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Cervical cancer ranks first in female reproductive tract tumors in terms of morbidity
and mortality. Yet the curative effect of patients with persistent, recurrent or
metastatic cervical cancer remains unsatisfactory. Although antitumor angiogenic
drugs have been recommended as the first-line treatment options for cervical
cancer, there are no comprehensive prognostic indicators for cervical cancer
based on angiogenic signature genes. In this study, we aimed to develop a model
to assess the prognosis of cervical cancer based on angiogenesis-related (AG)
signature genes, and to provide some reference for the comprehensive treatment
of cervical cancer in the clinical setting. First we screened the AG gene set from
GeneCard website, and then performed angiogenesis-related scores (AGS) per cell
from single cell sequencing dataset GSE168652, followed by performing weighted
gene co-expression network analysis (WGCNA) for cervical cancer patients
according to angiogenesis phenotype. Thus, we established a prognostic model
based on AGS by taking the intersection of WGCNA angiogenic module gene and
differential gene (DEGs) of GSE168652. The GSE44001 was selected as an external
validation set, followed by performing ROC curve analysis to assess its accuracy. The
results showed that we successfully constructed a prognostic model related to the
AG genes. Patients in the high-AGS group in both the train, test and the validation sets
had a worse prognosis than those in the low-AGS group, had lower expression of
most immune checkpoint-associated genes and lower tumor mutational burden as
well. Patients in the low-AGS group were more sensitive to AMG.706, Bosutinib, and
Lenalidomide while Imatinib, Pazopanib, and Sorafenib were more recommended to
patients in the high-AGS group. Finally, TXNDC12 and ZC3H13, which have high
hazard ratio and poor prognosis in the model, were highly expressed in cervical
cancer cell lines and tissue. Meanwhile, the results showed that TXNDC12 promoted
the migration of cervical cancer cells and the tubule-forming ability of endothelial
cells. In conclusion, our model based on genes with AG features can effectively
assess the prognosis of cervical cancer, and can also provide reference for clinicians
to choose immune-related treatments.

KEYWORDS

cervical cancer, single cell sequencing, prognostic models, angiogenesis-related genes,
immunotherapy

OPEN ACCESS

EDITED BY

Matteo Claudio Da Vià,
University of Milan, Italy

REVIEWED BY

Alexander Deutsch,
Medical University of Graz, Austria
Antonio Giovanni Solimando,
University of Bari Aldo Moro, Italy

*CORRESPONDENCE

Yong Zhang,
374794955@qq.com

Lesai Li,
LLS0731@126.com

Jie Tang,
tangjie@hnca.org.cn

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to Molecular
and Cellular Pathology,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 01 November 2022
ACCEPTED 28 December 2022
PUBLISHED 12 January 2023

CITATION

Kang J, Xiang X, Chen X, Jiang J, Zhang Y,
Li L and Tang J (2023), Angiogenesis-
related gene signatures reveal the
prognosis of cervical cancer based on
single cell sequencing and co-expression
network analysis.
Front. Cell Dev. Biol. 10:1086835.
doi: 10.3389/fcell.2022.1086835

COPYRIGHT

© 2023 Kang, Xiang, Chen, Jiang, Zhang, Li
and Tang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/fcell.2022.1086835

https://www.frontiersin.org/articles/10.3389/fcell.2022.1086835/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1086835/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1086835/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1086835/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1086835/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1086835&domain=pdf&date_stamp=2023-01-12
mailto:374794955@qq.com
mailto:374794955@qq.com
mailto:LLS0731@126.com
mailto:LLS0731@126.com
mailto:tangjie@hnca.org.cn
mailto:tangjie@hnca.org.cn
https://doi.org/10.3389/fcell.2022.1086835
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1086835


Introduction

According to the Global Cancer Data 2021, cervical cancer has the
4th incidence and mortality rate infemale tumors worldwide (Sung
et al., 2021) and the 1st incidence in female reproductive tract tumors,
with a high prevalence in developing countries and poor regions. The
two main histological subtypes of cervical cancer include cervical
squamous cell carcinoma, which accounts for approximately 80% of
all cases of cervical cancer, and cervical adenocarcinoma. The use of
HPV vaccine has reduced the risk of cervical cancer (Cohen et al.,
2019). With the widespread availability of screening and improved
screening strategies, patients with early-stage cervical cancer are being
diagnosed in a timely manner. Patients with early-stage cervical cancer
are mainly treated with radical hysterectomy, with locally advanced
stages are treated with concurrent chemoradiotherapy, can achieve
better prognosis. However, for patients with persistent, recurrent and
metastatic cervical cancer, the current treatment options are limited
and the prognosis is poor. It is urgent to explore the mechanisms that
lead to metastasis or recurrence of cervical cancer.

Angiogenesis is a regulatory process in which cytokines, receptors
and molecules are involved to function through different signaling
pathways in physiological or pathological conditions (Sajib et al.,
2018). Angiogenesis is triggered by pro-angiogenic molecules
released from tumor cells and promotes tumor growth and
metastasis to drive tumor progression in turn (Viallard and
Larrivée, 2017). For cervical cancer, bevacizumab (a representative
antiangiogenic agent) has been admitted as first-line regimens for
recurrent or metastatic cervical cancer which has been endorsed by
National Comprehensive Cancer Network (NCCN) guidelines.
However, current treatment regimens for patients with cervical
cancer can’t offer modest improvements in progression-free
survival (PFS) and overall survival (OS) (Ramjiawan et al., 2017;
Watson and Al-Samkari, 2021). It has been suggested that the single
use of targeting anti-angiogenic agents can activate or substitute
growth factor signaling pathways thereby creating redundancy,
which can instead lead to the development of drug resistance
(Ribatti, 2011). Therefore, in order to avoid resistance to anti-
angiogenic therapy, multiple anti-angiogenic molecular agents or
their combination with other therapeutic regimens has been
emphasized (Ribatti et al., 2021). Here, exploring models to assess
the prognosis of cervical cancer based on the set of AG signature genes
would provide new suggestion for anti-vascular targeted therapy.With
the continuous advancement of scientific and technological tools, the
application of sequencing methods has brought a qualitative leap
forward in the field of oncology research. Transcriptome analysis is an
important part of current genetic research, among which bulk RNA-
seq is widely used for transcriptome RNA sequencing (Hong et al.,
2020). Although bulk RNA-seq can help us to explore differential
expression of genes related to vascular neoplasia, it can only reveal the
difference in gene expression at the histological level. Whereas single-
cell sequencing has the unique advantage of revealing all intracellular
gene expression differences (Hwang et al., 2018). Here, we combined
single-cell sequencing data and bulk RNA-seq data for analysis.

