAC11 and HDAC9) were differentially
expressed in both the discovery and four GEO datasets
(Figure 4C; Supplementary Table S2.2). Coexpression tests
showed that many DEEs and DEE-DEGs were significantly
correlated with the differential expression of those seven
histone modification regulators, especially EZH2, EHMT2, and
SMYD3 (Figures 4D,E). Notably, 75.89% of the upregulated
DEE-DEGs and 63.57% of the downregulated DEE-DEGs
displayed significant coexpression with EZH2 and SMYD3,

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8276577

Huang et al. Aberrant Enhancer Landscape in HCC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TABLE 2 | Summary information about two representative sets of DEE-DEGs regulated by intergenic DEE clusters.

Enhancer
cluster

Average
LFC.DEE

Avergae
LogFDR.DEE

Gene
name

LFC
DEG

FDR
DEG

Average
rho

Average
concurrence

Implicated
cancers

chr16:56520399–56864888
(~344 kb, 35 DEEs)

−3.3 6.62 MT1A −2.08 1.45E-
06

0.76 2.56 HCC (Ning et al., 2021)

MT1CP −2.01 1.20E-
03

0.82 3.51 Unknown

MT1DP −1.37 1.64E-
03

0.81 3.71 HCC (Yu et al., 2014a) and others (Gai
et al., 2020)

MT1E −3.58 2.35E-
16

0.88 3.72 HCC (Liu et al., 2020) and others (Hur et al.,
2016)

MT1F −3.70 3.24E-
17

0.91 3.75 HCC (Lu et al., 2003) and others (Lin et al.,
2017a)

MT1G −3.43 6.06E-
10

0.90 3.67 HCC (Wang et al., 2019) and others (Fu
et al., 2013)

MT1H −2.13 1.48E-
03

0.86 2.43 HCC (Zheng et al., 2017)

MT1JP −5.27 1.36E-
20

0.82 3.64 HCC (Wu et al., 2020a) and others (Zhang
et al., 2018; Yu et al., 2019)

MT1L −2.58 5.28E-
10

0.86 2.86 Unknown

MT1M −3.65 2.33E-
12

0.90 2.78 HCC (Fu et al., 2017) and others (Li et al.,
2021)

MT1X −3.55 1.47E-
17

0.88 3.86 HCC (Liu et al., 2018b)

MT2A −3.35 4.85E-
24

0.91 3.83 Breast cancer (Kim et al., 2011) and others
(Pan et al., 2013)

chr17: 81740217–81874724
(~134 kb, 14 DEEs)

1.05 4.53 HGS 1.04 1.95E-
20

0.87 1.22 HCC (Canal et al., 2015)

CCDC137 0.95 3.37E-
16

0.80 1.78 Unknown

NPLOC4 0.82 3.53E-
11

0.79 1.22 Bladder cancer (Lu et al., 2019) and others
(Skrott et al., 2017; Pan et al., 2021)

CEP131 1.42 2.39E-
19

0.79 1.78 HCC (Liu et al., 2017) and others (Kim
et al., 2019; Wang et al., 2020)

CSNK1D 0.55 8.36E-
08

0.76 1.22 Breast cancer (Bar et al., 2018) and others
(Peer et al., 2021)

MAFG 0.98 3.10E-
07

0.71 1.00 HCC (Liu et al., 2018c)

MAFG-DT 3.03 3.42E-
28

0.73 1.33 HCC (Ouyang et al., 2019) and others (Cui
et al., 2018; Li et al., 2019; Sui et al., 2019;
Qu and Liu, 2020; Xiao et al., 2020)

FOXK2 0.68 3.22E-
07

0.73 1.67 HCC (Lin et al., 2017b) and others (Shan
et al., 2016; Nestal de Moraes et al., 2019)

SIRT7 0.61 8.43E-
06

0.72 1.00 HCC (Zhao et al., 2019) and others (Yu
et al., 2014b; Zhang et al., 2015)

