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A subset of genetic disorders termed ciliopathies are associated with obesity.

The mechanisms behind cilia dysfunction and altered energy homeostasis in

these syndromes are complex and likely involve deficits in both development

and adult homeostasis. Interestingly, several cilia-associated gene mutations

also lead to morbid obesity. While cilia have critical and diverse functions in

energy homeostasis, including their roles in centrally mediated food intake and

peripheral tissues, many questions remain. Here, we briefly discuss syndromic

ciliopathies and monogenic cilia signaling mutations associated with obesity.

We then focus on potential ways neuronal cilia regulate energy homeostasis.

We discuss the literature around cilia and leptin-melanocortin signaling and

changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss

the different brain regions where cilia are implicated in energy homeostasis and

the potential for cilia dysfunction in neural development to contribute to

obesity. We close with a short discussion on the challenges and

opportunities associated with studies looking at neuronal cilia and energy

homeostasis. This review highlights how neuronal cilia-mediated signaling is

critical for proper energy homeostasis.
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Introduction

Primary cilia are sensory, cellular appendages that regulate many signaling pathways

(Wheway et al., 2018). Dysfunction of cilia leads to many pleiotropic syndromes

collectively known as ciliopathies (Reiter and Leroux, 2017). Several ciliopathies such

as Bardet-Biedl syndrome (BBS) and Alström Syndrome (ALMS) share a defining clinical

feature of pediatric obesity. Additionally, there are many cilia-associated proteins,

including G-protein coupled receptors (GPCRs) and signaling molecules [e.g.,

adenylyl cyclase 3 (ADCY3)], whose functions within the cilium are crucial for

regulating energy homeostasis (Figure 1) (Vaisse et al., 2017; Engle et al., 2021). As

obesity is a growing health concern, understanding how cilia regulate energy homeostasis

and how their dysfunction contributes to this disease proves to be an important endeavor.
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This review will briefly describe human ciliopathies

associated with obesity and currently available data on

clinical trials. We also describe genetic mouse models of

ciliopathies and altered cilia-associated proteins that have led

to new insights on mechanisms cilia use to regulate body

weight. We will focus on the importance of neuronal cilia in

regulating energy homeostasis by looking at conditional genetic

mouse models which have implicated the hypothalamus and

other brain regions. We also address potential

neurodevelopmental roles for cilia in obesity, followed by a

discussion suggesting that neuronal cilia within the

hypothalamus play a prominent role in regulating energy

homeostasis. Future studies addressing how cilia influence

neuronal activity through various mechanisms may reveal

targets to treat this health concern.

Human ciliopathies associated with
obesity

Defects in cilia formation, structure, maintenance, and

function are associated with a syndromic group of diseases

called ciliopathies. Ciliopathies present with a wide variety of

clinical features affecting nearly all tissues and organ systems.

One shared clinical feature of several ciliopathies is childhood

obesity (Table 1) (Reiter and Leroux, 2017).

Alström syndrome (ALMS, OMIM
#203800)

ALMS was first characterized in 1959 as an autosomal

recessive disorder that affects less than one out of one million

individuals (Tsang et al., 2018). Unlike most ciliopathies, ALMS

is associated with mutations in a single gene, ALMS1.

ALMS1 protein localizes to the base of the cilium and is

suggested to have a role in cilia formation and stability

(Hearn et al., 2005). Interestingly, most human mutations of

ALMS1 lead to a truncated form of the protein that does not

affect cilia formation (Hearn et al., 2005). However, these

ALMS1 mutations inhibit proper cilia function and affect the

long-term maintenance of the cilium (Hearn et al., 2002; Hearn

et al., 2005; Knorz et al., 2010). Along with obesity, ALMS

features severe insulin resistance associated with Type

2 diabetes mellitus, rod-cone dystrophy, cardiomyopathy, male

infertility, and hearing loss (Mihai et al., 2008). ALMS patients do

not necessarily show outward signs of neurological issues;

however, brain abnormalities such as enlarged ventricles, grey

and white matter atrophy, and diffuse supratentorial white

matter derangement, demonstrates cilia play critical roles in

the human CNS (Citton et al., 2013).

