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Assisted reproductive techniques as a new regenerative medicine approach have
significantly contributed to solving infertility problems that affect approximately 15%
of couples worldwide. However, the success rate of an in vitro fertilization (IVF) cycle
remains only about 20%–30%, and 75% of these losses are due to implantation failure
(the crucial rate-limiting step of gestation). Implantation failure and abnormal
placenta formation are mainly caused by defective adhesion, invasion, and
angiogenesis. Placental insufficiency endangers both the mother’s and the fetus’s
health. Therefore, we suggested a novel treatment strategy to improve endometrial
receptivity and implantation success rate. In this strategy, regulating mir-30d
expression as an upstream transcriptomic modifier of the embryo implantation
results in modified expression of the involved genes in embryonic adhesion,
invasion, and angiogenesis and consequently impedes implantation failure. For
this purpose, “scaffold/matrix attachment regions (S/MARs)” are employed as
non-viral episomal vectors, transfecting into trophoblasts by exosome-liposome
hybrid carriers. These vectors comprise CRISPR/dCas9 with a guide RNA to
exclusively induce miR-30d gene expression in hypoxic stress conditions. In
order to avoid concerns about the fetus’s genetic manipulation, our vector would
be transfected specifically into the trophoblast layer of the blastocyst via binding to
trophoblast Erb-B4 receptors without entering the inner cell mass. Additionally,
S/MAR episomal vectors do not integrate with the original cell DNA. As an on/off
regulatory switch, a hypoxia-sensitive promoter (HRE) is localized upstream of
dCas9. The miR-30d expression increases before and during the implantation
and placental insufficiency conditions and is extinguished after hypoxia
elimination. This hypothesis emphasizes that improving the adhesion, invasion,
and angiogenesis in the uterine microenvironment during pregnancy will result in
increased implantation success and reduced placental insufficiency, as a new insight
in translational medicine.
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1 Introduction

Infertility has consistently emerged as a worldwide couple’s
problem. Today, up to 15% (nearly 50 million) of all reproductive-
aged couples face infertility (Obstet. Gynecol, 2020; Zhang et al., 2022),
and this number seems to be rising because of postponing the
pregnancy (Bouzaglou et al., 2020; Glick et al., 2021). As a result,
for the past four decades, 40 million patients have sought infertility
treatments known as assisted reproductive technology (ART), and
7 million neonates have been born via in vitro fertilization (IVF) (Shi
et al., 2017; Kuroda et al., 2018). However, despite the rapid
developments in IVF techniques, the possibility of a successful
gestation remains 20%–30% in each IVF cycle. Seventy-five percent
of these losses are due to implantation failure as the crucial rate-
limiting step of gestation (Niederberger et al., 2018). Meanwhile, some
women undergo repeated IVF cycles without establishing a clinical
pregnancy, a condition diagnosed as recurrent implantation failure
(RIF) (Coughlan et al., 2014; Makrigiannakis et al., 2021). Regardless
of the underlying disease, impairments in each phase, including
adhesion, invasion, and angiogenesis, could lead to implantation
failure (Coughlan et al., 2014; Moreno-Moya et al., 2014).

Adhesion, invasion, and angiogenesis take place in the context of
bidirectional embryo-maternal communication. This communication
occurs within the complex molecular signaling pathways, consisting of
adhesion molecules, cytokines, chemokines, and growth factors which
are derivatives of either the embryo or the endometrium (Vilella et al.,
2015; Balaguer et al., 2019; Fukui et al., 2019). These coordinated series
of actions eventually form an appropriate uterine microenvironment,
recognized as receptive endometrium (Thouas et al., 2015;
Salamonsen et al., 2016). Endometrial receptivity is mainly
regulated by hormonal responses and mutual molecular
communication between the embryo and the endometrium,
whereas it was previously assumed that the hormonal reactions are
solely responsible for preparing the receptive endometrium (Hart
et al., 2022).

After appreciating the critical role of molecular communication in
endometrial receptivity, extracellular vesicles (EVs) were investigated
as novel intercellular communication tools. EVs can transfer different
macromolecules such as nucleic acids (DNA, mRNAs, and
microRNAs), lipids, and proteins between cells (Governini et al.,
2021). In between, microRNAs are considered one of the key
regulators of gene expression during implantation (Andronico
et al., 2019; Hart et al., 2022). MicroRNAs (miRNAs) are
18–25 non-coding nucleotide chains that regulate post-
transcriptional gene modifications and participate in various
intercellular interactions as well as embryo-maternal cross-talk
during implantation (Galliano and Pellicer, 2014; Liang et al.,
2017). miRNAs are mostly incorporated within the exosomes and
are assumed to be crucial bioactive molecules for blastocyst
implantation and embryo-maternal communications during
embryo development (Bridi et al., 2020).

Amongst miRNAs, the miR-30d role has been investigated in
human’s uterus biopsy (Liang et al., 2017; Bridi et al., 2020). miR-30d
is an upstream signaling molecule, and its upregulation results in the
increased expression of endometrial estrogen and progesterone
receptors, LIF in uterus and trophoblast, integrating and adhesive
molecules including integrin alpha-7 (ITGA7), integrin beta-3
(ITGB3), cadherin-5 (CDH5) as well as COX2 enzyme. Eventually,
the upregulation of these signaling and structural molecules enhances

endometrial receptivity and ameliorates blastocyst adhesion, invasion,
and angiogenesis (Vilella et al., 2015; Liang et al., 2017; Balaguer et al.,
2019; Timofeeva et al., 2019). In 2019, (Balaguer et al., 2019) used mice
models to evaluate the impact of miR-30d deficiency on pregnancy.
They demonstrated that either maternal or embryonic miR-30d
insufficiency leads to diminished implantation, placentation, and
fetal growth (Balaguer et al., 2019).