NARF 1.07 9.12E-
15

0.74 2.00 Glioblastoma (Anderson et al., 2010)

Notes: Enhancer cluster: the cluster of intergenic DEEs that were simultaneously associated with the corresponding cluster of genes; average LFC.DEE: the arithmetic mean of log2 fold
change of the FPM of all DEEs in the enhancer cluster; average LogFDR.DEE: the arithmetic mean of the–log10FDR of the differential expression test of all DEEs in the enhancer cluster;
average rho: the arithmetic mean of Spearman correlation coefficients of all DEE-DEG pairs between corresponding DEGs and DEEs in the enhancer cluster; average concurrence: the
arithmetic mean of the concurrence of all DEE-DEG pairs between correspondingDEGs andDEEs in the enhancer cluster; implicated cancers: results of literature searching (only molecular
mechanism studies) to determine the relevance between DEE-DEG and cancers (genes implicated in HCC were highlighted with a bold font).

TABLE 3 | Characteristics of five RNA-seq datasets used in the present study.

Dataset No. of tumor tissues No. of adjacent tissues Additional data type Reference (PMID)

Discovery cohort 33 33 WGBS —

GSE77314 50 50 — 27119355 (Liu et al., 2016)
GSE124535 35 35 — 30814741 (Jiang et al., 2019)
GSE148355 62 47 — 33772139 (Yoon et al., 2021)
GSE77509 20 20 — 28194035 (Yang et al., 2017)
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respectively, which were much higher than the corresponding
percentages for significantly correlated DEEs (26.26 and 35.41%,
respectively) (Figures 4D,E), suggesting that histone
modification-associated DEEs are also more likely to be
transcriptional master regulators.

Aberrant Genic Enhancers-Associated With
DNA Methylation Alterations
Among those collected genic enhancers, 1,119 DMEs and their
associated DME-DEGs were identified through the integration
of WGBS, ChIP-seq, and RNA-seq data. Overall,
hypomethylated and hypermethylated DMEs displayed
similar transcriptional regulation patterns (i.e., they tended to
be correlated with equal number of DME-DEGs) (Figure 5A).
In total, there were 1,442 genic DEE-DEGs, including 120
hypermethylated upregulated DEE-DEGs (HyperUp), 168
hypermethylated downregulated DEE-DEGs (HyperDown),
517 hypomethylated upregulated DEE-DEGs (HypoUp), and
637 hypomethylated downregulated DEE-DEGs (HypoDown)
(Figure 5B; Supplementary Table S3.1). Approximately half
(52.50%) of the identified DEE-DEGs exhibited a nonclassical
positive correlation between DNA methylation and gene
expression. The results of independent replication of those
1,442 DME-DEGs in TCGA-LIHC showed that the raw

replication rates of the four types of DEE-DEGs
(i.e., HyperUp, HyperDown, HypoUp, and HypoDown)
were 47.50, 42.86, 28.63, and 14.44%, respectively
(Figure 5C). Since the 450 k methylation array barely
covered CpGs located in the gene body and intergenic
regions, which were primarily hypomethylated, it was not
surprising to observe much lower raw replication rates and
higher type I failure ratios for the HypoUp and HypoDown
groups. In contrast, their platform-adjusted replication rates
reached 67.86, 59.02, 65.78, and 50.00% (Figure 5D), which
were comparable to each other.

Intergration of Aberrant
Enhancer-Associated Transcriptional
Dysregulation and Sucessfully in Silico
Verification Based on HiC Data
After combining 1,442 genic DME-DEGs with the 810 intergenic
DEE-DEGs, we obtained a set of 2,051 aberrant enhancer-
associated DEGs (AE-DEGs), which was composed of 1,092
upregulated AE-DEGs and 959 downregulated AE-DEGs
(Figure 6A; Supplementary Table S3.2). Pathway/biological
process enrichment analyses demonstrated that 1,092 activated
AE-DEGs were overrepresented for genes implicated in the cell
cycle, nuclear division, DNA repair, and DNA replication