Bardet-Biedl syndrome (BBS, OMIM
#209900)

Similar to ALMS, BBS is another autosomal recessive

disorder characterized by pediatric obesity; however, this

syndrome is more common than ALMS, affecting around 1 in

100,000 individuals in North America and Europe (Forsythe

et al., 2018). Many BBS patients have normal birth weight with

obesity occurring in early childhood. Currently, more than

20 genes are implicated in cases of BBS, including BBS1-21

(Rohrschneider and Bolz, 2020), and most BBS proteins

localize at cilia or near the base of the cilium. Eight of these

gene products (BBS1, 2, 4, 5, 7, 8, 9, and 18) form the BBSome

(Niederlova et al., 2019). The BBSome is a ciliary transport

protein complex that mediates cargo trafficking to the base of,

and removal from, the cilia membrane (Nachury et al., 2007; Jin

and Nachury, 2009; Jin et al., 2010; Ye et al., 2018; Shinde et al.,

FIGURE 1
The Primary Cilium. The primary cilium has several
subdomains that include the cilia membrane, axoneme, transition
zone, ciliary pocket, and the basal body. IFT-A and IFT-B use
dynein and kinesin motors to build and maintain cilia
structure. Several different proteins localize to the cilium that are
important for energy homeostasis. These include TUBBY
(Mukhopadhyay and Jackson, 2013), GPCRs such as NPY2R,
MCHR1, DRD1, and MC4R, ADCY3, and INPP5E which localize to
the ciliary membrane. BBSome proteins traffic proteins to and
from the ciliary membrane and RGRIP1L, RAB23, ALMS1 and
CEP19 localize to the transition zone and base of the cilium,
respectively.
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2020). Different BBS mutations result in different degrees of

obesity and other diagnostic phenotypes such as polydactyly,

retinal degeneration, renal cysts, and hypogonadism (Forsythe

et al., 2017; Niederlova et al., 2019). For example, mutations in

BBS10 are more often associated with an earlier onset of obesity

when compared to mutations in BBS1 (Pomeroy et al., 2021).

Interestingly, BBS genes are important for the development of the

central nervous system. For example, MRI scans of BBS patients

show brain abnormalities including hypothalamic hypoplasia

(Keppler-Noreuil et al., 2011), and empty sella of the pituitary

(Soliman et al., 1996), both of which could contribute to growth

and energy homeostasis features of the syndrome. Mouse models

of BBS also show brain phenotypes like hippocampal hypoplasia

and hydrocephalus (Bennouna-Greene et al., 2011; Singh et al.,

2019).

Other ciliopathies associated with obesity

Other rare disorders associated with cilia dysfunction and

obesity are Carpenter and MORM Syndrome. Carpenter

syndrome (CRPT1 OMIM #201000) is a developmental

disorder characterized by obesity, craniofacial malformations,

polysyndactyly, and intellectual disability (Hor et al., 2018).

MORM syndrome (OMIM #610156) is classified by Mental

retardation, Obesity, Retinal dystrophy, and Micropenis

(Hakim et al., 2012). Homozygous null mutations in the Rab-

GTPase, RAB23, lead to Carpenter syndrome. RAB23 protein is

important for ciliary trafficking of receptors and proteins and is a

negative regulator of hedgehog (HH) signaling. Mutations in the

inositol polyphosphate-5-phosphatase E (INPP5E) gene lead to

MORM syndrome (Zhang et al., 2022). INPP5E is a ciliary

transition zone protein that is associated with establishing the

different ciliary membrane compartments required to regulate

signaling (Figure 1).

All of these syndromes are associated withmutations in genes

important for cilia function, structure, and maintenance. Thus,

cilia function is required for proper feeding behaviors and their

dysfunction leads to obesity. However, the mechanisms that

would link altered cilia function to obesity remain to be

elucidated. It is likely that there are both developmental and

adult homeostatic roles for cilia in energy homeostasis, and that

cilia dysfunction impinges on their roles in the neuronal control

of food intake and in peripheral tissues associated with energy

homeostasis. Further studies to identify direct associations

between ciliopathy gene function and energy homeostasis

could identify potential therapeutic targets for these diseases.

