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The centrally projecting Edinger-Westphal nucleus (EWcp) is involved in

stress adaptation. Transient receptor potential ankyrin 1 (TRPA1) mRNA was

previously shown to be expressed abundantly in mouse and human EWcp

urocortin 1 (UCN1) positive neurons and reacted to chronic stress. Since

UCN1 neurons are deeply implicated in stress-related disorders, we

hypothesized that TRPA1/UCN1 neurons are also affected in

posttraumatic stress disorder (PTSD). We examined male Trpa1 wild type

(WT) and gene-deficient (KO) mice in the single prolonged stress (SPS) model

of PTSD. Two weeks later the behavioral changes were monitored by forced

swim test (FST) and restraint. The Trpa1 and Ucn1 mRNA expression and the

UCN1 peptide content were assessed by RNAscope in situ hybridization

technique combined with immunofluorescence labeling in the EWcp. SPS-

induced immobility was lower in Trpa1 KO compared to WT animals, both in

the FST and restraint, corresponding to diminished depression-like behavior.

The copy number of Trpa1 mRNA decreased significantly in EWcp of WT

animals in response to SPS. Higher basal Ucn1 mRNA expression was

observed in the EWcp of KO animals, that was not affected by SPS

exposure. EWcp neurons of WT animals responded to SPS with

substantially increased amount of UCN1 peptide content compared to

control animals, whereas such changes were not observable in KO mice.

The decreased Trpa1mRNA expression in the SPS model of PTSD associated

with increased neuronal UCN1 peptide content suggests that this cation

channel might be involved in the regulation of stress adaptation and may

contribute to the pathomechanism of PTSD.
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1 Introduction

Transient receptor potential ankyrin 1 (TRPA1) is a non-

selective cation channel expressed in the primary sensory

neurons of the dorsal root, vagal and trigeminal ganglia

(Talavera et al., 2020). In the peripheral nervous system it is

involved in pain sensation, inflammatory and immune responses

(Julius, 2013; Moore et al., 2018; Souza Monteiro de Araujo et al.,

2020). Limited knowledge is available about its location and role in

the central nervous system. Its expression has already been

confirmed by our research group in certain stress-related brain

areas, including olfactory bulb, piriform cortex (Konkoly et al.,

2021), hypothalamus (Olah et al., 2021) and dorsal raphe nucleus

(DR) (Milicic et al., unpublished). The highest level of Trpa1mRNA

expression was found in the urocortinergic neurons of the centrally

projecting Edinger-Westphal nucleus (EWcp) in mice (Kormos

et al., 2022). Most recently we found that the TRPA1 ion channel

shows functional activity in patch clamp recordings on acute mouse

EWcp slices (Al-Omari et al., unpublished). Our previous study

revealed that Trpa1 is downregulated in the EWcp both upon

chronic variable mild stress (CVMS) in mice and in humans who

died by suicide. Moreover, altered stress adaptation response was

observed in the absence of TRPA1 in mice (Kormos et al., 2022).

These findings suggested that TRPA1 expressed by the

urocortinergic EWcp neurons might contribute to stress

response. Considering that a disturbed stress adaptation is

characteristic for posttraumatic stress disorder (PTSD) (Perry

and Pollard, 1998; Yehuda, 1998; Kasckow et al., 2001; Rohleder

et al., 2010; Deppermann et al., 2014; Dunlop andWong, 2019), we

investigated the role of TRPA1 in this psychopathology.

PTSD is a mental health condition triggered by intense physical

or emotional trauma (e.g.: accident, childhood abuse, sexual violence,

physical assault, combat exposure and other life-threatening events).

Flashbacks, severe anxiety, and nightmares associated with intrusive

memories, negative changes in mood and thinking, and altered

physical and emotional reactions are all possible symptoms

(Auxéméry, 2018). The most important brain areas being involved

in the pathogenesis of PTSD are the prefrontal cortex (PFC),

amygdala, and hippocampus (Miller et al., 2018; Harnett et al.,

2020; Kamiya and Abe, 2020). The EWcp and its urocortinergic

neurons have not been studied in relation to PTSD, yet.