FIGURE 4 | DNA methylation and histone PTM modifer-associated intergenic DEEs and DEE-DEGs. (A) Percentage of DNA methylation-associated intergenic
DEEs. (B) Percentage of DNAmethylation-associated intergenic DEE-DEGs. (C) Significant differential expression of seven histonemodification regulators (three histone
methyltransferases, two histone demethylases, and three histone deacetylases) in the discovery cohort. (D) Proportion of histone modification regulator-associated
intergenic DEEs. (E) Percentage of histone modification regulator-associated intergenic DEE-DEGs.
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(Figure 6B), while 959 repressed AE-DEGs were enriched for genes
involved in monocarboxylic acid metabolism, adaptive immune
response, biological oxidation, and cytochrome P450 epoxygenase
pathway (Figure 6C). Moreover, hypergeometric test revealed that
AE-DEGs showed significant enrichment for genes related to four
cancer hallmarks including genome instability andmutation (FDR =
6.3e−9), reprogramming energy metabolism (FDR = 1.2e−3),
resisting cell death (FDR = 7.3e−3), and evading immune
destruction (FDR = 4.2e−2) (Figure 6D).

In addition, AE-DEGs were further verificated according to
HiC-produced TADs and chromatin loops. The results showed
that 63.24 and 71.62% of AE-DEGs were in the same TAD, in
which their corresponding enhancers were located, in the HiC
profiled HepG2 and normal adult liver tissue sample (Figure 6E;
Supplementary Table S3.3). Moreover, the TAD validation
results in two HiC samples were highly consistent. Specifically,
56.95 and 80.35% of AE-DEGs were successfully supported by
TADs in both samples and either sample, respectively (Figure 6E;

FIGURE 5 | Identification and validation of genic DMEs and associated DME-DEGs in HCC. (A) Distribution density of the number of associated DME-DEGs of
hypermethylated and hypomethylated genic DME. (B) Count of four types of genic DME-DEGs. “HyperUp” refers to hypermethylated enhancer-associated upregulated
DME-DEGs; “HyperDown” refers to hypomethylated enhancer-associated downregulated DME-DEGs; “HypoUp” refers to hypermethylated enhancer-associated
upregulated DME-DEGs, and “HypoDown” refers to hypomethylated enhancer-associated downregulated DME-DEGs. (C) Distribution of the three types of
replication results of genic DME-DEGs. “Successful replication” refers to the successful replication of genic DME-DEGs for correlated differential methylation and
differential expression in TCGA-LIHC; “type I failure” refers to replication failure due to lack of CpG for the corresponding genic DMEs in TCGA-LIHC; and “type II failure”
refers to replication failures except type I failure. (D) Platform-adjusted replication rates of four types of genic DME-DEGs in TCGA-LIHC. Platform-adjusted replication
rates were calculated as (CountSuccessful Replication + CountSuccessful Replication + CountType I Failure) * 100%.
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Supplementary Table S3.3). Furthermore, 12 and one AE-DEG
were confirmed by chromatin interaction loops in HepG2 and
normal liver sample (Supplementary Table S3.4), respectively.

Construction of a Six AE-DEGs -Based
Prognostic Model
Through univariate Cox regression, LASSO, andmultivariate Cox
regression model filtering, 2051 AE-DEGs were eventually
filtered to six genes to build a prognostic model for OS in
TCGA-LIHC. These six AE-DEGs included procollagen-

lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2), homeobox D9
(HOXD9), BOP1 ribosomal biogenesis factor, which is also
known as Block of Proliferation (BOP1), Ras-related protein
Rab-26 (RAB26), killer cell lectin-like receptor K1 (KLRK1),
and Ral guanine nucleotide dissociation stimulator like 4
(RGL4) (Figure 7A). A prognostic risk score was calculated
for each patient as follows: the risk score = (0.424 * expression
of PLOD2) + (0.109 * expression of HOXD9) + (0.184 *
expression of BOP1) + (−0.134 * expression of RAB26) +
(−0.185 * expression of KLRK1) + (−0.0547 * expression of
RGL4). An optimal cutoff at 7.37 was applied to divide all