Clinical trials for ciliopathy associated
obesity

Despite over 70% of BBS patients being overweight and

obese, studies to elucidate the relationship between BBS

genotypes and obese phenotypes have not revealed strong

genotype-phenotype correlations (Pomeroy et al., 2021). This

suggests that genetic background and the nature of the ciliopathy

mutations and environment can play roles in the energy

homeostasis phenotypes. Recently, one group used the Clinical

Registry Investigating Bardet-Biedl Syndrome (CRIBBS) to look

at the prevalence of obesity in BBS patients (Pomeroy et al.,

2021). Children with BBS are often born with normal gestational

TABLE 1 Obesity associated ciliopathies and genes. Several human ciliopathies share a common clinical feature, obesity. These include Bardet-Biedl
syndrome, Alström syndrome, Carpenter syndrome, and MORM syndrome. Neuronal cilia also regulate energy homeostasis through different
signaling pathways such as GPCR signaling and the Leptin-melanocortin Pathway (Seo et al., 2009; Obradovic et al., 2021; Yang et al., 2022b) that
have proteins enriched along the cilia membrane. Additional cilia genes that are associated with obesity include CEP19, CEP290 (Leitch et al., 2008),
MC4R, ADCY 3, and RPGRIP1L. Several of these cilia-enriched proteins show altered localization in ciliopathy models.
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length and weight but go on to show rapid weight gain and

obesity in early childhood through adolescence. Loss of function

variants in BBS genes are associated with a high risk for severe

obesity (Pomeroy et al., 2021). Uncovering the specific genotypes

of ciliopathy patients may help optimize the timing of potential

therapies used to treat obesity. Previous trials for weight loss

studies in Prader-Willi syndrome (PWS, OMIM #176270) used

Methionine aminopeptidase 2 inhibitors (MetAP2i). These same

inhibitors were shown to reduce hyperphagia in obese ciliopathy

mouse models (Pottorf et al., 2020). While these studies showed

reductions in weight and food intake in PWS patients, these trials

have been suspended. More recently, a melanocortin-4 receptor

(MC4R) agonist, Setmelanotide, has progressed to phase 3 trials

(Clément et al., 2020). This drug is being tested to treat obesity in

BBS and ALMS patients by reducing appetite and increasing

energy expenditure (ClinicalTrials.gov, NCT04966741).

Additionally, another clinical study is aimed at implementing

caloric restriction in obese patients with autosomal dominant

polycystic kidney disease (ADPKD, OMIM #173900), a disease

characterized by mutations in cilia associated proteins

polycystin-1 and -2 (Kim and Park, 2016). Here, the goal is to

determine if weight loss can alter the progression of cystic disease

(ClinicalTrials.gov, NCT04907799). Although these diseases are

rare, development of both drug and behavioral interventions

could be beneficial for ciliopathy patients. Ultimately,

understanding how cilia are involved in energy homeostasis

may also reveal novel targets for the general population of

obese patients.

Genetic mouse models of cilia
associated obesity

Many genetic mouse models of obesity recapitulate

phenotypes observed in humans, thus making them essential

tools for studying the pathogenesis of obesity. A better

understanding of cilia and their roles in obesity comes from

mouse models of BBS and ALMS, as well as by mice carrying

mutations in specific GPCRs known to localize to cilia and

regulate energy homeostasis, such as melanin-concentrating

hormone receptor 1 (MCHR1) and neuropeptide-Y 2 receptor

(NPY2R). Additionally, mice with mutations in genes important

for the formation and maintenance of primary cilia have proved

essential to building our understanding of cilia regulated

processes and pathways.

BBS and ALMS mouse models are obese

Congenital mouse models of BBS and ALMS are obese, see

(Vaisse et al., 2017) for BBS gene and obese mouse model

elaboration. Two new obese mouse models for BBS include a

gene trap allele (Bbs5−/−) thought to be a congenital null mutation

and a conditional (Bbs5flox/flox) allele of Bbs5. Interestingly, the

Bbs5 conditional mutants become obese, independent of the age

of Bbs5 loss implying homeostatic roles for Bbs5 in energy

homeostasis (Bentley-Ford et al., 2021; Bentley-Ford et al.,

2022). Mouse models of ALMS have included a whole-body

Alms1 knockout (Almsflin/flin) (Geberhiwot et al., 2021) and the fat

aussie mouse which carries a spontaneous 11 bp deletion

resulting in a frameshift and truncating mutation in Alms1

(Arsov et al., 2006; Kim et al., 2020). Both mice become obese

and exhibit adipocyte hypertrophy, hyperglycemia, glucose

intolerance, and leptin resistance. Interestingly, when Alms1

was reintroduced to adipose tissue in the Almsflin/flin mouse,

insulin sensitivity and glucose tolerance were restored

(Geberhiwot et al., 2021). In fat aussie, Alms1 fails to localize

to the base of the cilium in hypothalamic neurons and there is a

significant reduction of adenylyl cyclase 3 (ADCY3) positive cilia

(Heydet et al., 2013). It is unclear if the altered ciliary ADCY3 in

this Alms1 model is due to loss of cilia or failure of ADCY3 to

localize to the cilia membrane. This highlights a challenge for

studies of neuronal cilia, the lack of a universal cilia marker in the

central nervous system.