Our research team has been investigating the role of the EWcp in

stress adaptation response and mood control (Kozicz et al., 2001;

Gaszner and Kozicz, 2003; Gaszner et al., 2004; Gaszner et al., 2007,

2012; Rouwette et al., 2011; Kormos andGaszner, 2013; Kormos et al.,

2022; Ujvári et al., 2022). EWcp expresses urocortin 1 (UCN1)

neuropeptide, which is a member of the corticotropin-releasing

hormone (CRH) family. It binds to the CRH receptor 1 (CRHR1)

and 2 (CRHR2) (Kozicz, 2007), with a 40-fold higher affinity towards

CRHR2 than CRH itself (Vaughan et al., 1995; Deussing and Chen,

2018). Interestingly, direct connections have been identified between

the EWcp and the most relevant PTSD-related limbic brain areas

(PFC, amygdala and hippocampus). For instance, the EWcp sends

fibers to the PFC and amygdala (Zuniga and Ryabinin, 2020; Priest

et al., 2021; Topilko et al., 2022). EWcp cells receive direct synaptic

inputs from hippocampal pyramidal cells that carry serotonin

receptor 2c (Li et al., 2018). Peptidergic EWcp cells send afferent

projections to GABAergic parvalbumin-containing interneurons in

the medial PFC (Bale et al., 2002). Importantly, CRH receptors were

found in all three areas (PFC, amygdala and hippocampus)

implicated in PTSD (Deussing and Chen, 2018).

Here we aimed to test whether TRPA1 on the EWcp/

UCN1 neurons is important in stress adaptation to PTSD. We

hypothesized that altered TRPA1 andUCN1 dynamics in the EWcp

contribute to the behavioral anomalies induced by PTSD. To test

this hypothesis, we used the single prolonged stress (SPS) model of

PTSD and examined the behavioral alterations 2 weeks later. To

support possible causative role, Trpa1KOmice strain was also used.

2 Materials and methods

2.1 Animals

3–4 months-old male Trpa1+/+ (wild type, WT) and Trpa1−/−

(knockout, KO) mice were used. The original breeding pairs were

acquired from Prof. P. Geppetti, University of Florence, Italy),

originally generated by Bautista and co-workers (Bautista et al.,

2006). Mice were generated and characterized as described earlier

(Meza et al., 2006). Animals were bred on a C57BL/6J background

and crossed back after 10 generations. The genotype of offspring for

the Trpa1 gene was verified by PCR (sequences of primers: ASM2:

ATC ACC TAC CAG TAA GTT CAT; ASP2: AGC TGC ATG

TGT GAA TTA AAT).

Animals were housed in the animal facility of theDepartment of

Pharmacology and Pharmacotherapy, University of Pécs in a

temperature and humidity controlled 12 h light–dark cycle

environment (lights on at 6 a.m.) in standard polycarbonate

cages (365 mm × 207 mm × 144 mm). Ad libitum standard

rodent chow and tap water were provided for the animals. Four

to six mice were housed in one cage.

During the experiments all efforts were provided to reduce

the number of animals used and their suffering. All

procedures applied in this protocol were approved by the

Animal Welfare Committee at Pécs University and National

Scientific Ethical Committee on Animal Experimentation in

Hungary (permission No: BA02/2000/33/2018) in agreement

with the directive of the European Communities Council in
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1986, and with the Law of XXCIII, in 1998, on Animal Care

and Use in Hungary.

2.2 Experimental design

Animals were divided into four experimental groups: Trpa1KO

(n = 12) andWT (n = 9) mice were exposed to SPS model of PTSD,

while another set of Trpa1KO (n = 10) andWT (n = 10) mice were

used as non-stressed controls. Animals were kept undisturbed in

their home cages for 2 weeks after the SPS exposure then they were

examined in the behavioral tests (forced swim test (FST), restraint).

SPS experiments and the related behavioral tests were carried out

during the early dark phase (i.e.: active phase of mice) between

18 and 22 h. To exclude the effect of acute stress caused by the

behavioral tests, all animals were sacrificed for morphological

studies 36 h after the last test (Figure 1).

2.3 Single prolonged stress

The SPS protocol was conducted as described earlier

(Török et al., 2019). Briefly, each stressed animal was

restrained for 2 h in a 50 ml conical tube closed with a

screw on the top and having ventilation holes on the wall.

