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Astrocytes are the key component of the central nervous system (CNS), serving as
pivotal regulators of neuronal synapse formation and maturation through their ability
to dynamically and bidirectionally communicate with synapses throughout life. In the
past 20 years, numerous astrocyte-derived molecules promoting synaptogenesis have
been discovered. However, our understanding of the cell biological basis underlying
intra-neuron processes and astrocyte-mediated synaptogenesis is still in its infancy.
Here, we provide a comprehensive overview of the various ways astrocytes talk to
neurons, and highlight astrocytes’ heterogeneity that allow them to displays regional-
specific capabilities in boosting synaptogenesis. Finally, we conclude with promises
and future directions on how organoids generated from human induced pluripotent
stem cells (hiPSCs) effectively address the signaling pathways astrocytes employ in
synaptic development.
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tyrosine phosphatases; Ryr3, ryanodine receptor 3; SAP, synapse-associated proteins; SCAP, SREBP cleavage-activating
protein; SNAP-25, synaptosomal-associated protein 25; SPARC, secreted protein acidic and rich in cysteine; SPARCL1,
SPARC-like protein 1; SREBP-1, sterol regulatory element-binding protein 1; SV2, synaptic vesicle glycoprotein 2; TGF,
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INTRODUCTION

Glia got their name in 1856 when Rudolf Virchow observed
a connective structure that seems to hold neurons together.
He simply termed it “nervenkitt” (derived from Greek), which
means nerve glia or nerve glue. Despite this discovery, glia
received little attention among researchers until Santiago Ramón
y Cajal’s histological study in the late 19th century, when he
developed specific staining methods for glial cells and described
their morphology. Based on his studies, in 1909, he raised the
question: “What is the function of glia?” in 1909 (Garcia-Marin
et al., 2007). Since then, significant attention has been brought
upon discovering glia’s diverse physiological roles.

Glia encompass the largest population of the brain apart
from their neuron neighbors, with the ratio of glia to neurons
positively correlating to an animal’s brain size (Friede, 1963).
As evolution has proceeded, glia and neurons have undergone
substantive increases in cell number, diversity, and function,
increasing brain complexity. This co-development of glia and
neurons hints that the increasing number of glia could result from
greater demands involved in synapse regulation. Throughout the
entire central nervous system (CNS), glia are interspersed with
neurons and perform a wide variety of pivotal functions during
development and adulthood. Classically, it has been admitted that
glia passively provide structural, trophic, and metabolic supports
to neurons. However, recent studies have proved otherwise,
revealing how glia play more active roles than previously
thought. For example, glia-secreted factors promote synapse
maturation and maintenance, orchestrate synaptic activity and
neural circuit function (Allen, 2014). Furthermore, their fine
processes increase synaptic receptivity (Barker et al., 2008) and
stability (Bernardinelli et al., 2014).

This review discusses the role glia play in regulating
synaptogenesis within the CNS, focusing on astrocytes, the
most abundant subtype of glia in the CNS that compose ∼20–
40% of total cells of the mammalian brain (Herculano-Houzel,
2014). Moreover, this review highlights promising studies on the
application of astrocytes in human induced pluripotent stem cells
(hiPSCs) to accelerate neurodevelopmental processes of hiPSCs-
derived neurons, focusing on the astrocytes’ ability in neuronal
differentiation and functional maturation.

ASTROCYTE AS A COMPONENT OF THE
WHOLE SYNAPSE

Synapses are the fundamental units in building the entire
neural network, through which signals are transferred from
pre-synaptic neurons to post-synaptic cells in a fast and
point-to-point way (Sudhof, 2018). Specifically, in a chemical
synapse, the pre-synaptic terminal releases neurotransmitters
which then bind to highly selective receptors located on post-
synaptic dendrites. In the early 1990s, Araque et al. (1999)
found that glia intimately regulate and respond to neuronal
activity and neurotransmission, which subsequently led to the
term “tripartite synapses.” A series of studies have shown that
neuron activity can induce intracellular long-duration calcium