GPCRs and neuronal cilia

There are several GPCRs enriched in neuronal cilia (Schou

et al., 2015; Mykytyn and Askwith, 2017). If odorant and opsin

receptors are included, then most GPCRs function at cilia.

However, there is an emerging set of GPCRs that localize to

cilia on neurons deep within the brain including MCHR1,

melanocortin 4 receptor (MC4R), NPY2R, NPY5R,

somatostatin receptor 3 (SSTR3), kisspeptin 1 receptor

(KISS1R), serotonin receptor 6 (5HT6), and dopamine

receptor 1 (DRD1) (Berbari et al., 2008a; Loktev and Jackson,

2013; Koemeter-Cox et al., 2014; Siljee et al., 2018) (Table 1).

Many of these GPCRs have known roles in feeding behaviors,

energy homeostasis, and altered cilia localization is observed in

obese ciliopathy mouse models.

For instance, the MCH/MCHR1 signaling pathway has a

well-defined role in energy homeostasis [for a review see (Al-

Massadi et al., 2021)]. MCHR1 localizes to cilia in many areas of

the mouse and rat brain, including the olfactory bulb,

hippocampus, amygdala, hypothalamus, and spinal cord

(Niño-Rivero et al., 2019; Diniz et al., 2020; Brewer et al.,

2022). Using optogenetics, and chemogenetics, activation and

inhibition of the MCH pathway causes cilia shortening and

lengthening, respectively, in the brain as measured with

ADCY3s staining (Alhassen et al., 2022). Interestingly,

MCHR1 ligand, MCH, expression changes based on feeding

status. For example, under fasted conditions, MCH increases

in the lateral hypothalamus (Segal-Lieberman et al., 2003; Simon

et al., 2018). There is also growing evidence to support the

biological importance of ciliary GPCR signaling, such as
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MCHR1, in regulating cilia length and neuronal function (Miki

et al., 2019; Kobayashi et al., 2020; Kobayashi et al., 2021). Ciliary

MCHR1 may regulate different physiological conditions, such as

feeding and be a potential target for conditions with impaired

cilia function, such as ciliopathies. New mouse models, such as a

fusion mCherry protein on the N-terminus of MCHR1 (Jasso

et al., 2021) and an inducible MCHR1 promoter driven cre allele

(Engle et al., 2018), will aid in visual and additional functional

analysis of this GPCR in the brain.

Manymodels of ciliopathies associated with obesity appear to

mislocalize ciliary GPCRs. The BBSome plays an essential role in

dynamically trafficking GPCRs to and from the cilia membrane

[(Ye et al., 2018); (Nozaki et al., 2018; Nozaki et al., 2019; Zhou

et al., 2022)]. BBS mouse models fail to localize MCHR1 and

SSTR3 to the cilium in areas of the brain involved in feeding and

reward pathways, such as the nucleus accumbens, olfactory bulb,

and the hypothalamus (Berbari et al., 2008a). NPY2R and

SSTR3 also fail to localize to the cilium in the absence of

BBSome subunit BBIP10, a protein required for BBSome

stability. These mice also fail to activate c-fos and decrease

food intake in response to NPY2R ligand PYY3-36. Depletion

of Bbs3 showed normal NPY2R cilia localization (Loktev and

Jackson, 2013); however, Bbs1 mutants have decreased NPY2R

cilia localization and NPY2R expression, specifically in POMC

and AgRP neurons (Guo et al., 2019). Interestingly, Bbs3 mutant

mice have increased fat mass but do not develop overt obesity,

and loss of Bbs3 allows for normal formation of the BBSome

(Zhang et al., 2011). ALMS mouse models do not appear to

mislocalize the GPCRs MCHR1 and SSTR3; however, fat aussie

mouse models have a significant reduction in total cilia labeled

with ADCY3 (Heydet et al., 2013). Together, ALMS and BBSmay

serve different functions in regulation of GPCR signaling in the

cilium.