Immediately after the restraint stress, the mice were forced to

swim for 15 min in a 2 L Pyrex® graduated beaker filled with

water to a depth of about 20 cm (1.5 L) at 24 ± 1°C. Then the

animals were dried with a towel and returned to their own

cages for 15 min. Finally, each mouse was exposed to diethyl

ether until loss of consciousness. At the end of the SPS, mice

were placed in new cages with fresh bedding. The translational

value of SPS is based on the phenomenon that most human

PTSD is triggered by combined stressors (Lisieski et al., 2018)

and lead to elevated fear response and impaired fear extinction

(Yamamoto et al., 2008; Ganon-Elazar and Akirav, 2012;

Perrine et al., 2016).

2.3.1 Behavioral experiments
Behavioral experiments were carried out 14 days after the

SPS protocol. The behavioral responses of mice were video

recorded and later scored by computer-based event-recorder

software (Solomon coder https://solomon.andraspeter.com)

by an experimenter blinded to the treatment groups. Both the

duration (in percentage) and frequency of all behavioral

parameters were registered upon these tests.

2.3.2 Restraint
We applied the restraint stress again according to the

protocol described above with the sole important difference

that this time it only lasted for 15 min. We investigated the

time spent immobility. Higher immobility time is

characteristic for PTSD-like behavior (Török et al., 2019).

2.3.3 Forced swim test
After 1 h rest, each animal was exposed to FST similarly to

described above for a total duration of 6 min. The following

behavioral parameters were investigated: floating (no obvious

activity or balancing only with one of the hind paws) as

immobility; swimming (movements to emerge the head

from the water using both hind paws) and struggling

behavior (intense motion with all paws to escape from the

FIGURE 1
(A) Schematic representation of the single prolonged stress (SPS) experiment. The animals were restrained for 2 h, then forced to swim for
15 min before being exposed to diethyl ether narcosis until loss of consciousness (B) Time course of the behavioral experiments. On the first day, SPS
was performed in the stressed groups of animals, after 2 weeks behavioral tests were performed in all animals. On the 16th day, mice were sacrificed,
and tissue samples were collected for morphological analysis.
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beaker) as mobility. Immobility reflects passive coping

(Sabban et al., 2015; Kormos et al., 2022) and is considered

a sign of PTSD (Török et al., 2019).

2.4 Perfusion, tissue collection

Thirty-six hours after the behavioral experiments all

animals were deeply anesthetized by intraperitoneal

urethane injection (2.4 g/kg) and transcardially perfused

with 20 ml of ice-cold 0.1 M phosphate-buffered saline

(PBS, pH: 7.4) followed by 150 ml 4% paraformaldehyde

(PFA) solution in Millonig buffer (pH 7.4) for 15 min. After

this procedure, the brains were removed, and collected into

PFA for 72 h postfixation at 4°C. The brains were coronally

sectioned using a Leica VT1000 S vibratome (Leica

Biosystems, Wetzlar, Germany), three series of 30 µm

sections were collected and stored in antifreeze solution

(20% ethylene glycol, 30% glycerol and 0.1 M sodium-

phosphate buffer) at −20°C. Sections containing the

EWcp (from Bregma -2.92 mm to -4.04 mm according to

Paxinos and Franklin (Paxinos and Franklin, 2001)) were

selected for morphological studies.

2.5 RNAscope in situ hybridization (ISH)
combined with immunofluorescence

The RNAscope ISH was performed on two different series of

coronal EWcp sections to detect the Ucn1 and Trpa1 mRNA

expression. RNAscope Multiplex Fluorescent Reagent Kit v.2

(Advanced Cell Diagnostics, Newark, CA, United States ) was

FIGURE 2
Alterations of the behavioral parameters in Trpa1 wild type (WT) and knockout (KO) mice during the restraint stress. Individual values are
represented on a Gantt diagram (A).Columns represent the time of immobility (B) (two-way ANOVA followed by Tukey’s post-hoc test; *p < 0.05 and
***p < 0.001; n = 9–12/group). SPS: single prolonged stress.

Frontiers in Cell and Developmental Biology frontiersin.org04

Konkoly et al. 10.3389/fcell.2022.1059073

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1059073


used according to the protocol described earlier by our research group

(Konkoly et al., 2021). Briefly, after the tissue pretreatment, samples

were hybridized with the probe specific to mouse Trpa1 (ACD, Cat.