As we know, the tumor microenvironment consists of tumor cells,
stromal cells, and immune cells. In the tumor microenvironment,
immune cells are affected by angiogenesis and secrete a large number
of molecules to promote angiogenesis (Ribatti and Crivellato, 2009).
Neovascularization serves as a bridge among different cells and plays
vital role between intercellular communications. Such as vascular

endothelial growth factor A (VEGFA), the main pro-angiogenic
factor, could cause immunosuppression (Albini et al., 2018). The
efficacy of anti-angiogenic drugs in combination with immune
checkpoint inhibitors is also attributed to the crosstalk of immune
cells in the tumor microenvironment (Ribatti et al., 2021). It has been
shown that angiogenesis-related gene signatures in gastric cancer (Ren
et al., 2020; Qing et al., 2022), hepatocellular carcinoma (Lv et al.,
2021), and squamous carcinoma of multiple tissue types (Qin et al.,
2021)can predict patient prognosis and elucidate the characteristics of
the immune microenvironment to guide immunotherapy. Therefore,
studying immune infiltration based on AG genes in cervical cancer can
help to provide new predictive prognostic markers and reference for
comprehensive treatment.

Materials and methods

Data acquisition

Transcriptional profiles and clinical information of 309 cervical
cancer patients were obtained from the cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) cohort of the
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),
excluding the “-11A” normal samples and reserving the “-01A”
tumor samples. After screening and matching the clinical data,
283 samples were selected as the TCGA-total set. The data set
GSE44001 (Lee et al., 2013) of cervical cancer patients (n = 300)
was selected from the Gene Expression Omnibus database (GEO,
https://www.ncbi.nlm.nih.gov/geo/) as the validation set. All data were
log2 transformed. The single-cell sequencing dataset GSE168652 (Li
et al., 2021) was selected from GEO. A total of 5,098 genes related with
angiogenesis (AG genes) were downloaded from the GeneCard
website (https://www.genecards.org/) by the keyword
“angiogenesis”, and 1,245 angiogenesis genes (AG-gene set) were
included by sorting the correlation score >1. Immunohistochemical
staining (IHC) data of ZC3H13 gene was obtained by the Human
Protein Altas (HPA) (https://www.proteinatlas.org/).

Single-cell sequencing data processing

The “Seurat” package (Butler et al., 2018) was used for quality control of
the single-cell sequencing data. Cells with less than 10% of mitochondrial
genes, less than 5% of hemoglobin genes, less than 30% of ribosomal genes,
and a gene number expression range of 200–3,000 were retained. The
number of highly variable genes was set to 3,000 and integrated by SCT
correction. Then, the “DIMS” parameter was set to 20, and the data were
downscaled using the tSNE method and clustered by the “KNN”method.
In the single-cell sequencing data, the scores ofAGgene-setswere calculated
by applying the “PercentageFeatureSet” function, and the single-cell
sequencing data was divided into high and low-AGS cell groups
according to the median value.

Construction and evaluation of prognostic
models

The ssGSEA algorithm was used to calculate the scores associated
with the AG gene-set for each patient from TCGA-CESC. Each patient
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was screened using variance, and the top 90% of valid genes were
selected, and the “WGCNA” package (Langfelder and Horvath, 2008)
was called for analysis to select the gene modules (p-value < 0.05) for
the phenotypic association with scores of AG gene-set. Next,
prognosis-related AG genes were obtained by univariate COX
analysis. Subsequently, using the R package “glmnet” (Friedman
et al., 2010)was performed to further filter out eight genes, and the
regression coefficients of each gene were calculated to construct a
prognostic model. Based on the prognostic model, the AGS of each
patient sample was calculated, and then patients were divided into two
groups: high AGS group and low AGS according to the median value
(AGS-patient). The area under the ROC curve was observed by
“timeROC” package (Blanche et al., 2013) and “survivalROC”
package (Heagerty et al., 2000).

Immune infiltration analysis and differential
protein analysis

For the immune infiltration analysis, “IOBR” package (Zeng et al.,
2021) was download. We compared CIBERSORT(Chen et al., 2018),
EPIC (Racle and Gfeller, 2020), MCP_counter (Becht et al., 2016),
xCell (Aran et al., 2017), TIMER (Li et al., 2017), and Quanti-seq
(Plattner et al., 2020)algorithms. Also, the differential expression of
immune checkpoint genes and major markers for immunotherapy in
patients was observed between the high- and low-AGS groups. The
mutations data in cervical cancer were downloaded from Cbioportal
(https://www.cbioportal.org/datasets) and visualized by the “maftools”
package (Mayakonda et al., 2018). The top 20 tumor mutations with
the highest mutation frequency between high- and low AGS-groups
were visualized. RPPA protein microarray data (van Dijk et al., 2022)
for cervical cancer were downloaded from the TCPA website (https://
www.tcpaportal.org/).

Construction of nomogram

The “rms” package was used to construction a nomogram, and
ROC curves were performed to evaluate the predictive accuracy of
nomogram. DCA decision analysis was used to evaluate the predictive
accuracy of the prognostic model.