FIGURE 6 | Biological functions and in silico verification of AE-DEGs. (A) Venn diagram displaying the overlap between genic DME-DEGs and intergenic DEE-
DEGs. The union of them were defined as aberrant enhancer-associated DEGs (AE-DEGs). (B) and (C) Top ten overrepresented pathways/GO terms of activated AE-
DEGs and repressed AE-DEGs, respectively. (D) Enrichment of AE-DEGs for ten cancer hallmarks. “*”refers to hypergeometric test FDR < 0.05; “**”refers to FDR < 1e-2;
and “***”refers to FDR < 1e-3. (E) Percentage of AE-DEGs that were successfully validated by TADs in HiC-profiled HepG2 and normal liver samples. “HepG2 or
liver” refers to successful validation in HepG2 or the liver sample; “HepG2 and liver” refers to successful validation in both HepG2 and the liver sample.
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patients into high-risk (N = 100) and low-risk (N = 265) groups
(Figure 7B). Kaplan-Meier analysis revealed significant differences
in OS probability across time between high-risk and low-risk groups
(p < 2.0e−16) (Figure 7C). Wilcox rank-sum exact tests illuminated
significantly less OS duration in high-risk patients (p = 1.2e−9), and
lower risk scores among alive patients (p = 4.5e−9) (Figures 7D,E).
The areas under the time-dependent ROC curves (AUCs) for 1-, 3-,
and 5-years OS were estimated to be 0.783, 0.797, and 0.715,
respectively (Figure 7F). A multivariate Cox regression model
constructed using both age, gender, and pathologic TNM stage
demonstrated that TNM stage (p < 0.001, HR = 2.16) and risk group
(p < 0.001, HR = 4.42) were both independent prognostic
biomarkers for OS of HCC patients in TCGA-LIHC (Figure 7G).

Subsequently, a predictive nomogram was built by combining
the risk score and TNM stage for accurate prediction of overall
survival probability in 1, 3, and 5 years (Figure 8A). The
calibration plots for internal validation of the nomogram

showed high consistency between the predicted OS outcomes
and actual observations (Figure 8B). Time-dependent ROC
curves revealed the best predictive performance of the
nomogram, with AUCs of 0.796, 0.830, and 0.773 for 1-year,
3-years, and 5-years OS, respectively (Figure 8C).

Consistent Validation of the Six
AE-DEGs-Based Prognostic Model in
ICGC-LIRI
Univariate Cox regression revealed that all six AE-DEGs that
constituted the identified prognostic signature were significant
OS-related biomarkers in ICGC-LIRI cohort (Figure 9A). Risk
scores were calculated for each ICGC-LIRI patient by using the
coefficients estimated from TCGA-LIHC. Similarly, 198 ICGC-LIRI
patients were divided into high-risk (N = 65) and low-risk (N = 135)
groups according to the corresponding optimal cutoff (Figure 9B).