The potential role of microRNA-30d in RIF patients has been
discussed in previous studies. RIF patients have lower miR-30d
expression levels, increased SOCS1 expression levels, lower
endometrial and blood levels of LIF, and downregulated JAK-
STAT3 pathway (Altmäe et al., 2013; Arias-Sosa et al., 2018). miR-
30d can inhibit SOCS1, which consequently increases LIF levels and
activates the JAK-STAT3 pathway. So, miR-30d seems to improve
endometrial receptivity as one of the major causes of implantation
failure (Altmäe et al., 2013; Lin et al., 2017).

To overcome ART challenges, we proposed a novel strategy to
upregulate miR-30d expression as an upstream signaling molecule to
increase the probability of a successful gestation by improving
blastocyst adhesion, invasion, and angiogenesis as well as keeping
the forthcoming fetus alive during pregnancy. In brief, the proposed
strategy includes designing an episomal vector based on a scaffold/
matrix attachment region (S/MAR) that mainly consists of CRISPR/
dCas9 with a guide RNA, hypoxia sensitive promoter (HIF-
1 sensitive), and doxycycline sensitive on/off switch. The vector
will be transferred to the blastocyst trophoblast specifically by
engineered exosomes to avoid concerns about the fetus’s genetic
manipulation. Then, the blastocyst is transferred to the uterus via IVF.

2 Supporting evidences for strategy

2.1 Endometrial receptivity and implantation

Implantation is considered a bidirectional interaction between the
embryo and the endometrial surface, including adhesion, invasion,
and angiogenesis. This complex process occurs over approximately a
3–5-day interval during receptivity of the endometrium. This phase is
essential for attaching the trophectoderm layer and subsequent
invading and vascularization of the embryo. The limited duration
of uterine receptivity for implantation during the mid-luteal phase is
defined as the “window of implantation” (WOI), with a specific gene
expression profile appropriate for embryo attachment and
accommodation. Failure of implantation is the leading cause of
pregnancy loss in assisted reproductive technology (ART), and it
mainly stems from either impaired endometrial receptivity or low-
quality embryos. These two are the pivotal causes of unsuccessful
implantation, miscarriage, and RIF in people who undergo IVF
(Simon and Laufer, 2012; Lessey and Young, 2019; Enciso et al.,
2021). Maternal causes of the RIF include anatomical abnormalities,
thrombophilia, infection, genetic alteration, immunological factors,
and endometrial receptivity (Simon and Laufer, 2012; Bashiri et al.,
2018; Makrigiannakis et al., 2021). Studies have demonstrated that RIF
patients suffer from relatively lower endometrial receptivity at the time
of embryo transfer (Ruiz-Alonso et al., 2013).

A broad spectrum of etiologies are involved in RIF, but the exact
mechanisms are not properly understood (Simon and Laufer, 2012;
Bashiri et al., 2018). So, looking for further molecular mechanisms that
participate in implantation failure is crucial. Meanwhile, microRNAs
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(miRNAs) are potential modulators of the involved signaling
pathways in embryo implantation (Galliano and Pellicer, 2014;
Zhou et al., 2020).

2.2 miRNAs and pregnancy

miRNAs are 18–25 non-coding nucleotide chains that act as post-
transcriptional gene modifiers. miRNAs are substantially involved in
modulating normal cells’ development, including cellular
differentiation, proliferation, apoptosis, embryo early development,
embryo-endometrial communication, endometrium receptivity,
implantation, decidualization, and placenta formation (Galliano
and Pellicer, 2014; Kolanska et al., 2021). Studies have shown that,
in the bidirectional communication between the embryo and the
endometrium, both secrete particular microRNAs, which can be
taken up by the other party and influence the implantation process

(Liang et al., 2017). These secreted miRNAs are rather stable and
accessible in embryo culture and uterine fluid, making them potential
non-invasive biomarkers to confirm the embryo quality.

Several studies demonstrated that impaired miRNA expression
contributes to RIF. Both overexpressed and under-expressed
endometrial miRNA patterns have been reported in the mid-
secretory phase of RIF patients compared to fertile women (Revel
et al., 2011). The expression of endometrial microRNAs is different in
impaired endometrium during WOI. Previous studies have revealed
unique irregular expression of 105 miRNAs in individuals with RIF
(Shi et al., 2017). There was also a positive correlation between
upregulation of these miRNAs and successful implantation 24 h
after frozen embryo transfer. Downregulation of miR-198, miR-
522, and miR-891a has been shown in implantation failure (Parks
et al., 2014). Kuokkanen et al., (2010) have shown higher expression
levels of 12 miRNAs, including miR-30d, during the mid-secretory
phase of the menstrual cycle (Kuokkanen et al., 2010). Additionally,