Cell culture and RT-qPCR

Human normal cervical cell lines (ECT1/E6E7) and human
cervical cancer cell lines (SiHa, Hela cells) were cultured in DMEM
medium (Procell, Wuhan, China) containing 1% Penicillin and
Streptomycin (BI, Israel) and 10% fetal bovine serum, and human
cervical cancer (CaSki cells) and Human umbilical vein endothelial
cells (HUVECs) were cultured in RPMI-1640 medium under the same
conditions at 37°C and 5% CO2. The cells were trypsinized and seeded
into 6-well plates, washed over with PBS after 80%–90% growth, added
TRIzol reagent (Vazyme, Nanjing, China) and blown down and
collected. Add chloroform to each tube and mix upside down, let
stand and centrifuge at 4°C and 12,000 rpm for 15 min, carefully take
the upper aqueous phase and transfer to a new centrifuge tube for
subsequent experiments. After adding the same volume of isopropanol
and mixing upside down, centrifuge again, aspirate the supernatant

and add 75% alcohol prepared with DEPC water, centrifuge and pour
off the supernatant, dry the RNA. 1ul of RNA was detected by
spectrophotometer, and the A260/280 values were above 1.8. The
qPCR reaction system was prepared by using reverse transcription and
quantification kit (PerfectStart Uni RT&Qpcr Kit, AUQ-01, China) for
reverse transcription. The qPCR reaction system was placed on a
fluorescence qPCR instrument, and the △CT, △△CT value, 2-△△CT

value of each sample was calculated. The primers were:
ZC3H13-F:CAGAGGTGACAGAAGCAGAGCATAC,
ZC3H13-R: GCAGCAGTAGTGGCAGCAAGAG;
TXNDC12-F: TCCTGCTCCTCGTCATCTCTTCTG,
TXNDC12-R: AGCTGCTTCTTTCTTCCCATCTTCC;
GAPDH-F: CAGGAGGCATTGCTGATGAT,
GAPDH-R:GAAGGCTGGGGCTCATTT.

Immunohistochemistry
We collected paraffin sections of patients with non-cancer or

cancer from Hunan Cancer Hospital and performed
immunohistochemical staining. Then Samples were dewaxed with
ethanol and blocked to inhibit endogenous peroxidase activity. They
were retrieved antigen by autoclave boiling for 20min. Samples were
incubated overnight at 4°C with rabbit anti-CD31 (ZEN-
BIOSCIENCE, Chengdu, China, 1:100), anti-S100A9 (Abclonal,
Wuhan, China, 1:100), anti-TXNDC12 (Abclonal, Wuhan, China,
1:100), followed by incubation with the secondary antibody PV-9000
Kit (zsbio, Beijing, China) at 37°C for 20 min. Cell nuclei were stained
blue with use of hematoxylin. The ImageJ Software 1.53 (United States)
was used to analyze protein expressions and perform statistics.

Western blotting
Proteins were first extracted by adding RIPA lysate and protease

inhibitor PMSF(Servicebio, Wuhan, China), denatured with SDS for
10 min using 15% of the separation gel and concentrated gel were run
in electrophoresis solution at a constant voltage of 80V–120 V for
80 min. Membranes were rotated at a constant current of 260 mA for
90 min. Then incubation were performed in skimmed milk at 37°C for
2 h. Membranes were incubated overnight at 4°C with rabbit anti-
TXNDC12 (Abclonal, Wuhan, China, 1:1,000), followed by
incubation with the secondary antibody (Bioworld, United States,
1:10000) at 37°C for 60 min.

Tubule formation experiment
Cervical cell lines SiHa and CaSki were transfected with sh-

TXNDC12, the negative control (sh-NC) for 48 h (Genechem,
Shanghai, China). And after 48 h the supernatant of cell was taken
to act on endothelial cells for tubule formation assay. 96-well plate was
coated with 50 μl Matrigel each well for 1 hour to solidify. Thereafter,
HUVECs were seeded into wells (8,00000 cells/well), and 100 μl
supernatant (CM) from transfection-pretreated tumor cells.
Photographs were taken after 4h and 8 h to observe the tube
formation ability. Tube formation was quantified using ImageJ
(ImageJ software, United Ststes).

Scratch wound healing assay
Wound healing assays were used to assess the migration of SiHa

and CaSki cell lines. Cells were transfected with sh-TXNDC12
plasmids using the ExFect Transfection Reagent (Vazyme, China)
for 48 h for subsequent experiments. When the cell density in the 12-
well plate grows to 80%–90%, we use the sterile tip of a pipette to draw
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a vertical line straight down the center of the 12 wells, taking care to
keep the same width in each well. The area of the cell scratch was taken
pictures to record when the line is drawn. In 24 h later, the cell scratch
area was taken pictures again to record. Cell migration rate/Wound
Healing = (0 h scratch width—24 h scratch width)/0 h scratch width *
100%. Scratch Wound Healing Assay was quantified using ImageJ
(ImageJ software, United States).

GESA pathway and functional enrichment analysis
In gene set enrichment analysis (GSEA), The GSEA software

(version 3.0) was obtained from GSEA (DOI:10.1073/pnas.
0506580102, http://software.broadinstitute.org/gsea/index.jsp)
website. The samples were divided to high-group (≥50%) and
low-group (<50%) based on expressed level of TXNDC12, and
downloaded c2. cp.kegg.v7.4. symbols.gmt subset from Molecular
Signatures Database (DOI:10.1093/bioinformatics/btr260, http://
www.gsea-msigdb.org/gsea/downloads.jsp). We set a minimum
gene set of 5, a maximum gene set of 5,000, and one thousand
re-samplings, p-value < 0.05 and FDR < 0.25 was considered
statistically significant. Kyoto Encyclopedia of Genes and
Genomes (KEGG) set API (https://www.kegg.jp/kegg/rest/
keggapi.html) was used to obtain the gene annotations of the

KEGG pathway. R package “clusterProfiler” was used for
enrichment analysis.