spikes and calcium waves in astrocytes, which subsequently
trigger them to release chemical transmitters, leading to feedback
inhibition of synaptic transmission and neuronal activity (Araque
et al., 1999; Durkee and Araque, 2019). Neuronal glutamate
can trigger the release of astrocyte-derived “gliotransmitters,”
including D-serine, glutamate, or adenosine triphosphate (ATP).
Astrocytes can respond to neurotransmitters, which are largely
dependent on the membrane expression of astrocytic G protein-
coupled receptors (GPCRs) (Kofuji and Araque, 2020), which
can bind neurotransmitters and trigger intracellular calcium
elevations (Agulhon et al., 2008). Observation showed that
the kinetics of calcium signals in astrocytes are much slower
compared to neurons (Durkee et al., 2019). Presumably,
calcium rise in astrocytes is mainly mediated by GPCRs, while
in neurons, it is primarily induced by ion channels. It is
essential to mention that controversy exists in the neuroscience
community, with terms including “tripartite synapses” and
“gliotransmitter” being deemed “glio-centric.” A neutral point
of view in terms of astrocytes’ function is that astrocytes
provide an additional layer of information processing to synapses
(Hamilton and Attwell, 2010).

Besides the tight bidirectional chemical communications
between astrocytes and neurons (see Figure 1), morphologically,
a single astrocyte infiltrates its fine processes into neuropils
and intimately wraps up to 140,000 synapses (Bushong et al.,
2002). In turn, for each neuron, its synapses can be wrapped
by numerous fine processes from different astrocytes. During
the wrapping processes, neurons and glia undergo coordinated
morphogenesis in minutes, with a size scale ranging from
nanometers to hundreds of microns (Lamkin and Heiman, 2017).
This coordination between neurons and glia is further supported
by rodent brain slice studies that observed astrocyte processes and
dendritic spines growing or shrinking together upon stimulation
(Haber et al., 2006). Remarkably, these morphological changes
are exquisitely restricted in space, which can be specific to a
single spine. For example, photoactivation of an astrocyte process
on a single synapse displays rapid actin-dependent movements,
with motility changes only occurring in the astrocytic process at
that synapse, with other nearby glia-spine interactions remaining
unaffected (Bernardinelli et al., 2014). Pre-synaptic stimulation
also leads to increased motility in the astrocytic process associated
with its post-synaptic spine. Thus, both neuronal activity and
astrocytic activation modulate perisynaptic astrocytic process
motility. From these studies, questions regarding how glia-
neuron attain this reciprocal association have been raised.
Works in Caenorhabditis elegans might provide insights into the
underlying mechanism coordinating the relationship between
astrocytic processes and the dendritic spine. For example, amphid
glia control amphid neurons’ shape through potassium chloride
cotransporter 3 (KCC-3) and receptor-type guanylate cyclase gcy-
8 (GCY-8) (Singhvi et al., 2016). KCC-3 localizes specifically to a
glial microdomain surrounding amphid neuron microvilli, where
it controls potassium and chloride concentration. The elevated
chloride level, in turn, activates GCY-8 on neuron microvilli
and produces cyclic guanosine monophosphate (cGMP) to
inhibit microvilli shape through neuronal wiskott–Aldrich
syndrome protein and cyclic nucleotide-gated channels. Notably,
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FIGURE 1 | Bidirectional neuron-astrocyte signaling. Pre-synaptic neurotransmitters and post-synaptic release endogenous cannabinoids that bind to astrocytic
GPCRs and ion channels, which result in elevation of intra-astrocyte calcium concentration and trigger gliotransmitter releasing, in turn, perisynaptic gliotransmitters
bind to synaptic receptors regulating synaptic behaviors (Volterra and Meldolesi, 2005; Hamilton and Attwell, 2010; Benarroch, 2016; Kofuji and Araque, 2020). Of
note, subset of AMPA receptors can be found at pre- and post-synaptic membrane and also astrocytes, such as GluR2 in the cerebellum (Matsuda et al., 2000;
Rossi et al., 2008; Molders et al., 2018).