MC4R signaling at the cilium

MC4Rmutations compromise 3%–5% of cases of monogenic

obesity in humans, making MC4R signaling and its downstream

circuitry an appealing target for obesity therapeutics (Huszar

et al., 1997; Lubrano-Berthelier et al., 2006; Bromberg et al.,

2009). Neurons in the paraventricular nucleus of the

hypothalamus (PVN) localize MC4R to cilia (Siljee et al.,

2018). Loss of cilia in MC4R-expressing neurons causes

obesity, hyperphagia, and increased body lengths (Siljee et al.,

2018). AAV vector driven expression of normal and mutated

forms of MC4R, localizes this GPCR with ADCY3 at the primary

cilium (Siljee et al., 2018). This localization is significantly

reduced in human MC4R mutants, p.P230L and p.R236C

(Siljee et al., 2018). Interestingly, these mutations are found in

the third intracellular loop of the GPCR, a region implicated in

ciliary localization (Berbari et al., 2008b). Inhibition of

ADCY3 activity at the cilia membrane using constitutively

active Gαi coupled GPR88 to inhibit MC4R at cilia caused

mice to increase their food intake and become obese (Wang

et al., 2020), demonstrating the importance of MC4R signaling at

cilia.

Melanocortin receptors, like MC4R, require accessory

proteins to regulate their activity and function (Rouault et al.,

2017). For example, melanocortin receptor accessory protein 2

(MRAP2) plays a critical role in energy homeostasis in both mice

and humans (Asai et al., 2013; Jackson et al., 2015; Bruschetta

et al., 2018). Additionally, MC4R and MRAP2 are co-expressed

in many cells within the PVN (Asai et al., 2013). Mice with global

null mutations of MRAP2 are significantly heavier than

littermate controls. MRAP2 deletion specifically in Sim1-

expressing neurons of the PVN causes obesity in mice (Asai

et al., 2013). MRAP2 and MC4R interact directly with each other

to enhance MC4R stimulated cyclic adenosine monophosphate

(cAMP) production (Asai et al., 2013; Jackson et al., 2015).

Recent data also shows that MRAP2 promotes the cilia

localization of MC4R (Bernard et al., 2020). This raises the

question if other neuronal GPCRs, such as MCHR1 and

NPY2R, are regulated by MRAPs or other accessory proteins.

Understanding the molecular mechanisms of neuronal GPCR

localization and function will aid in the development of drug

treatments for metabolic disorders.

Altered cilia signaling machinery and
obesity

Although GPCR signaling is a common paradigm that cilia

use to regulate different physiological processes like vision and

olfaction, it is emerging that cilia may utilize other signaling

mechanisms in the brain. For example, a recent study has

proposed the idea of axo-ciliary synapses. Here, they show

that artificial stimulation of serotonergic axons releases

serotonin directly onto the ciliary receptor 5-

hydroxytrptamine receptor 6 (5-HTR6) in hippocampal

neurons to activate the Gαq/11 RhoA pathway (Sheu et al.,

2022). Further research could elucidate other neuronal

populations that may use their cilium to form axo-ciliary

synapses to regulate different functions, perhaps those

involved in energy homeostasis.

Other alternate mechanisms for ciliary signaling could

involve downstream effectors of GPCRs such as ADCY3.

Polymorphisms in ADCY3 are associated with obesity in

humans (Nordman et al., 2008; Wang et al., 2010). ADCY3 is

highly expressed in the hypothalamus and shown to localize to

neuronal primary cilia (Bishop et al., 2007; Domire andMykytyn,

2009; Caspary et al., 2016). Mice lacking ADCY3 exhibit obesity

that is caused by a decrease in activity, hyperphagia, and leptin

resistance. Additionally, ADCY3 activity in the hypothalamus

was reduced upon forskolin stimulation (Wang et al., 2009).

Similar results are observed in male and female mice using an
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AAV-CRE GFP injection into the hypothalamus of conditional

ADCY3 animals (Cao et al., 2016). These data point toward a role

for hypothalamic ADCY3 in regulating feeding behaviors in both

mice and humans.

