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Recently, N6-methyladenosine (m6A) RNA methylation in eukaryotic mRNA has become
increasingly obvious in the pathogenesis and prognosis of cancer. Moreover, tumor
microenvironment is involved in the regulation of tumorigenesis. In our research,
the clinical data, including 374 tumor and 50 normal patients, were obtained from
The Cancer Genome Atlas (TCGA). Then 19 m6A regulators were selected from
other studies. Hepatocellular carcinoma (HCC) patients were clustered in cluster1/2,
according to the consensus clustering for the m6A RNA regulators. We found that
m6A regulators were upregulated in cluster1. The cluster1 was associated with higher
programmed death ligand 1 (PD-L1) expression level, higher immunoscore, worse
prognosis, and distinct immune cell infiltration compared with cluster2. Five risk
signatures were identified, including YTH N6-methyladenosine RNA-binding protein
1, YTHDF2, heterogeneous nuclear ribonucleoprotein C, WT1-associated protein,
and methyltransferase-like 3, based on univariate Cox and least absolute shrinkage
and selection operator regression analysis. High-risk group and low-risk group HCC
patients were selected based on the risk score. Similarly, the high-risk group was
extremely associated with higher PD-L1 expression level, higher grade, and worse
overall survival (OS). Also, cluster1 was mainly enriched in high-risk group. Receiver
operating characteristic (ROC) and a nomogram were used to predict the ability and
the probability of 3- and 5-year OS of HCC patients. The time-dependent ROC curve
(AUC) reached 0.77, 0.67, and 0.68 at 1, 3, and 5 years in the training dataset. Also,
AUC areas of 1, 3, and 5 years were 0.7, 0.63, and 0.55 in the validation dataset. The
gene set enrichment analysis showed that MTOR signaling pathway and WNT signaling
pathway were correlated with cluster1 and high-risk group. Collectively, the research
showed that the m6A regulators were significantly associated with tumor immune
microenvironment in HCC. Risk characteristics based on m6A regulators may predict
prognosis in patients with HCC and provide a new therapeutic target for improving the
efficacy of immunotherapy.

Keywords: hepatocellular carcinoma, m6A RNA methylation, PD-L1, tumor immune microenvironment, immune
infiltrates, prognosis
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most prevalent
cancers in the world and the fourth most deadly cancer (Forner
et al., 2012; Bray et al., 2018). In China alone, more than
466,100 people are diagnosed with HCC, and approximately
422,100 individuals succumb to HCC (Chen et al., 2016).
Behind the high incidence of HCC, there are several modifiable
factors, including hepatitis virus, alcohol abuse, smoking, and
metabolic syndrome. Especially the hepatitis virus, in most
of Africa and Asia, such as China, hepatitis B virus is the
single leading risk factor for HCC, whereas in northern Europe
and the United States, hepatitis C virus is the major risk
factor (El-Serag, 2012). According to the location and clinical
stage of HCC, the main treatment methods include surgery,
chemotherapy, and radiotherapy, but the prognosis of advanced
HCC is poor and treatment methods are limited. Interestingly,
immunotherapy has developed rapidly in the past few years,
improving survival of patients with HCC (Zhong et al., 2021).
However, only a few patients with HCC could benefit from
this treatment, and most patients still respond negatively to
immune therapies. Immune system imbalance is involved in
the development of immune-characterized HCC. For example,
activation and ability of NK cells are reduced in HCC patients.
Tumor-associated neutrophils are significantly associated with
the development of HCC. Postoperative HCC patients with high-
level lymphocyte infiltration, especially T cells, are closely related
to better prognosis (Unitt et al., 2006; Margetts et al., 2018;
Fu et al., 2019). Therefore, to identify more biomarkers for
accurate prediction of prognosis and to optimize individualized
immunotherapy management to a large extent, the mechanism
of tumor immune microenvironment (TIME) needs to be
further explored.