Screening small molecule drugs and drug sensitivity
analysis

In the Drug Signatures Database (DSigDB, http://tanlab.
ucdenver.edu/DSigDB), we included and screened eight
model genes for corresponding small molecule drugs
(Supplementary Table S1). Based on the score, six potential
small molecule drugs were listed (p-value < 0.05). Drugs with
high scores could be related with treatments of cervical cancer
patients by regulating angiogenesis. The Genomics of Drug
Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org/)
Database was used to compare the difference in the half-
maximal inhibitory concentration (IC50) of drugs between
high-AGS group and low-AGS group. R package “pRRophetic”
was used for drug sensitivity analysis. p-value < 0.05 was
considered statistically significant.

Statistical analysis
Data analysis was performed in R version 4.2 (https://www.r-

project.org). The experimental data was statistically analyzed using

FIGURE 1
Flowchart of the study.
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GraphPad Prism 8 software. T-test was used to compare the data
between the two groups. p-value < 0.05 was indicated a statistically
significant difference.

Result

A flowchart of the study

The flowchart of establishing a prognostic model based on
angiogenesis-related gene signatures was shown in Figure 1.

Identification of different genes in single-cell
sequencing dataset and weighted co-expression
network analysis for patients in cervical cancer

First, quality control for the single-cell sequencing data was
performed to observe whether there was a batch effect

(Supplementary Figures S6A, B). As shown in Figure 2A, there is
no significant batch effect was observed in GSE168652, which could be
used for subsequent analysis. 4,421 cells in adjacent tissues and
2,882 cells in tumor were obtained after screening. Based on
median angiogenesis-related gene proportion, all cells were
classified into high and low-AGS cells group respectively (Figures
2B, C). Through performing the k-Nearest Neighbor (KNN) clustering
algorithm, we divided the samples into 25 clusters (Figure 2D), and
classified these clusters into six major cell types according to surface
marker genes (Supplementary Table S1): tumor/epithelial cells,
smooth muscle cells, macrophages, fibroblasts, lymphocytes, and
endothelial cells (Figure 2E). Moreover, the localized difference of
cell marker genes was displayed in GSE168652 (Supplementary Figure
S1). Meanwhile, in TCGA-CESC cohort, each cervical cancer patient
was scored for the AG gene-set (Figure 2F). Then the weighted co-
expression network analysis (WGCNA) based on angiogenesis
phenotype was performed (Figure 2G). The soft threshold was set

FIGURE 2
Identification of Angiogenesis-Related Different Genes and Selection of Module Genes by WGCNA. (A). Grouping of samples in single-cell sequencing
dataset GSE168652. (B). The angiogenesis scores for per-cell of GSE168652. (C). Distribution of high and low angiogenesis score cell groups. (D). Samples
were clustered by KNN clustering algorithm. (E). Localization of six type of major cells in the sample. (F). Angiogenesis score for each cervical cancer patient
from TCGA-CESC cohort. (G,H). Blue, greenyellow, magenta, purple, red, turquoise, pink, and yellow modules were closely related to angiogenesis-
related scores.
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to 20 (Supplementary Figure S6C), with a minimum module gene
count of 60 and deepsplit of 2. Then we merged modules with
similarity was less than 0.1 and combined the remaining modules
into another class (Supplementary Figure S6D). A total of 11 non-gray
modules (Figure 2H) were obtained. Module based on AGS were
included (p-value < 0.05): blue, greenyellow, magenta, purple, red,
turquoise, pink, and yellow.We included all genes in the module based
on AGS (p-value < 0.05) as phenotypically related genes for the follow-
up study.

Construction and validation the prognostic model
based on angiogenesis-related genes

Then 184 genes were obtained by taking the intersection of
WGCNA angiogenic module genes and differential gene (DEGs) of
GSE168652. Further, a model of 25 genes was set by univariate COX
regression analysis (Figures 3A, B). The lasso regression analysis was
then performed, and the model was optimized when the number of
genes was 8 (Figures 3C, D). Eight genes were: CD74, TPM3, ZC3H13,
TXNDC12, CELF2, ZMYM2, HLA-DPB1, AMD1. The prognostic
model was constructed as follows: Angiogenesis-Score =
CD74*(−1.687253736851253e-5) + TPM3*0.002624694772647254 +
ZC3H13*0.0014952296381226275 + TXNDC12*0.044584570481779856 +
CELF2*(−8.09890285266551e-4) + ZMYM2*0.0030029866624357044 +
HLA-DPB1*(−6.522321139043119e-4) + AMD1*0.0011052396498335048.

By the scores of the prognostic model, we divided total patients in TCGA-
CESC cohort into high and low-AGS groups (Figure 3E), and used
GSE44001 dataset in GEO website as external validation. Then we
analyzed the prognosis of total TCGA patients (Figure3H) and
GSE44001 dataset (Supplementary Figure S9I) patients. The results
showed that the patients in the high-AGS group had a worse prognosis
compared to low-AGS groups. In addition, we constructed ROC curves to
explore the accuracy of the model in evaluation of the prognosis. The AUC
values at 1, 2, 3, and 5 years for patients with cervical cancer in the TCGA-
CESC cohort were 0.639, 0.686, 0.696, and 0.774, respectively (Figure 3I). At
the same time, the AUC values at 1, 2, 3, and 5 years for the
GSE44001 patient data were validated in Supplementary Figure S9J.
Meanwhile, we divided the 283 samples of TCGA-CESC patients into
train and test sets according to the random sampling principle in the ratio of
8.5 to 1.5 (241:42). Then we analyzed the survival curve and ROC curve of
TCGA train set (Supplementary Figures S9A, B, C) and test set
(Supplementary Figures S9D, E, F). The AUC values at 1, 2, 3, and
5 years in TCGA train and test were 0.594, 0.650, 0.647, 0.742, and
0.854, 0.906, 0.962, 1.000 respectively. Finally, we used PCA analysis
(3D) in the high and low-AGS groups, and found that the model could
grouppatientswell in the two groups (Figure 3J; Supplementary Figures S9G,
H), and also displayed the two-dimensional diagram of PCA analysis
(Supplementary Figure S6E). Meanwhile, we included clinical
characteristics of TCGA-CESC patients and scores of the prognostic