FIGURE 1
Embryo-Uterine molecular signaling in implantation and the role of miR-30d in embryo implantation: The implantation process involves three main
steps: adhesion, invasion, and angiogenesis, which contribute to successful implantation. Expression of mir-30d as a modifier of the embryo implantation
modifies its transcriptome, resulting in overexpression of genes involved in embryonic adhesion, invasion, angiogenesis, and endometrial receptivity. (1) MiR-
30d promotes the activation of the LIF-induced STAT3 pathway, possibly via downregulating SOCS1 in the embryo and endometrium. (2) SOCS1 inhibits
the LIF/JAK/STAT3 signaling by inhibiting the activation of JAK. (3) LIF activates gp130/STAT3 signals via binding to LIFR and gp130 heterodimer both in
endometrium and embryo. Activation of STAT3 (4) induces adhesion by increasing the expression of integrin alpha-7, integrin beta-3, and also (5) promotes
angiogenesis by inducing VEGF expression and (6) invasiveness of trophoblastic cells by activating the transcription of MMPs. (7) Human endometrium
secretes miR-30d, (8) then exosomal has-miR-30d is taken up by the trophoblasts and delivered to the embryo fluid (EF) to modify the embryonic
transcriptome.
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endometrial and serum expression of miR-203, miR-31, miR-30b, and
miR-30d were notably unregulated during the implantation period
(Kresowik et al., 2014). Other studies have also shown that microRNA
polymorphisms significantly differ between individuals with RIF and
fertile controls (Lee et al., 2019). So, miRNAs can be used as a regulator
of the implantation process.

2.3 miR-30d role in embryo implantation

MicroRNA-30d acts as a crucial coordinator for embryo-maternal
cross-talks and regulates plenty of gene expressions involved in human
embryonic implantation. Analyzing miRNA expression patterns
showed significant upregulation of miR-30d in the epithelial layer
of receptive human endometrium in the early mid-secretory phase
versus pre-receptive endometrium (Altmäe et al., 2013; Moreno-Moya
et al., 2014). Human endometrium secretes free form or exosome-
coated miR-30d in the embryo fluid (EF), where the pre-implantation
embryo can take it up via the trophectoderm layer (Figure 1). Also,
treating mice embryos with miR-30d resulted in increased embryo
adhesion rate, whereas using a specific miR-30d inhibitor led to a
reduced adhesion rate. Additionally, the adhesion molecules such as
integrin beta-3, integrin alpha-7, and cadherin-5 were upregulated
following mir-30d treatment (Vilella et al., 2015). It was also shown
that miR-30d in mice and humans had the same targets to extend the
results to humans (Vilella et al., 2015).

Balaguer et al. showed the correlation between maternal miR-30d
deficiency and diminished endometrial receptivity markers, which led
to decreased implantation rates and impaired fetal development in
mice (Balaguer et al., 2019). Furthermore, miR-30d transfection in the
epithelial cell line of human endometrium induced the expression of
abundant mRNAs and proteins associated with embryo adhesion,
implantation, and development (Moreno-Moya et al., 2014).

In another study in 2021, it was demonstrated that miR-30d-5p
expression levels were considerably decreased in women with RIF
compared to average fertile women (Zhao et al., 2021). miR-30d-5p is
also possibly responsible for SOCS1 downregulation, which ultimately
inhibits the activation of the LIF-induced STAT3 pathway. In addition
to embryo adhesion, miR-30d enhances endometrial angiogenesis by
inhibiting MYPT1 and consequent VEGF activation (Lin et al., 2017;
Zhao et al., 2021). Therefore, the impact of miR-30d and associated
pathways on implantation can improve the outcome.

2.4 Adhesion, invasion, and angiogenesis
associated signaling pathways

Upregulation of specific molecular pathways involved in human
embryo implantation has been detected in WOI. Adhesion molecules
such as integrin beta-3, cadherin-5, L-selectin, and mucin 1 (MUC-1)
play critical roles in apposition and adhesion. Growth factors such as
insulin-like growth factor 1 (IGF), heparin-binding epidermal growth
factor (HB-EGF), and vascular endothelial growth factor (VEGF) are
essentially required to develop a normal vascular network.
Additionally, inflammatory responses enhance endometrial
receptivity during WOI through inflammatory cytokines, including
IL-1, IL-6, and leukemia inhibiting factor (LIF), which regulate fetal-
maternal interactions during pregnancy and are essential for embryo
implantation, trophoblast growth, and differentiation (Trolice and

Amyradakis, 2012). LIF/gp130/STAT pathway is also crucial for
embryo implantation as it is pivotal in angiogenesis. LIF acts
through activation of gp130/STAT3 signals and subsequent VEGF
expression. LIF glycoprotein expression level increases during the
WOI in the secretory phase of normal fertile women. On the contrary,
in RIF patients, the LIF level in the secretory phase was decreased
(Hambartsoumian, 1998). Furthermore, endometrial and blood levels
of LIF were concordantly decreased in RIF patients, followed by
pregnancy failure (Comba et al., 2015).

There was also a significant decrease in both protein and mRNA
levels of LIF and gp130 in most women with unexplained infertility
and RIF at the proliferative and the secretory phases
(Hambartsoumian, 1998; Tawfeek et al., 2012; Zhao et al., 2021).
Heterozygous mutation of the LIF gene results in reduced LIF activity
and may be the infertility cause in some women (Giess et al., 1999).
Moreover, LIF/JAK/STAT3 pathway is involved in angiogenesis in the
endometrium and placenta via inducing VEGF expression. LIF also
positively impacts integrin expression, and VEGF per se induces
integrin expression, so they are crucial in inducing the adhesion
(Alfer et al., 2017) (Figure 1).