Furthermore, when ADCY3 deletion is specific to the

ventromedial hypothalamus (VMH), weight gain is

pronounced in animals on a high fat diet (HFD). In addition,

ADCY3 regulates autophagy by binding to gamma-aminobutyric

acid A receptor-associated protein (GABARAP) (Yang et al.,

2022a). Interestingly, autophagy is another mechanism thought

to be used by cilia to regulate signaling (Pampliega et al., 2013;

Orhon et al., 2015), and there is growing evidence to support a bi-

directional relationship between ciliogenesis and autophagy

(Ávalos et al., 2017). In ADCY3 knockout mice, there is a

reduction of p62 and an increase in LC3-II, two proteins that

regulate autophagy (Cao et al., 2016). Similarly, an increase in

LC3-II and decrease in p62 is observed when overexpression of

ADCY3 is inhibited using an AVV carrying constitutively active

GPR88, a Gi- protein coupled receptor ((Siljee et al., 2018); (Yang

et al., 2022a)).

High fat diets are rich in saturated fatty acids, mainly palmitic

acid, and known to be the main cause of visceral obesity, glucose

intolerance, and insulin resistance (Tchernof and Després, 2013).

Palmitic acid is significantly increased in the hypothalamus of

mice under chronic HFD conditions and in the plasma of obese

humans (Kang et al., 2017). Additionally, chronic HFD in mice

decreases the number and length of cilia of POMC neurons

(Ávalos et al., 2022). Interestingly, treatment of hypothalamic

neurons with palmitic acid impairs autophagy [(Hernández-

Cáceres et al., 2019); (Hernández-Cáceres et al., 2020)] and

reduces cilia number and length and blocks insulin-dependent

signaling [(Ávalos et al., 2022); (Hernández-Cáceres et al., 2020)].

In developing POMC neurons, removal of Intraflagellar

Transport 88 (IFT88) or kinesin family member 3A (Kif3A)

disrupts axonal projections from the ARC to the PVN and

development of POMC neurons through impaired lysosome

protein degradation [(Ding et al., 2021); (Croizier and Bouret,

2022)]. Together, these results show that autophagy may regulate

ciliary signaling and the proper localization of cilia proteins.

Body composition and diet influences autophagy mechanisms

important for ciliogenesis and cilia signaling as well as protein

degradation in a cilia dependent manner.

Transition zone and basal body in energy
homeostasis

The cilium regulates its structure maintenance and

extracellular signaling processing through different

compartments along its axoneme, such as at the transition

zone and basal body. Several centrosome related gene

mutations are also associated with obesity. Ciliopathies such

as ALMS and BBS have mutations in genes associated with

the centrosome. CEP19 is a cilia and centrosome associated

protein that is highly conserved in vertebrates and

invertebrates. Cep-19 knockout mice are morbidly obese,

hyperphagic, glucose intolerant, and insulin resistant which

recapitulates CEP19 mutations in humans (Shalata et al.,

2013) (OMIM #615586). Centromere protein J (Cenpj) is a

protein crucial for centrosome biogenesis and elongation,

cilium disassembly, and spindle pole integrity. Depletion of

Cenpj results in long cilia and abnormal cilia disassembly in

neural progenitor cells in vivo (Ding et al., 2019). Conditional

knockout of Cenpj in the hypothalamus results in decreased

proliferation and increased apoptosis during embryonic

development (Ding et al., 2021). These mice became obese,

hyperphagic and less active in adulthood.

The Abelson-helper integration site 1 (Ahi1) gene product is

required for localizing proteins to the transition zone of the

cilium. When mutated, this gene causes the human ciliopathy

Joubert Syndrome (JBTS, OMIM #213300) which does not

routinely present with obesity [(Thomas et al., 2015); (Adams

et al., 2007)]. In Ahi1 mutant mice, MCHR1 expression in

neurons was similar compared to littermates; however, ciliary

localization of MCHR1 was significantly reduced. Ahi1 depletion

also led to the downregulation of two downstream signaling

pathways of MCHR1, cAMP and extracellular signal-regulated

kinase (ERK), upon ligand stimulation (Hsiao et al., 2021).

Further evidence would be required to see how

Ahi1 associated MCHR1 mislocalization impacts physiological

processes, such as feeding. Another cilia transition zone protein,

retinitis pigmentosa GTPase regulator-interacting protein-1 like

(RPGRIP1L), is also implicated in feeding, as conditional

ablation of RPGRIP1L leads to obesity in mice [(Lewis et al.,

2019); (Wang et al., 2019)]. Congenital RPGRIP1L

hypomorphism in POMC neurons leads to hyperphagic

obesity and increased adiposity; however, deletion of

RPGRIP1L in adult POMC neurons did not result in an

obesity phenotype. These studies also report a reduction in

the ratio of POMC and Neuropeptide-Y (NPY) neurons with

an increase in axonal projections between the arcuate nucleus of

the hypothalamus (ARC) and PVN. These findings suggest that

hypothalamic RPGRIP1L polymorphisms impact the

development of POMC neurons and their derivatives (Wang

et al., 2019).