FIGURE 3
Construction and evaluation of angiogenesis-related prognostic model. (A,B). 25 AG genes associated with prognostic screened by univariate cox
analysis. (C,D). Distribution of lasso regression curves. (E)Heatmap and point plots for assessing the risk distribution of patients of TCGA-CESC cohort in high-
and low-AGS groups. (F) Univariate cox analysis of AG modeling scores and clinical characteristics. (G). Multivariate cox analysis of AG modeling scores and
clinical characteristics. (H). Survival analysis for TCGA-CESC cohort in high- and low-AGS groups. (I). ROC curves of TCGA-CESC cohort. (J). PCA
analysis in TCGA-CESC cohort.
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model for univariate (Figure 3F) and multivariate cox analyses (Figure 3G).
We classified patients according to model score, age <65 or >65 years, T1-2
stage for early stage, T3-4 for late stage, and presence or absence of lymph
node metastasis, respectively. The results showed that model score, N stage,
and T stage were risk factors for univariate regression. The multivariate cox
results likewise indicated that model score, N stage, and T stage were
independent risk factors. In addition, we evaluated the accuracy of themodel
by ridge regression (Supplementary Figure S6H) and lasso regression
(Supplementary Figure S6I) in the IOBR algorithm. AUC value of
0.92 in the training set and an AUC value of 0.76 in the validation set
by ridge regression analysis. The AUC of the training set was 0.93 and the
AUC of the test set was 0.79 for lasso regression. Also, when the outcome
event was set as survival status by extracting 70% of the data as the training
set, we found that the AUC of the training set was 0.68 and the AUC of the
test set was 0.63 by ridge regression (Supplementary Figure S6J). It is showed
that the model has good prediction ability.

Immune infiltration analysis and mutation landscape
and proteomic analysis

After establishing a prognostic model, patients between high or
low AGS subgroups had different prognosis. Thus, we began to
investigate the different immune infiltration between patients in the

AGS groups in the TCGA-CESC cohort. Six algorithms were
performed to evaluate difference (Supplementary Figure S7). It was
showed that there was higher immune infiltration rate in the low-AGS
group in both six types of algorithms. Among them, the Xcell
algorithm obtained the most significant comparison in two groups.
Next, we analyzed the difference in expression among 10 types of
immune cells in the two subgroups (Figure 4A). M2 macrophages,
CD8 T-cell, and regulatory T-cell had a higher percentage of immune
infiltration in the low-AGS group, while neutrophils and dendritic
cells had a higher percentage of immune infiltration in the high-AGS
group. Then we validated the differences in neutrophil infiltration in
cervical cancer tissues by IHC experiments. The results showed that a
significant positive correlation between the high infiltration of
neutrophil and high angiogenic expression (Figure 8). Also, we
analyzed the differences in the expression of immune checkpoint
genes in the two groups (Figure 4B). The expression of most immune
checkpoint genes was significantly different between the high and low
AGS groups. IL10RB, KDR, TGFB1, TGFBR1, and VTCN1 were
upregulated in the high AGS group compared with the low AGS
group; the other genes including CD274 and CTLA4 were down-
regulated in the high AGS group.Meanwhile, we analyzed significantly
different expression of gene-markers of immune cells in

FIGURE 4
Immune infiltration, tumor mutational burden, and proteomic analysis. (A). Expression of 10 types of immune cells in high-AGS group and low-AGS
group. (B). Differential expression of immune checkpoint related genes in high-AGS group and low-AGS group. (C). Mutation landscape in high-AGS group of
TCGA cohort. (D). Mutation landscape in low-AGS group of TCGA cohort. (* < 0.05, ** < 0.01, *** < 0.001).
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immunotherapy. The results showed that there were less immune
infiltrating cell such as resting dendritic cells (iDC) in the high AGS
group, while more immune infiltrating cell like activated dendritic
cells (aDC) in the AGS group (Supplementary Figure S2). Moreover,
we analyzed the expression of common marker-genes in CD8 effector
T-cell. All marker-genes were downregulated in the high AGS
group. Then, we analyzed the expression of common marker-genes
for targets of immunotherapy: DNA breakage and repair (DDR) and
immune checkpoint genes in IOBR algorithm (Supplementary Figure
S3). The results showed that the most majority of DDR genes were
upregulated in the high AGS group compared to the low AGS group,
while immune checkpoint genes were downregulated in the high AGS
group. Then we analyzed the differences in tumor mutational genes
within and between the two groups. We found that mutation
landscape in two group (Figure 4C). As it was displayed, the top
five mutated genes were namely TTN, PIK3CA, KMT2C, MUC4, and
EP300 in the high AGS group, while the top five mutated genes were
TTN, PIK3CA, KMT2C, MUC16, MUC4 and in the low AGS group
(Figure 4D). Next, we evaluated differentially mutated genes with
significance p < 0.05, OR<1 between the two groups (Supplementary
Figure S8), and the top 5 ranked genes were SIPA1L3, RBFOX1,
TTC28, NLRP4, CNTRL. Finally, we performed the proteomic analysis
by RPPA dataset, and showed their differential proteins such as
CASPASE7CLEAVEDD198, EEF2K with volcano plots between
subgroups (Supplementary Figure S6G).