As shown in Figure 1, activation of LIF/JAK/STAT3 is also
involved in promoting invasion via increasing the expression of
MMPs (Suman et al., 2013). Upregulation of the JAK/
STAT3 pathway negatively impacts SOCS1 expression as well.
SOCS1 expression is increased in the endometrium of the RIF
patients. In a recent study in 2021, decreased LIF and p-STAT3
protein levels in the RIF patients were detected, which may
represent the critical role of this pathway for successful embryo
implantation. The negative correlation between SOCS1 and miR-
30d-5p has been demonstrated in the mentioned study. Decreased
levels of miR-30d in the RIF group reduce STAT3 and
phosphorylation of JAK, while SOCS1 is significantly increased,
representing that the SOCS1 gene is the target of miR-30d, which
participates in embryo implantation (Zhao et al., 2021). The reduced
angiogenesis by inhibition of the LIF/JAK/STAT3 pathway can be
compensated by miR-30d upregulation. miR-30d is one of the angio-
miRs and promotes angiogenesis viaMYPT1/c-JUN/VEGFA pathway
(Lin et al., 2017).

VEGF is an essential element in the embryo-endometrium
reciprocal interactions. VEGF promotes vascularization and
improves blastocyst adhesion, implantation, and growth
capability. Furthermore, endometrial angiogenesis is stimulated
by the embryo via the production of active VEGF-A, which can
induce vessel formation and consequent placental development. It
has been shown that VEGF-A gene mutation leads to embryo loss
and impaired placental development, and other developmental
anomalies (Carmeliet et al., 1996; Ferrara et al., 1996; Kapiteijn
et al., 2006; Guo et al., 2021). VEGF gene polymorphisms correlate
with an increased risk of RIF (Jung et al., 2016; Shim et al., 2018). It
has also been reported that VEGF expression was significantly
reduced in women with RIF (Hannan et al., 2011; Lash et al., 2012).
Therefore, impaired vascularity in the endometrium of the group
with unexplained subfertility during the mid-late follicular phase
has been demonstrated (Raine-Fenning et al., 2004). This
diminished blood perfusion may lead to pathological hypoxia,
impairing endometrial receptivity in infertile patients. However,
2%–5% oxygen concentration at the initial steps of embryo
development is known as physiological hypoxia, and it is not
life threatening.
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“Hypoxia-inducible factor 1 (HIF-1)” is overexpressed in tissues
with low oxygen concentrations and acts as a hypoxia-sensitive
transcription factor. HIF-1 modifies cell adaptation to hypoxic
conditions as it is upregulated even in basic levels of physiological
hypoxia (Moeinabadi-Bidgoli et al., 2021). Additionally to normal
embryo development, which occurs in a physiologic hypoxic
environment, HIF-1 also improves embryo’s survival in
pathological hypoxic environments (Dunwoodie, 2009). Moreover,
endometrial HIF-1α expression is upregulated in RIF women, owing
to the possible hypoxic microenvironment in these patients’
endometrium (Xu et al., 2011; Chen et al., 2016). This
overexpression possibly promotes local angiogenesis to overcome
hypoxia-induced consequences. Studies have shown that
vascularization at implantation sites is promoted by HIF-1α
expression via inducing VEGF gene expression (Guo et al., 2021).
Eventually, error-free function of the implantation-related signaling
pathways seems indispensable for a successful pregnancy.

2.5 Treatment of embryo implantation failure
using miR-30d

In 2019, (Balaguer et al., 2019) demonstrated that the miR-30d
deficiency negatively impacts endometrial receptivity and fetal growth.
There was a significant difference in mRNA levels of receptivity
markers such as COX2, LIF, MSX1, MSX2, estrogen, and
progesterone just in the early stages of implantation in miR-30d
deficient murine compared to the wild type (WT). miR-30d
deficiency during the WOI lowers the expression of adhesion
molecules in the blastocysts such as integrin beta-3, integrin alpha-
7, and cadherin-5 and subsequently impairs embryo implantation.
Additionally, impediment of maternal miR-30d transfer to the embryo
led to a decreased implantation rate. The absence of miR-30d also led
to fetal and placental development impairment. They showed that the
pretreatment of miR-30d knocked out (KO) embryos with miR-30d
analogs recovered impaired implantation in both WT and KO groups
(Balaguer et al., 2019). Also, transiently miR-30d transfection into
in vitro cultured human endometrial epithelial cells (hEECs) positively
activated genes associated with the reproductive system’s function
(Moreno-Moya et al., 2014). So, using miR-30d seems to help improve
the implantation outcome. miR-30d can be transferred via exosomes
to reach the implantation microenvironment (Liang et al., 2017).

2.6 Exosomes as a transfer vehicle

As mentioned earlier, extracellular vesicles (EVs) are involved in
the reproductive process, including implantation and embryo
development. Exosomes are small EVs found in both uterine fluid
and embryo culture mediums (Andronico et al., 2019). Indeed, there is
a bidirectional embryo-maternal communication through these
secreted exosomes, whereby endometrial cells and the embryo take
up one another’s exosomes (Figure 1). Meanwhile, endometrial
exosomes are reported to be intensely engaged in facilitating the
optimized condition for embryo implantation. (Blázquez et al.,
2018) demonstrated that EVs derived from endometrial
mesenchymal cells (EV-endMSCs) positively impacted embryo total
cell number, development, and hatching (Blazquez et al., 2018). As
mentioned before, EV miRNAs are essential regulators of the

implantation process. In fact, exosomes are delivery vehicles for
transferring miRNAs (Andronico et al., 2019). Due to exosomes’
limited size capacity, hybrid exosomes were used to load larger
plasmids in a recent study (Lin et al., 2018). Afterward, these
hybrid exosomes are capable of carrying CRISPR/dCas9 as a
potential option to regulate miR-30d expression (Lin et al., 2018).