Post-transcriptional modification is also involved in
the progression of various diseases and has attracted
significant attention in the biomedicine (He et al., 2019).
N6-methyladenosine (m6A) is the methylated modification
of the sixth N atom of adenine and the most abundant
mRNA modification among numerous RNA modifications.
The average 1,000 nt contain one or two m6A residues (Krug
et al., 1976; Du et al., 2019). There are three types in the m6A
regulators, including writers, erasers, and readers. The m6A
is catalyzed by the methyltransferase complex (MTC), also
known as the “writer,” which included methyltransferase-like
3 (METTL3), METTL14, METTL16, WT1-associated protein
(WTAP), zinc finger CCCH domain-containing protein 13
(ZC3H13), ZCCHC4, KIAA1429, zinc finger protein (ZFP217),
RNA-binding motif protein 15 (RBM15), and RBM15B (Ping
et al., 2014; Patil et al., 2016; Wang et al., 2016, 2017; Warda
et al., 2017; Knuckles et al., 2018; Yue et al., 2018; Song et al.,
2019; Pinto et al., 2020). Demethylase, also termed as “eraser,”
comprising fat mass- and obesity-associated protein (FTO)
and α-ketoglutarate-dependent dioxygenase alkB homolog 5
(ALKBH5), removes m6A methylation groups from RNA (Zhao
et al., 2014; Zhang et al., 2017). The “readers” bind to the m6A
methylation site, which include YTH domain-containing 1

(YTHDC1), YTHDC2, heterogeneous nuclear ribonucleoprotein
C (HNRNPC), HNRNPA2B1 YTH N6-methyladenosine RNA-
binding protein 1 (YTHDF1), YTHDF2, and YTHDF3 (Wang
et al., 2014, 2015; Alarcón et al., 2015; Liu et al., 2015; Hsu et al.,
2017; Shi et al., 2017; Kasowitz et al., 2018). In HCC, patients
with higher levels of YTHDF1 and METTL3 are associated
with worse overall survival (OS). YTHDF1 can mediate the
m6A to enhance Snail expression. METTL3 deficiency leads
to a decrease in m6A, which blocks the EMT of cancer cells
(Lin et al., 2019; Zhou et al., 2019). However, the mechanisms
of other m6A methylation regulators in liver cancer remain
unclear. Moreover, the correlation between m6A methylation
modulator and programmed death ligand 1 (PD-L1) remains to
be fully explored.

In this research, the relationship of m6A RNA methylation
regulators with PD-L1, prognosis, and TIME in HCC was
analyzed. In addition, we established a cluster subtype and risk
model for m6A regulators to identify novel HCC markers and
novel therapeutic strategies (Supplementary Figure 1).

MATERIALS AND METHODS

Dataset Source
The HCC clinical data and the mRNA expression data of patients
were obtained from The Cancer Genome Atlas (TCGA) data
portal.1 The research included 374 tumor and 50 normal samples.
The TCGA data were downloaded by using the R package
“TCGAbiolinks” (Colaprico et al., 2016).

Identification of Consensus Clustering
and Prognosis for m6A RNA Methylation
Regulators
In the research, 19 m6A regulators were selected. HCC patients
were clustered into cluster1 (n = 166) and cluster2 (n = 169) by
using R package “ConsensusClusterPlus”.2 Furthermore, we used
univariate Cox analysis and least absolute shrinkage and selection
operator (LASSO) regression to identify five risk signatures,
including YTHDF1, YTHDF2, HNRNPC, WTAP, and METTL3,
and a risk score was generated for each HCC patient. Kaplan–
Meier curves and receiver operating characteristic (ROC) curves
were used to assess the prognostic capacity of the risk scores.

Identification of the Correction Between
m6A RNA Regulators and TIME in HCC
The R package “estimate” was used to calculate the immunoscore
for each patient with the ESTIMATE algorithm. The fraction
of 22 immune cell types between cluster1 and cluster2 and the
gene set enrichment analysis (GSEA) were analyzed through
Sangerbox website.3 Also, the effect of somatic copy number

1https://portal.gdc.cancer.gov/
2http://www.bioconductor.org/
3http://sangerbox.com/
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change (CNA) based on m6A modulator signal on immune cell
infiltration was explored based on CIBERSORT.4

A Predictive Nomogram
A nomogram was built to investigate the probability of prognosis
in patients (Iasonos et al., 2008). Then the discrimination and
accuracy of the nomogram were assessed by the concordance
index (C-index) and a calibration.