No. 400,211-C2) and Ucn1 (ACD, Cat. No. 466,261) mRNA. In our

KO animals the major part of exon 23 was replaced, thus, a modified

Trpa1mRNA and mutated TRPA1 protein is expressed in KO mice

with loss of function.However, the commercially available RNAscope

probe hybridizes with the non-deleted mRNA sequence of the non-

functioning protein, the RNAscope gives positive signal in knockout

mice also.

Signal amplification and channel development was carried out

according to the manual. In case of RNAscope 3-plex mouse positive

control probes (ACD; Cat. No. 320,881, Advanced Cell Diagnostics,

Newark, CA, United States ), specific to RNA polymerase II subunit A

mRNA (Polr2a (fluorescein)), peptidylprolyl isomerase B mRNA (Ppib

(cyanine 3, Cy3)) and ubiquitin C mRNA (Ubc (cyanine 5, Cy5)), and

3-plex negative control probes (ACD; Cat. No. 320,871), specific to

bacterial D-box binding PAR BZIP transcription factor (dabP) mRNA,

were also used as technical controls. That series, where the Trpa1 was

the target, ISHwas combinedwith immunofluorescence tomeasure the

UCN1 peptide content of the neurons in the EWcp (Kormos et al.,

2022). Briefly, after channel development of the RNAscope ISH,

sections were washed for 2 × 15min in PBS, incubated overnight at

room temperature (RT) with recombinant anti-urocortin 1 antibody

(Abcam Cat. No. ab283503) diluted (1:10.000) in PBS with 2% normal

donkey serum. Sections were washed for 2 × 15min in PBS and

FIGURE 3
Changes in the behavioral parameters in Trpa1 wild type (WT) and knockout (KO) mice during the forced swim test. Individual values are
represented on a Gantt diagram (A). Columns depict the duration of immobility (B) (two-way ANOVA followed by Tukey’s post-hoc test; *p < 0.05,
**p < 0.01, and ***p < 0.001; n = 9–12/group). SPS: single prolonged stress.
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incubated in Alexa Fluor 488-conjugated donkey anti-rabbit secondary

antibody (Jackson ImmunoResearch Europe Ltd., Cambridgeshire, UK;

Cat. No. 711-545-152), diluted to 1:500 in 1 × PBS with 2% normal

donkey serum for 3 h at RT. After rinses, we applied 4′,6-diamidino-2-

phenylindole (DAPI (Cat. No. 323,108, Advanced Cell Diagnostics,

Newark, CA)) to visualize cell nuclei and sections were mounted with

ProLong Diamond Antifade Mountant (Thermo Fisher Scientific,

Waltham, MA, United States ) for confocal microscopy.

2.6 Microscopy, digital imaging, and
morphometry

For imaging we used the Olympus Fluoview FV-1000

laser scanning confocal microscope and FluoView FV-

1000S-IX81 image acquisition software system (Olympus

Europa, Hamburg, Germany). Digital images were

obtained by sequential scanning in analogue mode for the

respective fluorophores to avoid false positive signal due to

the slightly overlapping emission spectra and to detect

FIGURE 4
Effect of single prolonged stress (SPS) on the Trpa1
expression in the centrally projecting Edinger-Westphal nucleus
(EWcp). Representative image of the Trpa1mRNA expression in the
EWcp neurons of wild type (WT) mice (A). Effect of SPS on the
Trpa1 mRNA expression (B). Red dots represent Trpa1 mRNA
copies while cell nuclei were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI) (blue). Scale bars: 25 µm. Statistical analysis
established significantly decreased amount of Trpa1 mRNA in the
EWcp after SPS (Student’s t-test; *p < 0.05; n = 7/groups) (C).