2.7 Targeted gene overexpression viaCRISPR/
dCas9; using exosome–liposome hybrid
nanoparticles

Activation of the miR-30d gene via CRISPR/dCas9 can be
considered a novel treatment for implantation impairment.
Nuclease-deactivated Cas9 (dCas9) can be used for cellular re-
programming, such as activating silent endogenous genes or over-
expression and down-expression of specific genes. Since
dCas9 endonuclease activity is suppressed, it is an effective gene-
editing tool for activating or repressing gene expression without
breaking the DNA. CRISPR/dCas9 can be a more powerful
activator via fusing dCas9 proteins to a tetramer of VP16 to make
a hybrid protein called dCas9-VP64 (Chavez et al., 2015). This hybrid
combination requires a suitable transfer system as well. There are
many targeted gene delivery systems, including viruses, liposomes, and
membrane-derived vesicles such as exosomes. In order to avoid
triggering immunogenic responses, exosomes will be administered.
Delivery of the CRISPR/dCas9 with exosome–liposome hybrid
nanoparticles is an effective way to transfer large-sized plasmid
DNA and overcome the small size of exosomes (Lin et al., 2018;
Nazerian et al., 2021).

3 Strategy

We suggest that the hypoxia-sensitive regulation of miR-30d
expression via trophoblast-specific dCas-9 delivery by engineered
exosomes could enhance adhesion, invasion, and angiogenesis,
leading to improved implantation and bypass placental
insufficiencies during pregnancy. This strategy consists of three
components:

(1) It is possible to utilize miR-30d as an upstream transcriptomic
regulator of the pre-implantation embryo, leading to
overexpression of specific encoding genes involved in embryo
adhesion, invasion, and angiogenesis. Upregulation of certain
implantation involved molecules, including VEGF, endometrial
estrogen/progesterone receptors, LIF, adhesive proteins such as
ITGA7, ITGB3, and CDH5 alongside COX-2 enzyme production
are caused by miR-30d (Vilella et al., 2015; Balaguer et al., 2019;
Kolanska et al., 2021). Moreover, studies have shown that miR-
30d deficiency during preconception leads to impaired
endometrial receptivity and fetus development (Balaguer et al.,
2019).

(2) It is possible to enter the deactivated CRISPR/dCas9 as a miR-30d
gene activator into trophoblasts. In addition to the lower cost, the
advantage of dCas9 over gene entry into the trophoblasts is the
presence of single guide RNA (sgRNA), which makes miR-30d
gene activation explicitly targeted. Moreover, dCas9 is preferable
to other gene activation methods, including drugs, due to its
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stability in trophoblasts during pregnancy and the possibility of
gene expression regulation by regulatory promoters (Brezgin et al.,
2019). To prevent dCas9 harmful overactivity, we can utilize
regulatory promoters containing hypoxia-response elements
(HREs) as a binding site for hypoxia-inducible factor 1 (HIF-
1), located upstream of dCas9 (Javan and Shahbazi, 2017;
Shakirova et al., 2020) (Figure 2). Thus, before and during
implantation and in conditions of placental insufficiency, the
miR-30d expression increases and will be extinguished after
hypoxia elimination.

(3) As an ideal gene therapy vector, a plasmid vector containing a
“scaffold/matrix attachment region (S/MAR)” domain is capable of
persistent expression activity with much fewer safety concerns in
comparison with other common vectors such as lentiviral vectors.
The non-viral S/MAR vectors can replicate episomally as extra-
chromosomal entities in targeted trophoblasts (Wong et al., 2011;
Bozza et al., 2020). Among various dCas9 delivery carriers, the
advantage of exosomes is their low immunogenicity (Samanta et al.,
2018). However, due to the limitation of exosome size, it is
suggested to utilize exosome-liposome hybrids as carrier
(Biagioni et al., 2018). As shown in Figure 2, these hybrid
exosomes are equipped with ErbB-4 ligand on their surface in
order to exclusively enter the trophoblast layer without infecting the
inner cell mass.

4 Evaluation of strategy

In order to evaluate the proposed strategy of regulating miR30-
d expression via trophoblast-specific dCas9 delivery, in vitro and in
vivo experimental studies would be conducted. First, in the in vitro
section, an episomal vector containing dCas9 and complementary
sgRNA of the miR-30d gene is designed and encompassed within a
specific exosome-liposome hybrid. This hybrid carrier should be
dressed with a trophoblast-specific antibody on its surface. Second,
this hybrid carrier will specifically transfect the mouse blastocysts’
trophoblast cells, which were previously achieved from IVF.
Finally, the implantation rate of this blastocyst will be evaluated
in vitro. In the in vivo section, these transfected blastocysts will be
transferred to the female mice uterus, and the implantation rate
will be evaluated in vivo (Figure 2).