Cell localization of modeling genes in single-cell
sequencing dataset

We plotted the gene expression of the eight key genes screened by
the lasso regression model in the single-cell sequencing data to observe
their main distribution. Firstly, we observed the overall distribution and
expression of the eight genes (Figure 5A), followed by the distribution of
each gene in cells (Figure 5B): CD74 was mainly expressed in
macrophages. TPM3 was mainly expressed in macrophages,
lymphocytes, and endothelial cells. ZC3H13 was mainly expressed in
smoothmuscle cells, fibroblasts, andTXNDC12wasmainly expressed in
tumor/epithelial cells, macrophages, and endothelial cells. CELF2 was
mainly expressed in macrophages, lymphocytes, and ZMYM2 was
mainly expressed in smooth muscle cells and fibroblasts. HLA-DPB1
was mainly expressed in macrophages, and AMD1 was mainly
expressed in smooth muscle cells, fibroblasts, and endothelial cells.

Construction of nomogram and decision curve
analysis

We assessed the clinical outcome of patients by constructing a
nomogram based on AGS values compared with other clinical
characteristics. According to clinical characteristics such as ethnicity,
TNM stage, age, andAGS values, scoring cumulatively by cox regression
method (Figure 6A), the mortality rate of the patient in 1, 3 and 5 years
was estimated to be 0.161, 0.527, and 0.652 respectively. At the same
time, up to the time of follow-up of TCGA-CESC cohort, the rate of

FIGURE 5
Cell localization of eight modeling genes in the single-cell sequencing dataset. (A,B). Distribution and expression of eight prognostic modeling genes in
six type of cells.
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status outcome was estimated to be 0.845 by logistic regressionmethods
(Figure 6B). The area under the ROC curve for 1, 3, and 5 years was 0.70,
0.74 and 0.78, respectively (Figure 6C). It indicates that the nomogram
had good predictive ability. From the nomogram, the results showed
that the AGS values had significant effect on the prognosis. Meanwhile,
we used decision curve analysis (Figure 6D). The results suggested that
the nomogram with mortality rates of 1, 3, and 5 had significant
optimization compared with those without constructing
nomogram, indicating that the nomogram has good predictive ability
on prognosis.

Selection and validation of prognosis-related
signature genes

Eight modeling genes were divided into high and low expression
groups according to median values. The results showed that high
expression of TXNDC12 and ZC3H13 had a significantly worse
prognosis (Figures 7C, D). Further, we ranked the eight genes
according to their HR value in the prognostic model (Supplementary
Table S2), and observed lasso regression coefficients of the model
(Supplementary Table S3). It suggested that the highest HR value and
coefficient of TXNDC12 could have association with cervical

carcinogenesis. We also evaluated the role of TXNDC12
(Supplementary Figure S4) and ZC3H13 (Supplementary Figure S5) in
the immune microenvironment. The microenvironment-score and
immune-score were significantly downregulated by high expression of
TXNDC12 and ZC3H13. Therefore, we performed RT-qPCR
experiment. The results showed TXNDC12 and ZC3H13 were
highly expressed in tumor cells compared to normal cells. This
further validated our speculation.

Comparison of modeling genes related multiple
pathways and validation of prognosis-related
signature genes in CESC tissues

We performed analysis of the enrichment of KEGG pathways
(Supplementary Table S4). The modeling genes are significant
enrichment in the pathways of human disease such as tuberculosis,
herpes simplex virus one infection, and in the pathways of
organizational system such as antigen processing and presentation
(Figure 7A). As displayed in Figure 7B, TXNDC12 was mainly
enriched in glutathione metabolism pathway; AMD1 was mainly
involved in cysteine and methionine metabolism, arginine and proline
metabolism; TPM3 was mainly involved in cardiac muscle contraction,

FIGURE 6
Construction the nomogram and decision curve analysis. (A). Construction nomogram to predict 1-, 3-, and 5-year clinical outcome by cox
regression. (B). Construction nomogram to predict status of patients by logistic regression. (C). ROC curve of the nomogram. (D). Decision curve analysis.
(* < 0.05, ** < 0.01, *** < 0.001)
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dilated cardiomyopathy, and dilated cardiomyopathy; CD74 is involved in
antigen processing and presentation pathway; HLA-DPB1 is involved in
viral myocarditis pathway. Then, we performed GSEA analysis of
TXNDC12 and ZC3H13 to identify 5 enrichment pathways of
significant significance. It was found that high expression of
TXNDC12 was significantly associated with one carbon pool by folate
pathway, mTOR signaling pathway, p53 signaling pathway, VEGF
signaling pathway, pathways in cancer (Figure 7E). High
ZC3H13 expression was associated with low expression of the
RIBOSOME, positive correlation of the MAPK signaling pathway,
pathways in cancer and mTOR signaling pathway, NOTCH signaling
pathway (Figure 7F). We further explored the protein expression of the
prognostic modeling genes ZC3H13 in adjacent and CESC tissues. As
shown in Figures 7G, H, the results of immunohistochemistry (IHC) from
HPA database showed that the expression levels of ZC3H13 were
significantly higher in cervical squamous cell carcinoma or
adenocarcinoma than in adjacent normal tissues. And then, indicating
that prognosis-related signature genes may play an important role in
cervical cancer progression.

The expression of TXNDC12 is upregulated in
cervical cancer tissues and positively correlates with
angiogenesis

We also analyzed the expression of TXNDC12, CD31
(neovascularization marker gene), and S100A9 (neutrophil marker
gene) by IHC experiments in cervical cancer tissues (Figure 8). The
results showed that the expression of high TXNDC12 was significantly
and positively correlated with the expression of CD31, S100A9. High
TXNDC12 expression may be positively associated with the presence
of higher neovascularization and infiltration of neutrophils in patients.