Statistical Analysis
Statistical tests were carried out using GraphPad Prism 8.0
(GraphPad Software, San Diego, CA, United States) and R
version 4.0.2 (version 4.0.25). “limma,” “ConsensusClusterPlus,”
“survival,” “glmnet,” “edgeR,” and “timeROC” R
package were used.

RESULTS

The m6A RNA Methylation Regulators
Expressed Differently in HCC
By comparing 50 normal and 374 tumor tissues, METTL14,
YTHDC1, ZC3H13, ALKBH5, YTHDF2, and RBM15 had
extremely lower expression in tumor tissues (p< 0.001, Figure 1).
Also, the expression levels of YTHDC2, WTAP, and FTO were
markedly lower in tumor tissues (p < 0.05). On the contrary,
METTL3, KIAA1429, RBM15B, HNRNPA2B1, and HNRNPC
had significantly higher expression in tumor tissues (p < 0.001).
The results showed that m6A regulators could be involved in
biological development of HCC.

4https://cibersort.stanford.edu/
5https://www.r-project.org/

The Consensus Cluster of m6A RNA
Methylation Regulators Was Significantly
Associated With Clinical Signatures of
Patients With HCC
It is determined that k = 2 has the best clustering stability from
k = 2 to 9, based on the similarity between the expression level of
m6A regulators and the proportion of fuzzy clustering measures
(Supplementary Figure 2). According to the expression levels
of the m6A regulators, 335 HCC patients were clustered into
cluster1 and cluster2 (n1 = 166, n2 = 169, Figure 2A). The
findings indicated that the expression level of individual m6A
methylation regulators in cluster1 was higher than in cluster2
(Figure 2B). Moreover, the clinical futures were compared
between cluster1 and cluster2. Female and low immunoscore
HCC patients were significantly enriched in cluster1 (p < 0.05,
Figure 2B). The OS (OS, p = 0.0022) and progression-free
survival (PFS, p = 0.0013) were worse in cluster1 (Figures 2C,D).

Correction Between PD-L1 and m6A RNA
Methylation Regulators
It showed that the expression of PD-L1 was dramatically higher
in cluster1 (Figure 3A). Furthermore, PD-L1 was positively
correlated with ZCCHC4, WTAP, YTHDF2, RBM15, METTL3,
YTHDF1, RBM15B, YTHDC1, HNRNPA2B1, HNRNPC,
KIAA1429, ALKBH5, and METTL16 (p < 0.001, Figure 3C).

Association of Distinct Immune Cell
Infiltration With m6A RNA Methylation
Regulators
To analyze the correction between m6A regulators and TIME in
HCC, we analyzed the immunoscore and immune infiltrate level

FIGURE 1 | Expression levels of m6A RNA methylation regulators in normal and tumor samples. *p < 0.05 and ***p < 0.001.
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FIGURE 2 | Correlation of consensus clustering for m6A RNA methylation regulators with the characteristics and survival of patients with HCC. (A) Consensus
clustering matrix for k = 2. (B) Heatmap of correlation of m6A RNA methylation regulators with characteristics of HCC patients. (C,D) OS and PFS of HCC patients in
cluster1 and cluster2. *p < 0.05.

FIGURE 3 | Association of PD-L1 and immune cell infiltration with m6A RNA methylation regulators. (A) Expression level of PD-L1 and immunoscore in cluster1 and
cluster2. (B) GSEA showed that mTOR and Wnt signaling pathways were enriched in cluster1. (C) Correction between PD-L1 and m6A RNA regulators.
(D) Expression levels of 22 immune cell infiltration in cluster1 and cluster2. *p < 0.05, **p < 0.01, and ***p < 0.001.
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of two subgroups (Figure 3A). The immunoscore was higher in
cluster2 with a longer prognosis (p = 0.0265). Then we analyzed
infiltration levels of 22 immune cell types between cluster1 and
cluster2 (Figure 3D). The finding indicated that the infiltration
levels of naïve B cells, T follicular helper cells, and macrophages
M0 were higher in cluster1 (p < 0.05), whereas cluster2 showed
higher infiltration levels of macrophages M2 (p < 0.05). To
elucidate the underlying regulatory mechanisms that lead to
temporal differences between cluster1 and cluster2, GSEA was
used. Finally, the results indicated that mTOR and Wnt signaling
pathways were correlated with cluster1 (Figure 3B).