Neuronal cilia populations and
feeding behaviors

The brain is vital for integrating and coordinating signals,

such as hormones and nutrients, to maintain energy homeostasis.

Cilia on neurons are required for normal energy homeostasis as

conditional knockout models of ciliogenesis genes, IFT88 and

Kif3A, cause obesity (Davenport et al., 2007; Lechtreck, 2015; Lee

et al., 2020). Here, we discuss the roles of neuronal cilia in the
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different nuclei of the hypothalamus and the localization of

GPCRs, specifically MC4R, to hypothalamic neuronal cilia in

response to feeding. Many of these recent data suggest that

neuronal cilia of the hypothalamus may work together to

create a metabolic signaling hub critical for proper energy

homeostasis (Figure 2).

Conditional cilia models implicating the
hypothalamus

The hypothalamus is a key region in the brain known to

regulate feeding behaviors and metabolism, and it consists of

many well-defined nuclei, including the ventromedial

hypothalamus (VMH), arcuate nucleus (ARC), and

paraventricular nucleus (PVN) (Figure 2). The VMH is

important for many homeostatic processes including, skeletal

homeostasis, mood behavior, reproduction, and regulation of

body weight and glucose homeostasis (Krause and Ingraham,

2017). Primary cilia in the VMH are longer than other neuronal

cilia types (Sipos et al., 2018) which are significantly shorter

under metabolic conditions such as obesity and leptin resistance

(Han et al., 2014). Genetic ablation of cilia using Cre-loxP and

bilateral AAV-Cre injection in VMH steroidogenic factor-1

(SF1) expressing neurons caused an increase in body weight,

subcutaneous and gonadal adipose tissue increase, and elevated

serum leptin levels (Sun et al., 2021). Additionally, food intake

was significantly increased in VMH cilia mutants, and they

showed reduced activity, especially during the dark cycle, and

reduced brown adipose tissue thermogenesis (Sun et al., 2021).

Interestingly, humanized ACDCY3 knock-in mice are resistant

to high-fat diet induced obesity and show an increase in cilia

frequency and length in the VMH. Injection of ciliary

ADCY3 inhibitor GPR88 (Siljee et al., 2018) resulted in

obesity under normal chow and attenuated weight gain under

HFD. Similarly, Bbs1 deletion in the VMH using a SIM1 cre

approach results in obesity without altering food intake, energy

absorption, and digestive efficiency (Rouabhi et al., 2021).

Conditional knockout of IFT88 or Kif3A in neonatal

POMC-expressing neurons leads to obesity in adult mice

(Davenport et al., 2007). Interestingly, conditional ablation

of cilia in adult POMC neurons did not result in significant

changes in body weight, food intake, or energy expenditure

suggesting that cilia on these neurons are important for their

embryonic development and early post-natal circuit

organization (Wang et al., 2019). Deletion of Bbs1 in

POMC or AgRP neurons disrupts the formation of the

BBSome and increases body weight and adiposity.

Specifically, this obesity in driven by hyperphagia when the

BBSome is disrupted in POMC neurons, and these mice were

glucose intolerant and insulin resistant. In AgRP neurons,

disruption of the BBSome shows a more pronounced weight

gain and increase in fat mass in females compared to males

(Guo et al., 2019). It is clear that proper cilia assembly and

signaling in the ARC are important for regulating energy

balance. Cenpj conditional knockout models lead to

hypothalamic defects early on and reduced area size of the

ARC and PVN in adults. Additionally, depletion of Cenpj

leads to a decrease in POMC neurons, a reduction of POMC

neuronal projections into the PVN, and increased

spontaneous firing of NPY neurons in the ARC (Ding

et al., 2021). It appears that an increase in AgRP/NPY and

decrease in alpha melano-stimulating hormone (α-MSH)

blocks satiety causing the obese phenotype (Ding et al., 2021).