FIGURE 7 | Construction of a six AE-DEG-based prognostic model for HCC in TCGA-LIHC. (A) The expression heatmap of six AE-DEGs constituted the identified
prognostic model for OS of HCC in TCGA-LIHC. Multivariate Cox regression derived coefficients used for the calculation of risk score are given in parentheses. Patients
were ranked according to corresponding calculated risk scores. (B)Distribution of the calculated risk scores of HCC patients in TCGA-LIHC. (C)Kaplan-Meier analysis of
the six AE-DEG-based prognostic signature in TCGA-LIHC. (D)Distribution of duration and survival status of HCC patients in TCGA-LIHC. (E) Box plots display the
comparison of survival times between high- and low-risk HCC patients and the comparison of risk scores between alive and deceased HCC patients in TCGA-LIHC.
Wilcox p-values were calculated and displayed with each boxplot. (F) Time-dependent ROC analyses of the six AE-DEG-based prognostic signature in TCGA-LIHC. (G)
Forest plot of the multivariate Cox regression analysis in TCGA-LIHC.
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FIGURE 8 | Nomogram for the prediction of overall survival of HCC in TCGA-LIHC. (A) A prognostic nomogram for predicting the probabilities of 1-year, 3-years,
and 5-years overall survival of HCC patients in TCGA-LIHC. (B) Calibration plots for evaluation of the predictive performance of the constructed nomogram. (C) Time-
dependent ROC curves displayed the comparisons of AUCs among diverse prognostic models.
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Kaplan-Meier analysis revealed significant differences in OS
probability across time between high-risk and low-risk group
ICGC-LIRI patients (p = 7.0e−9) (Figure 9C). Wilcox rank-sum
exact tests illuminated significantly less OS duration in high-risk
patients (p = 0.0061), and lower risk scores among alive patients (p =
6.5e−6) (Figures 9D,E). The AUCs for 1-, 3-, and 5-years OS were
estimated as 0.795, 0.756, and 0.800 (Figure 9F), respectively. A
multivariate Cox regression model constructed using both age,
gender, and pathologic TNM stage also confirmed that the risk
group (p < 0.001, HR = 5.03) was an independent prognostic
biomarker for OS of HCC patients in ICGC-LIRI (Figure 9G).

The Six AE-DEG-Based Prognostic Model
Display Superb Predictive Performance for
OS of HCC Patients
Furthermore, the good predictive performance of our identified AE-
DEG-based signature was assessed through comparisons with seven

established similar prognostic models (Long et al., 2019; Zhang et al.,
2020b; Ouyang et al., 2020; Tang et al., 2020; Zhu et al., 2020; He
et al., 2021; Wang et al., 2021). Among all signatures, the hypoxia-
related gene-based signature and our AE-DEG-based signature were
the only two models in which all AUCs were higher than 0.7, which
is a well-accepted criterion for high predictive accuracy. Moreover,
our model’s average AUCs in the discovery and validation cohorts
were both higher than those of the hypoxia-relatedmodel (0.765 and
0.784 vs. 0.723 and 0.763) (Table 4). Overall, our prognostic
signature had more predictive power than others.

DISCUSSION

In the present study, integration of ChIP-seq and RNA-seq data
revealed substantial intergenic DEEs and associated DEE-DEGs in
HCC. Comparedwith activatedDEEs andDEE-DEGs, the repressed
DEEs andDEE-DEGs displayed higher consistency inmultipleHCC

FIGURE 9 | Validation of the six AE-DEG-based prognostic model for OS of HCC in ICGC-LIRI cohort. (A) The expression heatmap of six AE-DEGs constituted the
identified prognostic model for overall survival of HCC in ICGC-LIRI cohort. Patients were ranked according to their risk scores. (B) Distribution of the calculated risk
scores of HCC patients in ICGC-LIRI. (C) Kaplan-Meier analysis of the 6-gene prognostic signature in ICGC-LIRI. (D) Distribution of duration and survival status of HCC
patients in ICGC-LIRI. (E) Boxplots display the comparison of survival time between high- and low-risk HCC patients and the comparison of risk score between
alive and deceased HCC patients in ICGC-LIRI. (F) Time-dependent ROC analysis of the six AE-DEG-based prognostic signature in ICGC-LIRI. (G) Forest plot of the
multivariate Cox regression analysis in ICGC-LIRI.
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cohorts. Remarkably, 162 of those 387 intergenic DEE-DEGs were
concurrent in at least four of the five HCC cohorts that were
analyzed in this study. Functional enrichment analysis by
Metascape (Zhou et al., 2019) revealed that half of those highly
concurrent genes were liver-specific. Enrichment of repressed DEGs
for liver-specific genes was previously reported in HCC (Lian et al.,
2018). A highly plausible mechanism underlying this phenomenon
might be cell dedifferentiation. Cell dedifferentiation is a process that
implicates the epigenetic reprogramming of gene activity to
transform cells into a less differentiated state like their parent cell
type. In the development of HCC, stepwise dedifferentiation is a
certain event that exhibits loss of hepatic functions and morphology
and gain of hepatic progenitor markers (Chao et al., 2020).
Moreover, the well-known demethylation agent 5-azacytidine (5-
AZA) displayed potential for usage in dedifferentiation therapy in
HCC cell lines and cell-derived xenograft (Gailhouste et al., 2018). In
addition, it has been shown that upon loss of the mouse Igκ gene’s
downstream enhancers, E3′ and Ed, the mature B cells unexpectedly
undergo reversible retrograde differentiation (Zhou et al., 2013).
Hence, our finds about conservative enhancer repression associated
suppression of liver-specific genes might shed new light on
epigenetic mechanisms underlying the dedifferentiation that
occurs in hepatocarcinogenesis and provide potential targets for
dedifferentiation-targeted therapy of HCC.