Functional validation of TXNDC12 in cervical cancer
To verify the effect of TXNDC12 on tumor progression and

angiogenesis in cervical cancer, we performed western blotting
(Figure 10A), scratch wound healing assay (Figures 9A, B), tubule
formation assay (Figure 10C). The results showed that TXNDC12 was
highly expressed in cervical cancer cell lines (Figure 10B). Meanwhile,
it was found that the migratory ability of SiHa and CaSki cells and the
ability of endothelial cell tubule formation were significantly inhibited

FIGURE 7
KEGG and GSEA analysis and Survival analysis of modeling genes and validation of ZC3H13 in CESC tissues. (A). Histogram of KEGG pathway. (B). Circle
plot of KEGG pathway of modeling genes. (C). Survival curve of TXNDC12. (D). Survival curve of ZC3H13. (E). GSEA pathway analysis of TXNDC12. (F) GSEA
pathway analysis of ZC3H13.(G,H). Quantification and comparison of protein expression of ZC3H13 by IHC. (* < 0.05, ** < 0.01, *** < 0.001).
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in the sh-TXNDC12 group compared with the control group, and the
differences were statistically significant.

Potential small molecule drug prediction and drug
sensitivity analysis of model genes

We performed drug prediction of potential small molecules in the
DSigDB database for model genes, and we found Penconazole CTD
00003093, bisacodyl MCF7 UP, Nickelous acetate CTD 00003684,
Zinc sulfate CTD 00007264, staurosporine MCF7 DOWN,
VALPROIC ACID CTD 00006977 would be effective small
molecule drug (Supplementary Table S5). Meanwhile, we searched
the GDSC database by IC50 analysis (Figure 11) for anti-angiogenesis-
related VEGFR receptor inhibitors as well as tyrosinase inhibitors and
immunomodulators with significant differences between high- and
low-AGS groups. The results suggest that for patients in the low-AGS
group, the efficacy of AMG.706, Bosutinib, and Lenalidomide may be
superior to that in the high-AGS group while Imatinib, Pazopanib, and
Sorafenib may have better efficacy in the high AGS group.

Discussion

In this study, a new prognostic model in cervical cancer was
developed. The model was based on eight AG genes and had
independent prognostic significance for patients with cervical cancer.
The prediction accuracy of the model was validated in the internal
training set, test set, and external validation set. In addition, we explored

the differences in immune infiltration, tumor mutational burden
(TMB), clinical outcome and drug sensitivity between high and low-
AGS groups under the model, and identified two key prognostic genes
from them. TXNDC12 was found to have the ability to promote cell
migration in cervical cancer cell line and tubule formation in endothelial
cells, which can help to give new directions for the treatment of patients
with recurrent or refractory cervical cancer in clinic.

Our data were obtained from TCGA, GEO and other databases, and
we used a combined multi-omics approach and multi-dimensional
study to explore the complex molecular mechanisms of tumor
angiogenesis. Single-cell RNA sequencing (scRNA-seq) measures
gene expression at the single-cell level, which can reveal complex
and rare cell populations thereby better revealing regulatory
relationships between genes (Hwang et al., 2018) with higher
resolution of cellular differences (Gao, 2018). Heterogeneity in
tumors and their microenvironment (Papalexi and Satija, 2018) was
revealed in breast cancer (Ding et al., 2020; Yuan et al., 2021), melanoma
(Tirosh et al., 2016), pancreatic tumors (Zhou et al., 2021), etc. TCGA
and GEO public database has mRNA sequencing data for a large
number of samples, which is more convincing when combined with
single cell sequencing database to build a model analysis (Zoabi and
Shomron, 2021). In this paper, we construct a model based on the AGS.
We explored the set of AG genes and looked at their immune infiltration
and tumor mutational burden. This modeling approach that divides the
study population into high and low groups takes into account the overall
impact of AG genes and is more comprehensive in assessing differences
in prognosis. First, we started from the data of scRNA-seq to find the

FIGURE 8
Immunohistochemical staining and correlation analysis of CD31, S100A9, TXNDC12.
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relevant differential genes in the high and low AGS-cell groups, and
further applied the TCGA data for cox regression and lasso regression
analysis to model the prognosis of AG genes, and then we found that
significant differences in the survival rates of high and lowAGS-patients
group. The AUC values exceeded 0.742 and 1in the internal train and
test sets respectively, indicating that our model has good accuracy in
predicting prognosis. We explored the efficacy of the AG scores with
clinically relevant features in predicting clinical outcomes after
modeling, with AUC values of 0.70, 0.74, and 0.78 for 1-, 3-, and 5-
year survival, and the DCA decision curves similarly illustrated the high
predictive accuracy of our model for nomogram.

Eight genes were finally included in our modeling, namely CD74,
TPM3, ZC3H13, TXNDC12, CELF2, ZMYM2, HLA-DBP1, and AMD1.
TXNDC12, as a member of the thioredoxin superfamily, plays an
important role in tumors. In hepatocellular carcinoma (Yuan et al.,
2020), TXNDC12 promotes EMT and metastasis in tumors. And in
glioma, high expression of TXNDC12 predicts the poor prognosis of
patients (Wang X. et al., 2021). ZC3H13, an m6A methyltransferase, also
plays an important role in tumors (Wang et al., 2020; Song et al., 2022). In
breast cancer (Gong et al., 2020) and colorectal cancer (Zhu et al., 2019),
ZC3H13 plays a tumor suppressive role, while in hepatocellular
carcinoma, ZC3H13 promotes the malignant behavior of