Cilia in other brain regions associated with
energy homeostasis

Although the hypothalamus appears to be the main brain

region for neuronal cilia regulation of feeding and

FIGURE 2
Ciliary neuronal populations in the CNS. Primary cilia are
found on most neuronal cell types in the CNS and play roles in
regulating different physiological processes. Specifically, cilia on
different cell types in the hypothalamus and other brain
regions such as the nucleus accumbens (NA), striatum, and
nucleus solitarius (NTS) have known roles in regulating energy
homeostasis and feeding. Cilia on hypothalamic neurons in the
paraventricular nucleus (PVN), arcuate nucleus (ARC), and
ventromedial nucleus (VMH) have roles in regulating feeding and
metabolism (Fetissov et al., 2004; Nguyen et al., 2012; Chávez
et al., 2015; Ehrlich et al., 2018; Nishimura et al., 2019;
Nyamugenda et al., 2019; Ramos et al., 2021).
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metabolism, cilia in other regions in the CNS may contribute

to energy homeostasis (Figure 2). For example, in Bbs1 mutant

mice, dopamine receptor 1 (DRD1), localizes to the cilium in

the striatum, amygdala, and olfactory tubercle (Domire et al.,

2011). Interestingly, in BBS mutants, DRD1 localization to the

cilium is accompanied by a reduction of ciliary ADCY3 in

DRD1-expressing neurons. These mice become obese as a

result of reduced locomotor activity which is recapitulated in

DRD1 cilia knockout mice (Stubbs et al., 2022). Additionally,

the hindbrain includes regions such as the nucleus tractus

solitarius (NTS) that have implicated roles in feeding

behavior. Here, POMC neurons located in the NTS respond

to short term satiety signals in the brain stem to regulate

energy homeostasis, whereas POMC neurons in the ARC

respond to long-term feeding signals [(Cheng et al., 2021);

(Zhan et al., 2013)]. When cilia are ablated from POMC

neurons, through Kif3A, mice are obese and present with

an increase in adiposity, lean mass, and body length

(Davenport et al., 2007). Although this study focused on

POMC neurons in the hypothalamus, it is possible that

cilia ablation on POMC neurons in the NTS could

contribute to the obese phenotype. These data suggest that

cilia in other areas of the brain may also regulate energy

homeostasis through additional mechanisms, such as

influencing locomotion or at specific time points. Future

studies should expand upon understanding the role for cilia

in these different brain regions.

Neurodevelopmental roles for cilia in
obesity

The most well-defined roles for primary cilia come from

our understanding of how they mediate hedgehog signaling

in embryonic development and tissue patterning [for a

review see (Goetz and Anderson, 2010)]. Cilia-mediated

hedgehog signaling is critical for patterning many tissues,

including the developing hypothalamus (Szabó et al., 2009;

Shimogori et al., 2010; Blaess et al., 2014) and pituitary

(Treier et al., 2001). In mouse models of BBS,

mispatterning of the hypothalamus is associated with a

potential loss of 20% of POMC neurons in BBS2 and

BBS6 mutants (Seo et al., 2009). In cultured BBS mutant

iPSC cells, hedgehog signaling plays a role in differentiation

into arcuate and other hypothalamic neuronal fates (Wang

et al., 2019; Wang et al., 2021b). In addition, pituitary

phenotypes consistent with perturbations in Hedgehog

patterning defects occur in a mouse model of BBS5

(Bentley-Ford et al., 2021). These observations indicate

the potential for altered hedgehog-mediated patterning to

contribute to ciliopathy-associated obesity later in life.

Challenges and future directions and
conclusions

There are many challenges to understanding neuronal cilia.

Simply visualizing cilia in the CNS is a challenge, as the standard

tubulinmarkers are not specific to the organelle in neurons (Caspary

et al., 2016). Even fundamental questions around understanding if

neuronal cilia act through slower neuropeptide mediated

mechanisms or directly influence neuronal activity, as suggested

with the observation that cilia can directly synapse to neurons (Sheu

et al., 2022), or perhaps cilia serve as both slow and fast modulators

of neurons and circuits. Fascinating work in models like C. elegans

has suggested that neuronal cilia length changes can directly impact

their ability to sense the external environment (Maurya and

Sengupta, 2022). In addition, neuronal cilia also appear to be

capable of sending signals not just receiving them pointing to the

complexity of neuronal cilia signaling [(Wang et al., 2021c);

(Nikonorova et al., 2022)]. In conclusion, how cilia in the brain

regulate energy homeostasis has become a complex question with

impacts beyond the field of obesity and into general neuroscience

and signaling. It is likely that both developmental and homeostatic

processes regulated by CNS cilia can contribute to obesity. It is also

likely that multiple pathways are perturbed in the context of

ciliopathies leading to hyperphagia and obesity.
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