Accurate Prognostic Prediction of
Signatures for m6A RNA Methylation
Regulators
First, 340 HCC patients were randomly divided into validation
dataset (170 patients) and training dataset (170 patients).
Second, in the training dataset, 13 m6A regulators were
selected by using univariate regression analysis. Then five m6A
regulators were identified based on the LASSO regression
analysis, including YTHDF1, YTHDF2, HNRNPC, WTAP,
and METTL3 (Figure 4). Subsequently, these candidate m6A
regulators integrated into a predictive signature based on
their risk coefficients. The formula went as follows: Risk
Score = (0.4111 × YTHDF1 Expression) + (0.1969 × YTHDF2
Expression) + (0.0930 × HNRNPC Expression)
+ (0.2004 × WTAP Expression) + (0.3277 × METTL3
Expression). Afterward, according to the median risk score,
patients were divided into high- and low-risk groups. The
distributions of five m6A regulators’ expression profiles are
shown in Figure 5A. The heatmap revealed higher expression
levels of these m6A regulators in the high-risk group compared
with the low-risk group (Figure 5A). The high-risk group had
worse prognosis, compared with the low-risk group, based on
Kaplan–Meier curve analysis (Figure 5C). The results were

validated in the validation dataset (Supplementary Figure 3C).
Moreover, we constructed a time-dependent ROC curve (AUC).
As shown in Figure 5B, the AUC of five risk signatures was
0.77, 0.67, and 0.68 at 1, 3, and 5 years. Regarding the validation
dataset, the 1-, 3-, and 5-year AUC values were 0.7, 0.63,
and 0.55 (Supplementary Figure 3B). The results revealed
that five risk signatures had a strong predictive ability in the
prognosis of HCC.

Risk Scores Was Associated With
Clinical Features in HCC
Furthermore, we aimed to explore the correction between
risk score and clinical characteristics in the training dataset
(Figure 6A). The heatmap showed that the high-risk group
mainly contained cluster1 (p < 0.001), alive status (p < 0.001),
and high-grade patients (p < 0.05). Then we found that
YTHDF1, YTHDF2, HNRNPC, WTAP, and METTL3 had higher
expression in high-risk group. Also, PD-L1 was expressed
higher in high-risk group with worse OS, which was validated
in the validation dataset (Figure 6C). Similarly, mTOR and
Wnt signaling pathways were enriched in the high-risk group
(Figure 6D). Then we built a nomogram for HCC patients
to investigate the probability of 3- and 5-year OS. The results
demonstrated the risk score could be a prognostic biomarker for
HCC patients (Figure 6B). Finally, we found that the C-index
was 0.738 and the calibration curve was close to the ideal curve,
which indicated that the nomogram has good predictive effects
(Supplementary Figure 4).

Relationship Between Genetic Mutations
of the m6A Regulator Signatures and
Immune Cell Infiltration
The correlation between risk score and immune cell infiltration
was further analyzed (Figure 7). The risk score had a negative

FIGURE 4 | Identification of five m6A regulator-based risk signatures. (A,B) LASSO analysis of m6A regulator-based risk signatures. (C) Multivariate Cox analysis of
the five m6A regulator-based risk signatures. #The five regulators have strong predictive ability and the results has statistical significance.
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FIGURE 5 | Construction of prognostic signatures for m6A regulator-based risk signatures. (A) Association of status and five m6A RNA regulators with risk score.
(B) The area under AUC of five risk signatures in training dataset. (C) OS of high-risk group and low-risk group in training dataset.

correction with infiltration levels of macrophages M2 and
resting memory CD4 T cells (p < 0.05). Then the risk
score was significantly corrected with B-cell memory, naïve
B cells, T follicular helper cells, and eosinophils (p < 0.05).
The results confirmed that the risk signatures based on m6A
regulators were related to the HCC immune microenvironment.
Moreover, to clarify the potential mechanism of risk score and
different immune cell infiltration, the effect of somatic CNA
based on m6A modulator signal on immune cell infiltration
was analyzed (Figure 8). The CNAs of m6A regulatory
factor signaling, mainly including deep deletion and arm-
level deletion, could affect the infiltration levels of B cells,
CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells,
and especially macrophages (p < 0.05). It revealed that
the five m6A regulators play an important role in TIME
of HCC patients.