Notably, highly conserved intergenic DEE-DEGs with counts
less than 200 unexpectedly included the majority of all MT genes
in the genome. MTs are small cysteine-rich proteins that play
pivotal roles in metal homeostasis and protection against heavy
metal-related cytotoxicity, DNA damage, and oxidative stress
(Coyle et al., 2002). Dysregulation of MTs is ubiquitous in most
malignancies, and emerging evidence shows that MTs are
implicated in tumor formation, progression, and drug
resistance (Si and Lang, 2018; Merlos Rodrigo et al., 2020). As
mentioned earlier, nine identified DEE-associated differentially
expressed MT isoforms were reported to be involved in liver
cancer. Specifically, the upregulation of MT1A mediated the
attenuation of malignant behaviors of CT23 knockdown in
HCC cells (Ning et al., 2021). MT1DP is a pivotal anticancer
long noncoding RNA (lncRNA), whose suppression mediates the
vital carcinogenetic roles of RUNX2 and YAP in HCC (Yu et al.,
2014a). MT1E was newly identified as a novel tumor suppressor
for HCC that could induce apoptosis and suppress cell growth
and metastasis (Liu et al., 2020). Exogenous expression of MT1F
displayed a strong inhibitive effect on the growth of HepG2 cells

(Lu et al., 2003). MT1G was uncovered as a tumor suppressor in
HCC by inducing the transcriptional activity of p53 through
direct interaction and supply of appropriate zinc ions to p53
(Wang et al., 2019). MT1H functions as a tumor suppressor that
suppresses the proliferation and invasion of HCC cells by
inhibiting the Wnt/β-catenin pathway (Zheng et al., 2017).
Overexpression of the lncRNA MT1JP remarkably inhibited
the proliferation and enhanced apoptosis, which might be
mediated by regulating the expression of AKT (Wu et al.,
2020a). Similarly, MT1M also showed a tumor-suppressive
ability to suppress cell viability, migration, and invasion and
activate apoptosis in vitro (Fu et al., 2017). MT1X was
demonstrated to be a tumor suppressor that suppresses tumor
growth and metastasis in vivo and induces cell cycle arrest and
apoptosis by repressing the NF-κB signaling pathway in HCC
(Liu et al., 2018b). The roles of MT1CP, MT1L, and MT2A in
HCC are still unknown, whileMT2A could promote breast cancer
invasiveness and might play a suppressive role in gastric cancer
through inhibition of the NK-κB signaling pathway (Kim et al.,
2011; Pan et al., 2013).