hepatocellular carcinoma cells (Wang Q. et al., 2021). CD74, a key
molecule involved in antigen presentation, B-cell differentiation and
inflammatory signaling, could be considered as a new candidate target
and vaccine for tumor immunotherapy to combat tumors (Stein et al.,
2007; Borghese and Clanchy, 2011). TPM3 is reported to cause
tumorigenesis (Mano, 2012). Antibodies against TPM3 are used for
the early diagnosis of endometriosis (Greenbaum et al., 2021). CELF2,
which belongs to theCELF/Bruno-like family of RNA-binding proteins, is
involved in selective splicing as well as translation and stability control of
target mRNAs(Barreau et al., 2006). ZMYM2, which is FGFR1 (fibroblast
growth factor receptor 1) is one of the most common chaperones, and
patients with ZMYM2-FGFR1 fusions frequently present with
myeloproliferative neoplasms and T-lymphocytic lymphomas (Katoh,
2016; Montenegro-Garreaud et al., 2017). HLA-DPB1 is strongly
associated with lymphomagenesis (Xiong and Zhao, 2019) and is
associated with rheumatoid arthritis (Jiang et al., 2018). AMD1 is an
important regulator in stemness of hepatocellular carcinoma cells (Bian
et al., 2021).

During the process of angiogenesis, the release of multiple cytokines
recruits the aggregation ofmultiple immune cells thereby creating a tumor
immune microenvironment (TIME). In recent years, other approaches
such as the application of immune checkpoint inhibitors for cervical

FIGURE 9
Scratch wound healing assay with CaSki cell line (A) and SiHa cell line (B). (* < 0.05, ** < 0.01, *** < 0.001).
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cancer have been actively explored while considering the limitations of
applying angiogenesis blockers (Minion and Tewari, 2018). It shows that
targeting tumor vasculature and immune checkpoint genes are a potential
strategy to potentiate cancer immunotherapy (Lee et al., 2020). New
challenges in clinical trial design should be considered more for the
immune system and its interactions with the vascular system (Solimando
et al., 2020; Ribatti et al., 2021). In the current phase III clinical trials for
cervical cancer, all trials of combination chemotherapy for cervical cancer
have been a combination of angiogenesis inhibitors and ICIs (Kagabu
et al., 2020). This indicates that it is necessary to study the relationship
between the role of angiogenesis and immune cell infiltration. In cervical
cancer, we combined six algorithms for immune infiltration analysis of the
phenotype of angiogenesis and found that there was higher immune
suppression in the high-AGS group. Meanwhile, the common immune
checkpoint genesCD274 and CTLA4were significantly upregulated in the
low-AGS group, suggesting to us that patients in the low-AGS group may
benefit clinically with immune checkpoint inhibitors, while patients in the
high-AGS group may not benefit significantly in terms of efficacy when
applying CD274 and CTLA4 inhibitors. IL10RB, KDR, TGFB1 TGFBR1,
andVTCN1 genes were upregulated in the high-AGS group, and attempts
to use inhibitors against these targets were considered, among others.
Because of the worse prognosis and the presence of higher
immunosuppression in patients in the high AGS group, we are more
interested in exploring therapeutic strategies to improve the prognosis of
these patients. Therefore, we envision that patients with recurrent or
metastatic cervical cancer, among whom are classified in the high AGS-
group, are more likely to consider paclitaxel + cisplatin (or carboplatin) +

bevacizumab + IL10RB/KDR/TGFB1/TGFBR1/VTCN1 inhibitors, which
may contribute to the improvement of OS PFS, ORR, DOR. Meanwhile,
in clinical practice, TMB of patients is strongly associated with immune
infiltration and prognosis. We found that TMB were lower in the high-
AGS group compared to the low-AGS group, suggesting that the high-
AGS group has a lower TMB and lower immune infiltration, thus guiding
us to improve the treatment of patients with high AGS.

We also analyzed the clinical implications of the angiogenesis model.
Overall survival was significantly shorter in the high-AGS group, compared
to the low-AGS group. Therefore, it is urgent to find better therapeutic ideas
for patients in the high-AGS group to mitigate relapse and progression in
their patients. We also analyzed the different drug sensitivities in the high
and low AGS groups. Results showed that patients in high AGS groupmay
be more sensitive to tyrosinase inhibitor drugs: Imatinib, Pazopanib, and
Sorafenib. We selected model genes TXNDC12 and ZC3H13 with
consistent prognostic trends in the high-AGS group for further analysis.
We performed tumor microenvironmental scoring of these two genes by
IOBR algorithm and found that their immune score and total
microenvironmental score were significantly downregulated when the
genes were highly expressed, which may suggest that TXNDC12,
ZC3H13 are involved in immunosuppression. Meanwhile, we detected
that mRNA of key prognostic genes TXNDC12 and ZC3H13 were highly
expressed in cervical cancer cells by RT-qPCR. TXNDC12 was involved in
various metabolic pathways including glutathione pathway and VEGF
pathway by KEGG and GESA analysis. It has been noted that
angiogenesis can be inhibited through glutathione metabolic activation
(Cui et al., 2019). However, even though the literatures point out the role of

FIGURE 10
TXNDC12 expression and tubule formation assay. (A,B) Western blotting and qPCR to verify the expression of TXNDC12. (C). Tubule formation assay of
endothelial cells. (* < 0.05, ** < 0.01, *** < 0.001).
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TXNDC12 or ZC3H13 in tumors, the prognostic impact through
angiogenesis and thus involvement in cervical cancer remains unclear.
We speculate that TXNDC12, ZC3H13may have potential as a prognostic
marker for patients in the high-AGS group. The results of functional
experiments showed that TXNDC12 had enhanced ability to promote
endothelial cell tube-formation while promoting cervical cancer cell
migration, so TXNDC12 is hopeful as a new target in the AGS group
for anti-angiogenic therapy, and improve new thinking and research
direction for clinical treatment.

In conclusion, the new prognostic model based on AGS may
provide new options for the treatment of cervical cancer. However, we
only did expression validation at the cellular level, and specific
mechanistic studies remain to be explored in anticipation of
further validation in animals and humans in the future.
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