FIGURE 5
Alteration of the urocortin 1 (Ucn1) mRNA expression in the
centrally projecting Edinger-Westphal nucleus (EWcp) upon single
prolonged stress (SPS). Representative confocal images of the
Ucn1 (green) mRNA expression in the EWcp neurons,
visualized by RNAscope in situ hybridization. Sections were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue)
for nuclei. Scale bars: 25 µm (A). Columns represent the specific
signal density of Ucn1 mRNA/neuron (B) (two-way ANOVA
followed by Tukey’s post-hoc test; **p < 0.01; n = 8/group). au:
arbitrary unit. WT: wild type, KO: knockout.
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reliably quantifiable fluorescent signal. The confocal

aperture was set to 80 μm, and the analogue sequential

scanning was performed using a ×60 objective lens (NA:

1.35). An optical thickness of 3.5 µm was calculated by the

software and the resolution was set to 1,024 × 1,024 pixel.

The excitation time was set to 4 µs per pixel. DAPI was

excited at 405 nm, Fluorescein as well as Alexa Fluor 488 at

488 nm and Cy3 at 543 nm. To visualize the different targets,

we used the following virtual colors for the fluorescent

signals: blue for DAPI, red for Cyanine 3, green for

Fluorescein and Alexa 488.

The morphometry was performed using ImageJ

software (version 1.52a, NIH, United States ) on non-

edited pictures. In case of the Ucn1 mRNA and

UCN1 peptide the intensity of the fluorescence was

measured in 5-10 cell bodies for Ucn1/UCN1 using four

non-edited images of the corresponding channel. The

region of interest was manually determined at

cytoplasmic areas of neurons. The signal density was

measured and corrected for the background signal. The

specific signal density (SSD) was expressed in arbitrary

units (au). The average of the SSD of 5-10 neurons was

quantified in four sections. The average of these four values

represented the SSD value of one mouse.

In case of the Trpa1 mRNA signal we manually counted the

number of copies per cell in 5-10 neurons of a section, in four

representative sections per animal. Finally, these values were

averaged as described above and subjected to the statistical

assessment.

2.7 Statistical analysis

All statistical analyses were carried out applying Statistica

13.5.0 software. Data are represented as mean ± SEM. Datasets

were tested for normal distribution and for homogeneity of

variance. The comparison between mRNA expression of

control and stressed WT animals was performed by paired

sample t-test. In the further experiments, the main effects

were studied by two-way analysis of variance (ANOVA,

factors SPS and genotype) followed by Tukey’s post hoc tests.

If the p-value was lower than 0.05, it was considered statistically

significant.

3 Results

3.1 TRPA1 KO mice show blunted SPS-
induced immobility in the restraint stress
compared to the stressed WT animals

In restraint stress, we detected enhanced immobility in both

stressed groups compared to the control, non-stressed mice with

a significant main effect of stress (FSPS (1.36) = 30.34, p < 0.01).

The determinant influence of the genotype (Fgenotype (1.36) =

11.81, p < 0.01) meant that the degree of immobility was

significantly lower in both groups of KO mice in comparison

with the related WT animals without interaction between stress

and genotype (Figure 2).

FIGURE 6
Effects of single prolonged stress (SPS) on the urocortin 1
(UCN1) peptide content of the centrally projecting Edinger-
Westphal nucleus (EWcp) neurons. Representative confocal
images of the UCN1 (green) immunofluorescence in the
EWcp neurons. Scale bars: 25 µm (A). Columns represent the
specific signal density of urocortin 1 peptide/neuron (B) (two-way
ANOVA followed by Tukey’s post-hoc test; ***p < 0.001; n = 8/
group). au: arbitrary unit, WT: wild type, KO: knockout.
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3.1.1 TRPA1 KO mice do not show SPS-induced
immobility in forced swim test

During the FST, stressed WT mice showed significantly

increased immobility compared to their control counterparts,

however such differences were not detectable in case of KO

animals with a significant main effect of the genotype in ANOVA

(Fgenotype (1.37) = 5.61, p < 0.03), and strong tendency in themain

effect of stress (FSPS (1.37) = 4.07, p < 0.06), but without

interaction between stress and genotype (Figure 3).

3.2 Trpa1 mRNA expression is
downregulated in the urocortinergic
neurons of the EWcp upon SPS

RNAscope ISH was used to investigate the Trpa1

expression in the EWcp combined with

UCN1 immunofluorescent signal in WT animals. We have

proven once again the colocalization of Trpa1 transcripts

with UCN1 peptide in the EWcp neurons (Suppl. Figure 1).