Besides, there were also several sets of upregulated genes
associated with activated super-enhancers in HCC. On
chromosome 17, a group of 10 activated DEE-DEGs was
found to be associated with increased enhancer activity for
14 intergenic DEEs. It is intriguing that six (HGS, CEP131,
MAFG, MAFG-DT, FOXK2, and SIRT7) of them have already
been discovered as proto-oncogenes in HCC (Canal et al.,
2015; Lin et al., 2017b; Liu et al., 2017; Liu et al., 2018c; Ouyang
et al., 2019; Zhao et al., 2019). In particular, the lncRNA
MAFG-DT, which is likewise known as MAFG-AS1, was
also recently shown to play oncogenic roles in multiple
tumors in addition to HCC, including colorectal cancer
(Cui et al., 2018), breast carcinoma (Li et al., 2019), bladder
urothelial carcinoma (Xiao et al., 2020), esophageal squamous
cell carcinoma (Qu and Liu, 2020), and lung adenocarcinoma
(Sui et al., 2019). NPLOC4, also known as NPL4, is
uncharacterized in HCC but has been revealed as an
important oncogene in bladder cancer (Lu et al., 2019) and
a critical target of the anticancer drug disulfiram (Skrott et al.,
2017; Pan et al., 2021). Similarly, CSNK1D has recently been
identified as a novel drug target in Hedgehog/GLI-driven
cancers (Peer et al., 2021), and silencing of CSNK1D
attenuates the migration and metastasis of triple-negative
breast cancer cells (Bar et al., 2018). As an E3 ubiquitin

TABLE 4 | Comparison of the predictive performance of our AE-DEG-based signature with seven previously established prognostic signatures in HCC.

Signature name AUCs for OS in discovery AUCs for OS in validation

1-year 3-years 5-years 1-year 3-years 5-years

Methylation-driven gene based signature 1 (Long et al., 2019) 0.6885 0.6563 0.6548 0.6397 0.6644 0.5942
Methylation-driven gene based signature 2 (He et al., 2021) 0.742 0.661 — 0.695 0.655 —

Angiogenic gene based signature (Zhu et al., 2020) 0.74 0.66 0.66 0.78 0.74 —

EMT related gene based signature (Wang et al., 2021) 0.824 0.798 0.800 0.688 0.674 0.876
Ferroptosis and iron-metabolism related gene based signature (Tang et al., 2020) 0.77 0.71 0.64 0.67 0.73 —

Differentially expressed gene signature (Ouyang et al., 2020) 0.77 0.73 0.72 0.63 0.68 0.65
Hypoxia related gene based signature (Zhang et al., 2020b) 0.78 0.70 0.70 0.75 0.77 0.77
Our AE-DEG based signature 0.783 0.797 0.715 0.795 0.756 0.800

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 82765715

Huang et al. Aberrant Enhancer Landscape in HCC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


ligase, NARF was identified as a positive regulator of cell
growth in glioblastoma (Anderson et al., 2010). CCDC137
has not been characterized in any cancer, but its depletion
via HIV could cause cell cycle arrest (Zhang and Bieniasz,
2020). Taken together, the elevated activity of the super-
enhancer, which is composed of a cluster of 14 synergistic
enhancers located on chromosome 17, was demonstrated to be
associated with the activation of several critical oncogenes
implicated in HCC and/or other cancers. Therefore, inhibition
of this activated super-enhancer might be a promising therapy
for HCC.

Our integrative transcriptomic analyses discovered massive
concurrent DEEs in HCC, which might be caused by either
genetic mutations or epigenetic aberrations. However, those
DEEs, especially repressed DEEs, were ubiquitous and
conserved in multiple HCC cohorts, which suggests a
higher possibility of epigenetic aberration-relevant
underlying mechanisms. Indeed, our investigation revealed
that considerable DEEs and DEE-DEGs were linked to
DNA methylation and histone modification. Notably, there
were strong associations between the activation of three
histone methyltransferases (EZH2, EHMT2, and SMYD3)
and enhancer aberrations. This was consistent with the
previous findings that mutations and expression changes of
epigenetic modifiers are common events leading to an
aggressive gene expression and poor clinical outcomes in
HCC (Bayo et al., 2019). EZH2, EHMT2, and SMYD3 are
vital epigenetic regulators that could be targeted for cancer
therapy (Cheng et al., 2019). Unlike those of EZH2 (Gao et al.,
2014; Liu et al., 2015; Zhuang et al., 2016; Chen et al., 2018b),
the roles of EHMT2 and SMYD3 in mediating transcriptional
regulation in carcinogenesis are still not fully characterized in
HCC (Zhang et al., 2021a; Guo et al., 2021). Our findings serve
as a proof-of-concept that activation of histone
methyltransferases, such as EZH2, EHMT2, and SMYD3
might promote hepatocarcinogenesis by inducing enhancer
aberration of crucial cancer-related genes.