4.1 In vitro studies

4.1.1 Exosome extraction of endometrial
mesenchymal stem cells

Endometrial mesenchymal stem cells (endMSCs) can be
isolated from the menstrual blood of healthy women (Moreno
et al., 2017). Exosomes from endMSCs is extracted by the exosome

FIGURE 2
Study design. (A) Isolation and characterization of Mesenchymal stem cell-derived exosomes (MSC exosomes) by the ultra-centrifuge method. (B)
Antibodies against ErbB4 conjugate on the surface of constructive liposomes. (C) Exosomes derived from end-MSCs will be incubated with the targeted
liposomes to make exosome-liposome hybrids. (D) Non-viral S/MAR episomal vector will be constructed containing: sgRNA, HIF-1 sensitive promotor
(evidence), dCas 9, VP64, GFP gene sequences, doxycycline sensitive gene, and ribosomal skipping 2A sequences between the genes. (E)
Electroporation will be used to encapsulate the designed episomal S/MAR vector into the hybrid. (F) The liposome-exosome hybrids will be added to the
trophoblast cell media and the episomal vector will specifically enter the trophoblast.
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isolation medium and further centrifugations (Blazquez et al.,
2018).

4.1.2 Trophoblast-targeted liposomes designing
Liposomes are widely used for gene and drug delivery purposes.

Lipoplexes stemming from cationic liposomes generally possess high
cargo delivery efficacy in vitro and form multilamellar structures with
multiple bilayers, and CRISPR/dCas9 are contained within lipid bilayers
(Zhen and Li, 2020). It has been demonstrated that non-specific ionic
interaction between the liposome/lipoplexes cationic surfaces with the
anionic lipid surface of the cell membrane and proteoglycans contributes
to the cellular uptake process (Zhang et al., 2004; Zhen and Li, 2020).
Moreover, the ErbB4 targeting ligand is attached to the liposome surface
to improve further cellular absorption as well as site-specific gene delivery
(Paul et al., 2017). Surface functionalization of liposomes by attaching
targeting ligands on the outer lipid layer can make an active targeting
liposome (Riaz et al., 2018). Therefore, after constructing liposomes,
antibodies against ErbB4, a specific surface protein of the trophoblast, will
be conjugated on the surface of these liposomes (Chobotova et al., 2002).
The remedy to produce cationic lipoplexes is described in detail in
previous studies such as by Junquera and Aicart (2016).

4.1.3 Liposome-exosome hybrid production
Exosomes are small-sized membrane vesicles that can carry

different kinds of molecules. Because of their small size, hybrid
exosomes are promising carriers for the targeted and efficient
delivery of desired molecules (Lin et al., 2018). In order to make
hybrid exosomes, the derived exosomes from endMSCs will be
incubated with the surface-targeted liposomes at 37 C for 12 h, as
shown by Lin et al. (2018). In this study, we suggested the incubation
route due to its simplicity and efficacy in preserving the exosome and
liposome membranes. After that, our plasmid vector can be
encapsulated into this hybrid. The fusion of liposomes and
exosomes will be confirmed by dynamic light scattering (DLS) for
size distribution plus zeta potential (ZP) analysis. DLS measures the
hydrodynamic diameter of hybrid exosomes by the Stokes-Einstein
equation. Besides larger size, hybrid exosomes often possess slightly
reduced ZP compared to liposomes due to the initial negative charges
of the exosomes (Bhattacharjee, 2016). The following exosomal
imaging will reveal confirmation of the fusion (Bhattacharjee, 2016;
Liu et al., 2022). Flow cytometry and western blot analysis will further
confirm the anti-ErbB4 ligand’s existence on the surface of liposome-
exosome hybrid extracts (Lin et al., 2018; Alghuthaymi et al., 2021).
Also, the surface topology of the ErbB4 antibody on liposomes will be
determined by calculating the incorporation ratio as described by for
post-inserted liposomes Lee et al. (2016).

Since our hybrid exosomes are transported to the trophoblast
membrane in vitro, there is no need for surface PEGylation regarding
increasing the circulation stability; especially due to the decreased
cellular uptake and endosomal escape ratio following PEGylation.

4.1.4 Episomal vector design and delivery into the
liposome-exosome hybrid

S/MARs are AT-rich DNA sequences that bind chromatin to the
nuclear matrix (Stavrou et al., 2019). S/MAR vectors are non-integrating
non-viral episomal vectors with low immunogenicity (Wong et al., 2011).
As shown in Figure 2, our non-viral S/MAR episomal vector contains
sgRNA, HIF-1 sensitive promoter, dCas 9, VP64, GFP gene sequences,
doxycycline sensitive gene, and ribosomal skipping 2A sequences between

the genes (Xie et al., 2017). In order to encapsulate the designed episomal
S/MAR vector into the hybrid carrier, electroporation will be conducted
(Bunggulawa et al., 2018).

4.1.5 IVF procedure
Oocytes from the female BDF mouse model will be obtained after

ovulation stimulation by administering the pregnant mare serum
gonadotropin. 48 h later, human chorionic gonadotropin (hCG)
will be administered and stored in the appropriate media. Sperms
of the male rats will be collected from the end of their epididymis and,
after capacitation and maturation, will be added to the oocytes to
fertilize them. During its development, the zygote will further form the
trophoblast and the inner cell mass layer (Balaguer et al., 2019).

4.1.6 Episomal vector transduction into the
trophoblast cells

In order to deliver the genes specifically into the trophoblast cells,
the liposome-exosome hybrids with the trophoblast-specific
antibodies on their surface will be added to the trophoblast cells
media. By attaching the anti-ErbB4 antibodies on the surface of the
hybrid carrier to the ErbB4 protein on the trophoblast surface, the
episomal vector will enter the trophoblast exclusively. In addition, the
trophoblast layer covers the inner cell mass and have a protective role
against foreign molecular or cellular components, including exosomes
(Georgiades et al., 2007). Besides, western blot analysis and fluorescent
imaging will be used for tracking the GFP protein expression to
confirm the specific transduction of the desired vector to the
trophoblast cells (Okada et al., 2007).