We detected significantly lower number of Trpa1 mRNA

copies in the urocortinergic neurons of stressed animals

compared to the controls (tcopy/cell (2.14) = 2.65, p < 0.02)

(Figure 4).

3.3 Increased basal Ucn1 mRNA
expression was detected in the EWcp of
TRPA1 KO mice

RNAscope ISH was used to measure the Ucn1 mRNA

expression in the EWcp of WT and KO mice. Both basal and

SPS-induced Ucn1 expression was significantly elevated in

the KO animals compared to the WT counterparts with a

strong main effect of the genotype (Fgenotype (1.22) = 30.70,

p < 0.01) and the stress (FSPS (1.22) = 4.99, p < 0.04) without

interaction. Although stress has a main effect in ANOVA

test, upon Tukey’s post hoc comparison there was no

significant difference between controls and SPS-treated

groups (both pWT and pKO > 0.30). (Figure 5).

3.4 TRPA1 KO mice do not show elevated
UCN1 peptide content of EWcp neurons
upon SPS

We performed immunofluorescence staining to detect the

UCN1 in the EWcp neurons. UCN1 peptide content was

significantly increased in WT animals upon SPS (FSPS (1.28) =

10.29, p < 0.01), however, no SPS-induced changes were observed

in KO mice (Fgenotype (1.28) = 11.36, p < 0.01), which was

supported with a strong interaction in ANOVA (Finteraction
(1.28) = 8.95, p < 0.01, upon Tukey’s post hoc comparison

both pWT and pKO < 0.01) (Figure 6).

4 Discussion

In mice, the PTSD model SPS diminished the Trpa1 mRNA

content in the EWcp with a concomitant increase in its

UCN1 content (see also Supplementary Figure S1 for

independent replication). Additionally, the SPS-induced

PTSD-like behavioral symptoms were diminished in the lack

of TRPA1, together with a prevention of EWcp/UCN1 protein

increase. Controversially, UCN1 mRNA of the EWcp was higher

in KO than WT, independently from stress.

The behavioral results proved the reliability of the SPS as

PTSD model as the WT mice showed higher immobility during

FIGURE 7
Functional-morphological (A) and graphical (B) summary of changes in the urocortinergic centrally projecting Edinger-Westphal nucleus in the
single prolonged stress (SPS) model of PTSD in TRPA1 WT and KO mice.
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both the FST and restraint tests, characteristic for the PTSD

(Lisieski et al., 2018; Verbitsky et al., 2020). The increased

immobility during both tests were supported by findings of

other research groups (Yamamoto et al., 2009; Serova et al.,

2013, 2014; Sabban et al., 2015). Moreover, our present

observation in FST that the lack of TPRA1 prevented stress-

induced behavioral changes is consistent with our previous

findings in the CVMS model (Kormos et al., 2022). These

behavioral observations suggest a functional role of TRPA1 in

stress adaptation.

As Trpa1 mRNA occurred in the EWcp in the greatest

amount, next we focused on this area. First, we replicated our

recent findings (Kormos et al., 2022; Al-Omari et al.,

unpublished), that exclusively UCN1 positive cells express

Trpa1 in the mouse EWcp (Supplementary Figure S2). Trpa1

mRNA expression was significantly reduced upon SPS in WT

mice, which is in full agreement with our previous results in the

CVMS model (Kormos et al., 2022). The high translational value

and the relevance of TRPA1 in stress (mal)adaptation is further

supported by our findings in EWcp samples of suicide victims

where the TRPA1mRNA was also downregulated (Kormos et al.,

2022).

As we have observed that the downregulation of Trpa1 is a

common phenomenon in these stress models, the question arises

as to what might be behind this change. One plausible

explanation from the pharmacological point of view may be

that the action of an agonist may lead to the downregulation of its

target (Rang et al., 2018). TRPA1 ion channels are known to be

activated by glia-derived (Hori and Kim, 2019; Oroian et al.,

2021) reactive free radicals including lipid peroxidation products

and prostanoids (Logashina et al., 2019; Talavera et al., 2020),

mediators released during oxidative stress, neuroinflammation

and importantly, in PTSD (Yehuda, 1998; Kasckow et al., 2001;