DISCUSSION

The m6A regulates gene expression, which regulates cellular
processes such as cell self-proliferation, differentiation, invasion,
and apoptosis (He et al., 2019). The m6A is immobilized by
m6A methyltransferase, removed by m6A demethylases, and
recognized by the reader proteins to regulate RNA metabolism
and progression of various tumors (Li et al., 2017; Ma et al.,
2017; Roignant and Soller, 2017). However, the role of some
m6A regulators in tumor is unclear. For example, METTL14
plays different roles in different types of tumors. Yang et al.
(2020) showed that METTL14 inhibits the proliferation and
metastasis of colorectal cancer by downregulating the oncogenic
long non-coding RNA XIST. Wang M. et al. (2020) reported that
upregulation of METTL14 promotes the growth and metastasis
of pancreatic cancer by mediating the increase of PERP mRNA
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FIGURE 6 | Association of clinical features and functional features with m6A regulator-based risk signatures. (A) Correction between clinical features and five m6A
regulator-based risk signatures. (B) A nomogram for HCC patients. (C) Expression level of PD-L1 in high-risk and low-risk groups. (D) GSEA showed that mTOR
and Wnt signaling pathways were enriched in high-risk group. *p < 0.05, **p < 0.01, and ***p < 0.001.

FIGURE 7 | Correction between immune cells and risk score.

N6-adenosine methylation. Therefore, the expression levels and
functions of m6A regulators are complex in different tumors. The
mechanism of RNA methylation in tumors needs to be further
investigated. Currently, the effect of m6A RNA methylation in the
TIME of HCC needs to be analyzed further.

In the research, we demonstrated the expression of m6A
regulators in HCC, its prognostic value, and the effect of TIME,

YTHDF1, YTHDF2, HNRNPC, WTAP, and METTL3. METTL3
and HNRNPC dramatically decreased in HCC compared with
normal tissues (p < 0.001). YTHDF2 (p < 0.001) and WTAP
(p < 0.05) were significantly upregulated in HCC tissues.
However, the expression level of YTHDF1 was down-regulated in
HCC tissues. Then, two subtypes of HCC, cluster1 and cluster2,
were identified. We found that all m6A regulators upregulated
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FIGURE 8 | The CNAs of m6A regulatory factor signaling. *p < 0.05, **p < 0.01, and ***p < 0.001.

in cluster1. Also, OS and PFS of patients in cluster1 were worse
compared with cluster2. Compared with cluster2, cluster1 was
closely associated with lower immune score and higher PD-
L1 expression level. The results were confirmed by a previous
report, which showed that patients with high PD-L1 expression
had a distinct poorer prognosis than those with low PD-L1
expression (Gao et al., 2009). Moreover, the expression levels
of immune cells were significantly deferent in the two subtypes.
The analysis showed that the infiltration levels of naïve B cells,
T follicular helper cells, and macrophages M0 were higher in
cluster1, whereas the level of macrophages M2 was lower. The
results showed that the m6A regulators were closely associated
with prognosis and TIME in HCC patients. The GSEA reveled
that the functional characteristics of HCC, especially Wnt and
mTOR signaling pathways, were mainly enriched in cluster1.
Tang et al. (2020) reported that m6A demethylase inhibits
tumor by mediating Wnt signaling. Zhao et al. (2020) reported
that m6A RNA modification regulates mTOR signal pathway
in gastrointestinal cancer. Also, Zhang H. et al. (2020) found
that the m6A regulator METTL3 promotes the progression of
retinoblastoma through mTOR signal pathway. The findings
revealed that m6A regulators could affect the progression of HCC
by targeting Wnt and mTOR pathways, which could provide a
new therapeutic strategy for the treatment of HCC.