To better assess the clinical outcomes of HCC patients, in this
study, we applied machine learning approaches to explore the
prognostic significance of AE-DEGs in HCC and established a
prognostic model based on a panel of six AE-DEGs, including
PLOD2, HOXD9, BOP1, RAB26, KLRK1, and RGL4. Our
identified AE-DEG-based signature outperformed clinical
characteristics such as the TNM stage and seven previously
established similar prognostic models in terms of predictive
accuracy, suggesting that those six AE-DEGs might play
important roles in HCC. PLOD2 encodes a key enzyme
mediating the formation of the stabilized collagen cross-links,
which are considered as the “highway” for cancer cell migration
and invasion (Provenzano et al., 2006). The roles of PLOD2 in
breast cancer, sarcoma, bladder cancer, and renal cell carcinoma
were thoroughly discussed in a previous review (Du et al., 2017).
PLOD2 was first demonstrated as a prognostic marker for HCC
in 2011 (Noda et al., 2012), while the function and mechanism
of PLOD2 activation in HCC have not been thoroughly
explored. HOXD9 and BOP1 were both uncovered as the
oncogenic promoters of epithelial-mesenchymal transition

(EMT) in HCC (Chung et al., 2011; Lv et al., 2015), which
was in line with their unfavorable prognostic contribution in
our identified prognostic signature. On the other hand, RAB26
was novel in HCC but was newly identified as a suppressor of
the migration and invasion of breast cancer cells (Liu et al.,
2021). The roles of KLRK1 and RGL4 have not been
investigated in any malignancies but have been identified
as prognostic factors in lung adenocarcinoma (Sun et al.,
2020; Zhang et al., 2021b). In summary, previous studies
revealed pivotal cancer-related functions of PLOD2,
HOXD9, BOP1, and RAB26, manifesting our findings of
their AE-associated dysregulation and prognostic
significance in OS of HCC, and suggesting the possibility
that PLOD2, RAB26, KLRK1, and RGL4 play essential roles in
the progression and survival of HCC, although further
experimental investigations are warranted.

Our study uncovered systematic enhancer aberrations with
important functions and excellent prognostic significance in
HCC. There are still several potential limitations. First of all,
RNA-seq is still commonly used in the literature (Chen et al.,
2018a; Wu et al., 2020b; Chen and Liang, 2020) but is not one
of the best choices for the comprehensive detection of eRNA;
for example, GRO-seq would be a better approach (Danko
et al., 2015; Zhang et al., 2020c). Second, aberrant genic
enhancers might be only partially captured by identifying
genic DMEs, especially considering the relatively low ratio
of DNAmethylation-associated DEEs in total intergenic DEEs.
Moreover, although our identified AE-DEGs were successfully
replicated in independent cohorts and confirmed by TADs
from HiC, further validation of enhancer-mediated
transcriptional regulation of particular genes via
experimental technologies such as CRISPR, like in previous
enhancer related studies (Chen et al., 2018a; Xiong et al., 2019),
was lacking in our present study and will be part of our
ongoing works.

CONCLUSION

In conclusion, our integrative analysis of the epigenome and
transcriptome depicted and verified a systematic landscape of
aberrant enhancers and 2051 associated DEGs, including
many well-known cancer-related genes, in HCC. These
findings provide new insight into the roles of epigenetic
aberration induced aberrant enhancers in the progression of
HCC. Furthermore, our established prognostic signature based
on six AE-DEGs displayed superior predictive performance
over previous models for predicting the long-term and short-
term OS of HCC patients.
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