4.1.7 miR-30d expression measurement in the
transfected blastocysts

After transfection of the blastocysts, the efficiency of this delivery
system and miR-30d expression level will be assessed by the RT-PCR
method.

4.1.8 Evaluation of the effect of miR-30d
overexpression on the implantation rate

Two groups will be needed to evaluate the effects of mir-30d
overexpression on the implantation. Normal blastocysts obtained from
the IVF procedure without any gene manipulation will be co-cultured
with endMSC-derived exosomes in the first group. The second group will
consist of the blastocysts transfectedwith the episomal vector in the zygote
stage and cultured in the same conditions as the first group. The number
of attached embryos in both groups will be compared before and after
shaking on a rotation shaker to assess the implantation rate.

In order to determine the changes in the molecular level of the
implantation, attached embryos will be separated from the
endometrial cells, and the level of CDH5, ITGB3, and
ITGA7 proteins and gene expression in the embryos will be
assessed by Western blot analysis and RT-qPCR, respectively.
Additionally, Western blot analysis and RT-qPCR will assess the
level of LIF, VEGF, and COX2 proteins and gene expression in the
endometrial cells, respectively (Vilella et al., 2015).

4.2 In vivo studies

Five groups will be considered to evaluate the efficacy of
enhancement in the miR-30d expression on the implantation: 1-
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The first group consists of the female mice that mate with the male
mouse and will be pregnant. 2- The second group consists of the
female mice housed with vasectomized males. 3- The third group
consists of female mice that receive blastocyst of IVF procedure
without any gene manipulation. 4- The fourth group consists of
female mice that received blastocyst of IVF procedure and were
incubated with the liposome-exosome hybrids lacking episomal
vectors. 5- The last group consists of female mice that receive
blastocyst of IVF procedure that were genetically manipulated by
trophoblast-specific gene delivery as discussed previously. 4 days
before embryo transfer (ET), in the third, fourth, and the fifth
groups, female mice will be housed with vasectomized males to
become pseudopregnant, which is necessary for pregnancy. Then
ET will be performed by the non-surgical embryo transfer method.

4.2.1 Evaluation of the effects of dCas9 gene delivery
on the in vivo expression of miR-30d

Oviduct of the mice in each group will be dissected on days 6, 12,
and 16 of their pregnancy. Then, the RT-qPCR method will assess the
miR30d expression level in the trophoblast cells. Besides, confirmation
of specific gene delivery into the trophoblast layer and not in the inner
cell mass layer will be revealed by fluorescence microscopic imaging by
tracking the GFP.

4.2.2 In vivo evaluation of the increase in miR-30d
expression on the implantation

On days 6, 12, and 16 of the pregnancy, implantation sites are
counted after intravenous injection of the Chicago Sky blue solution.
In addition, on days 6, 12, and 16 of pregnancy, mice will be sacrificed,
the uterus and placenta will be isolated, and the uterine and placental
levels of LIF, VEGF, integrin alpha-7, integrin beta-3, and COX2 will
be assessed at the protein and gene level by Western blot and RT-
qPCR techniques, respectively. Fetal growth restriction and placental
insufficiency will be evaluated by measuring crown-rump length
(CRL), the embryos’ weight, and the placenta’s weight on days
12 and 16 of pregnancy.

5 Discussion and future direction

Implantation failure is the major limitation in ART procedures
and mostly stems from impaired endometrial receptivity (Franasiak
et al., 2014; Craciunas et al., 2019). Improving endometrial receptivity
leads to enhanced embryo adhesion, invasion, and angiogenesis as the
crucial steps of embryo implantation. Considering the critical role of
miR-30d in regulating endometrial receptivity by activating related
signalling pathways such as LIF/gp130/STAT and upregulation of
VEGF, we proposed that the miR-30d upregulation will assist the
blastocyst with the implantation. Besides, miR-30d will improve the
fetus’s survival in response to low oxygen concentrations during
pregnancy. In low oxygen conditions, the HIF transcription system
is activated and helps the embryo survive the harsh hypoxic
environment. HIF-1α is mainly associated with hypoxic conditions
(Dunwoodie, 2009). Therefore, a controlled increase of miR-30d in a
hypoxia-sensitive manner in response to HIF-1α upregulation is
suggested in this study.

As previous studies demonstrated, miRNA expression patterns
alter at each stage of the female menstrual cycle and are also
differentially expressed in fertile women compared with RIF

patients (Rekker et al., 2018; von Grothusen et al., 2022).
Meanwhile, the miR-30d expression level undergoes the most
significant changes compared to other microRNAs during the time
of WOI, indicating the potentially pivotal role of miR-30d on embryo
implantation (Kuokkanen et al., 2010; Vilella et al., 2015). Endometrial
secreted miR-30d is absorbed by the trophectoderm cells to modify the
gene expression of the pre-implantation embryo (Altmäe et al., 2013;
Moreno-Moya et al., 2014; Vilella et al., 2015). One of these gene
modifications is inducing VEGF expression by inhibiting MYPT1 and
activating the LIF-induced STAT3 pathway to promote endometrial
angiogenesis. MiR-30d promotes the activation of the LIF-induced
STAT3 pathway, possibly via downregulating SOCS1 in the embryo
and endometrium (Lin et al., 2017; Zhao et al., 2021). Impaired
angiogenesis due to decreased VEGF levels is extensively detected
in RIF patients (Hannan et al., 2011; Lash et al., 2012). Endometrium-
derived and embryo-derived VEGF are involved in endometrial
angiogenesis, increased implantation success, and placental
development. Besides angiogenesis, LIF-induced pathways promote
adhesion and invasion by inducing integrins’ expression and MMPs,
respectively (Alfer et al., 2017; Guo et al., 2021; Zhao et al., 2021). So,
the activation of the LIF/JAK/STAT3 pathway promotes angiogenesis
by inducing VEGF expression, the invasiveness of trophoblastic cells
by activating the transcription of MMPs, and adhesion by increasing
the expression of integrins. In conclusion, regulating miR-30d
expression is presumed to facilitate the implantation process in RIF
patients by enhancing adhesion, invasion, and angiogenesis.