Furthermore, high- and low-risk group patients were
identified based on the five m6A regulator-based risk signatures.
Interestingly, we found that cluster1 was distinctly enriched in

the high-risk group. Similarly, high-risk group with high PD-
L1 expression level had worse prognosis than low-risk group
with low PD-L1 expression level in the training dataset and
the validation dataset. The nomogram indicated that the risk
score could effectively predict the prognosis of patients with
HCC. Regarding the five m6A regulator-based risk signatures,
four of five m6A regulators, including YTHDF1, YTHDF2,
WTAP, and METTL3, could facilitate the progression of HCC,
and the results were confirmed by previous reports (Chen
et al., 2018, 2019; Liu et al., 2020; Zhang C. et al., 2020).
However, Zhong et al. (2019) showed that YTHDF2 suppresses
cell proliferation and growth in HCC. Moreover, five m6A
regulators are also associated with different cancers. For example,
YTHDF1, YTHDF2, and especially METTL3 are associated with
gastric cancer. YTHDF1 and its m6A-mediated regulation of
Wnt/β-catenin signaling promote gastric cancer progression.
METTL3-mediated m6A modification facilitates gastric cancer
progression and has poor prognosis (Pi et al., 2020; Shen et al.,
2020; Wang Q. et al., 2020). Also, HNRNPC and YTHDF1 have
an effect on prognosis in breast cancer patients (Wu et al.,
2018; Anita et al., 2020). Also, the results were confirmed by
the data obtained from Kaplan–Meier Plotter (Supplementary
Figure 5). The results showed that the dysregulation of specific
m6A regulators plays a key role in the progression of various
kinds of tumors.

Tumor microenvironment is involved in the regulation
of patient prognosis and response to treatment
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(Fridman et al., 2012; Galon et al., 2014; Hui and Chen,
2015). A previous study showed that tumor-infiltrating
lymphocytes could serve as prognostic biomarkers and targets
for immunotherapy in HCC (Ding et al., 2018). However, the
mechanism of immune infiltration in response to HCC is largely
unclear. In this study, we analyzed the correction between
immune cell infiltration and risk score. We found that the
risk score was positively associated with the infiltration levels
of memory B cells, naïve B cells, T follicular helper cells, and
eosinophils, and negatively associated with the infiltration levels
of macrophages M2 and resting memory CD4 T cells. Zheng et al.
(2020) reported that the RNA m6A methylation and its reader
proteins play a key regulatory role in early B-cell development.
These findings reveled that the m6A regulators are associated
with TIME in HCC to some extent. Furthermore, we found
that the CNAs of regulators were closely related to the immune
infiltration levels, including B cells, CD8+ T cells, CD4+ T cells,
neutrophils, dendritic cells, and especially macrophages. It is
further confirmed that the m6A regulators could affect TIME
regulation in HCC.

However, there are some limitations in this research. First,
the data of research are only obtained from the TCGA datasets.
We lack our own independent clinical sample data to verify
our findings. Then the results of our research need further
experimental verification. In the future, we will further research
the correction between m6A regulators and TIME in HCC.

In summary, we systematically assessed the relationship of
TIME, PD-L1, and m6A regulators in HCC. According to
the expression levels of the m6A regulators, HCC patients
were divided into cluster1 and cluster2. The two clusters were
significantly different in PD-L1 expression level, immunoscore,
prognosis, and TIME in HCC. HCC patients with higher PD-
L1 expression or immunoscore were associated with worse
prognosis. Then high-risk group and low-risk group patients
were identified based on the five risk signatures. The high-risk
group was significantly associated with higher PD-L1 expression
levels, higher grades, and worse OS. The GSEA results revealed
that the m6A regulators were associated with the malignant
functional features of HCC, including Wnt and mTOR signaling
pathways. Therefore, the m6A regulators are associated with
TIME in HCC, which could provide a new treatment strategy
for HCC patients.
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