Rohleder et al., 2010; Ozdemir et al., 2012; Aschbacher et al.,

2013; Bulut et al., 2013; Miller et al., 2015, 2018; Atli et al., 2016;

Stoop, 2016; Hori and Kim, 2019; Oroian et al., 2021). Further

molecular pharmacological studies are required to identify the

exact role of inflammatory mediators in the regulation of Trpa1

expression in the EWcp. In the lack of a widely trusted

TRPA1 antibody, our present work provides only findings at

mRNA level regarding TRPA1. Importantly, most recently we

proved the presence of functionally active TRPA1 in EWcp/

UCN1 cells by electrophysiological tools (Al-Omari et al.

unpublished).

The modulatory role of TRPA1 in the control of UCN1 cells

is further supported by our findings, that in the absence of the

functional receptor, neither the Ucn1 mRNA nor the

UCN1 peptide content of the cells increased in the SPS

model. Interestingly, this was in line with unchanged FST

immobility time in SPS-exposed KO mice. This altered stress

response might be explained by the reduced adaptation capacity

of the UCN1 cells in KO mice as shown both by higher basal

Ucn1mRNA expression level compared to the WT counterparts,

and by absence of response to SPS. Interestingly, we observed the

same basal difference between the genotypes in CVMS model

(Kormos et al., 2022). We might assume that TRPA1 will also

affect the release of UCN1 and thereby stress adaptation (Kozicz

et al., 2001; Gaszner and Kozicz, 2003; Gaszner and Kozicz, 2003;

Gaszner et al., 2007, 2012; Rouwette et al., 2011; Kormos and

Gaszner, 2013; Kormos et al., 2022; Ujvári et al., 2022). Although

we do not provide experimental evidence for this in the present

study, it is already known that activation of the TRPA1 cation

channel may increase the neuropeptide release (e.g., UCN1) via

elevated intracellular calcium level (Denner et al., 2017; Casello

et al., 2022).Wemight assume that the stress-induced decrease in

Trpa1 expression is aimed to compensate the exaggerated

UCN1 release and thereby the behavioral responses. However,

further investigations are needed to confirm this theory.

Moreover, there was a discrepancy between the low EWcp/

UCN1 peptide content of the TRPA1 KO mice despite their

high Ucn1 mRNA levels, which may be explained by the altered

dynamics of UCN1 peptide release. It is supported by the

previously mentioned role of TRPA1 in the intracellular

calcium homeostasis, as well as by its possible developmental

influence (Asai et al., 2010). However, we cannot exclude that

other cation channels expressed in the EWcp (Li and Ryabinin,

2022), may have compensated for the lack of TRPA1 in KOmice.

Finally, it is well-known that PTSD may show co-morbidity

with enhanced pain sensitivity (Gibson, 2012) and somatoform

disorders (Afari et al., 2014; Egle et al., 2016). Interestingly,

epigenetic modifications on the promoter of TRPA1 gene in

human leukocytes were found in these conditions (Achenbach

et al., 2019). Since the epigenetic profile of a gene promoter may

be similar in both the peripheral and central nervous system

(Davies et al., 2012) it is plausible that these epigenetic changes

may also affect TRPA1 on EWcp/UCN1 neurons. We earlier

found that maternal deprivation blunts the stress responsivity of

UCN1 neurons in the rat EWcp (Gaszner et al., 2009).

Consistently, early life stress in mice caused epigenetic

modifications of histone H3 acetylation in EWcp/UCN1 cells

if superimposed with CVMS (Gaszner et al., 2022). These data

raise the possibility that the EWcp/UCN1 neurons may

contribute not only to the development of major depression

(Kormos and Gaszner, 2013; Farkas et al., 2017)) but also may

underlie PTSD, a disease that share similar epigenetic

pathobiological mechanisms (Blacker et al., 2019).

5 Conclusion and future perspectives

Decreased Trpa1 mRNA expression in the PTSD model

was associated with increased neuronal UCN1 peptide content

in the EWcp. This suggests the involvement of this cation

channel in stress (mal)adaptation contributing to the

pathomechanism of PTSD (Figure 7). In our ongoing

research we examine the recruitment of EWcp/TRPA1/
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UCN1 neurons in models of PTSD in contexts of

neuroinflammation and epigenetics.
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