There have also been reports of the miR-30d upregulation effects
on the human endometrial endothelial cells (hEECs) andmice models,
resulting in the activation of reproduction-related genes and improved
implantation outcomes (Moreno-Moya et al., 2014; Vilella et al.,
2015). Also, (Balaguer et al., 2019) assessed the impact of miR-30d
deficiency on endometrial receptivity and reported a significantly
lower implantation success rate in mir-30d knocked-out mice
models compared to wild-type and miR-30d-treated ones (Balaguer
et al., 2019). Therefore, miR-30d upregulation seems imperative for a
successful pregnancy, although the results of the previous studies were
limited to the implantation phase and were not in a controlled
manner. In our proposed strategy, miR-30d expression is
consistently regulated through a feedback mechanism following
hypoxic stress and comes up with a more controlled outcome.
Besides improving implantation, the hypothesized strategy aids in
placental insufficiency during the later stages of pregnancy.

In order to control miR-30d expression, an episomal vector
containing mainly CRISPR/dCas9 and a miR-30d promoter sgRNA
is suggested in this study. Utilizing CRISPR/dCas9 instead of CRISPR/
Cas9 for gene delivery due to dCas9 incapability of breaking the host
DNA can considerably reduce the risk of damaging the embryo DNA.
Genetic manipulation of embryos has been performed in several
previous studies have used direct co-injection of CRISPR/Cas and
sgRNA to generate mutations in rats (Balaguer et al., 2019). However,
their study’s CRISPR/dcas9 delivery method is different from ours, but
they demonstrated efficient gene editing in embryos followed by a
successful pregnancy. Another study by (Tröder et al., 2018) reported
successful genome editing by entering CRISPR/Cas into mouse
zygotes via electroporation (Tröder et al., 2018). Regardless of
CRISPR/Cas delivery method variations in previous studies, the use
of CRISPR/Cas in gene editing led to desired genetically engineered
births. Nevertheless, the uncontrolled expression of miR-30d could be
alarming for the mother and the fetus’s health. Hence, a regulatory
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promoter containing hypoxia-response elements (HREs) is used as a
binding site for hypoxia-inducible factor 1 (HIF-1) to control miR-30d
gene expression in the absence of hypoxic stress. Besides, the
doxycycline susceptibility gene will be inserted into the designed
vector to function as an off switch if required. This strategy
minimizes the risk of inadvertent miR-30d overexpression.

As for vector delivery, a liposome-exosome hybrid can transfer
larger nucleic acid fragments compared to common exosomes (Lin et al.,
2018; Duan et al., 2021). For the liposomal component, cationic
lipoplexes are sufficiently qualified for CRISPR delivery due to the
enhanced encapsulation of negatively charged nucleic acid by
electrostatic attraction. Additionally, cationic liposomes have a better
chance of entering the trophoblast membrane through interacting with
anionic surface lipids and proteoglycans (Zhen and Li, 2020; Nsairat
et al., 2022). The liposome lipoplexes’ cationic lipids form ionic bonds
with the endosomal anionic membrane, which eventually results in
lipoplex disassembly and the release of CRISPR content of the liposomes
into the cytoplasm (Kazemi Oskuee et al., 2016). For safe gene delivery,
we will equip the liposomal surfaces with Erb-B4 targeting ligands to
precisely aim for the trophoblast cells’ surface to surmount the concern
of infecting the inner cell mass (Takeuchi et al., 2017;Wood et al., 2021).
On the plus side, the surrounding trophectoderm layer prevents the
passage of large molecules and cell particles, including exosomes, into
the inner cell mass (Hemberger et al., 2020). Targeted therapy of miR-
30d overexpression provides considerable advantages, including
exclusive gene delivery to trophoblast cells, restrained undesired
effects of blastocyst genetic manipulation, and fewer administered
hybrid exosomes needed.

Finally, miR-30d can be used as a therapeutic option for
increasing embryo implantation success. This study offers a
therapeutic strategy based on transferring hypoxia-sensitive
episomal vectors via trophoblast-specific dCas9 delivery using
engineered hybrid exosomes. In the pathologic hypoxic
conditions, the miR-30d expression would increase due to the
binding of HIF-1α to the HREs promoter. The elevated
expression of miR-30d leads to increased endometrial receptivity
resulting in enhanced embryo adhesion, invasion, and
angiogenesis. Besides improving implantation, this strategy
would hypothetically make the fetus capable of surviving the
harsh environment caused by pathologic hypoxia for the rest of
the pregnancy.

As far as we know, no previous studies have administered hypoxia-
sensitive miR-30d regulation through HIF-1α expression to improve
the implantation success rate. Therefore, it is crucial to investigate this
therapeutic strategy in upcoming ART studies.
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