the astrocyte-neuron coordinating maturation was observed
especially during the second and third post-natal weeks, a
time window when astrocytes complete duplication and become
capable of communicating with synapses (Freeman, 2010). Of
note, this temporal relationship indicates other mechanisms
may exist. Zehnder et al. (2021) discovered that there is a
transient high expression of astrocytic mito oxidative metabolism
relevant genes, such as mitochondrial biogenesis genes (PGC-
1α and PGC-1β), and oxidative phosphorylation genes (Cox5b,
Cox41l, Atp5a1, and Cycs) during the third week following birth.
Accordingly, astrocytes contain more ATP content and consume
more oxygen during the third post-natal week compared to
day 50. Conditional astrocytic peroxisome proliferator-activated
receptor gamma coactivator 1 (PGC-1) knockout (KO) dampens
cortical astrocyte maturation, including increased proliferation,
smaller domains, fewer branches, and less distance between
somas. In line with this, the deletion of astrocytic metabotropic
glutamate receptor (mGluR) 5, a gene exhibiting a transient
high expression level during the first post-natal week (Cahoy
et al., 2008; Zhang et al., 2016), leads to aberrant mitochondrial
distribution and smaller size as well as impaired astrocyte
and neuron maturation, suggesting a causal link between
astrocytic mGluR5 and the coordination of astrocyte-neuron
maturation. This also reinforces the idea of a possible mechanism

that neurons communicate with astrocytes through mGluR5,
triggering astrocytic mitochondrial biogenesis that results in
the expression of increased ATP release and, consequently,
promotion of the formation of neighboring synapses. Taken
together, these morphological and functional properties of
astrocytes provide the ability to sense, integrate and regulate
information among their enwrapped synapses, thus working as
a component of the whole synapse.

GLIA PROMOTE SYNAPTOGENESIS

Synaptogenesis has traditionally been regarded as a process
of synapse formation solely involving neurons (Haydon
and Drapeau, 1995). During synapse formation, but before
physical neuron-neuron interactions, neurons are intrinsically
programed to synthesize pre- and post-synaptic components,
allowing trans-synaptic cell-adhesion molecules (CAMs) to
bidirectionally orchestrate synapse formation through the
assembly of pre-existing synaptic components during physical
contact with CAMs (Bukalo and Dityatev, 2012). However,
descriptive studies designate a potential role of astrocytes in
synaptogenesis. Synaptophysin is a synaptic vesicle protein with
its immunoreactivity studied in human postmortem brain tissues
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as a marker for maturation in the fetal brain (Sarnat et al., 2010).
In the hippocampus, synaptophysin became visible in the dentate
gyrus at 12 weeks, followed by CA2 at 14 weeks, CA3 at 15 weeks,
CA4 at 16 weeks, and cornu ammonis (CA) 1 at 19 weeks,
suggesting a precise spatiotemporal maturation of synaptic
components. Indeed, the sequence of synaptogenesis happens
in a variety of structures in the developing human fetal brain
(Sarnat et al., 2010, 2013a,b). Interestingly, the hippocampal
neuron maturation time window just falls behind the astrocyte
appearance starting after 14 weeks of gestation (Stagaard
Janas et al., 1991a,b). This correlation calls into question the
role astrocytes play in synaptogenesis. In the past 20 years,
a steady stream of works has demonstrated that astrocytes
actively promote synaptogenesis (Freeman and Rowitch, 2013;
Khakh and Sofroniew, 2015; Wilton et al., 2019). Using a
two-step “panning” procedure, Barres et al. (1988) can get nearly
100% purity of retinal ganglion cells (RGCs), discovering that
these highly purified neuron cultures could survive but grew
inefficient synapses. Flowing the addition of colliculus neuroglia
to cultures, RGCs achieved significantly enhanced synapse
maturity compared to pure RGC’s (Pfrieger and Barres, 1997;
Ullian et al., 2001). Immunochemical staining and electron
microscope imaging data demonstrated that glia conditioned
medium (GCM) treatment dramatically increases the number
of synapses to nearly seven times in RGCs cultures (Nagler
et al., 2001; Ullian et al., 2001). Thus, glia or glia-conditioned
medium can both directly accelerate synaptogenesis, indicating
that glia-secreted factors might be the underlying cause for this
process. Glia-derived factors that facilitate synaptogenesis will be
further reviewed in the following sections.

IDENTIFICATION OF THE FIRST
GLIA-DERIVED SYNAPTOGENIC
FACTOR–CHOLESTEROL

Brain lipids are highly demanding components for the assembly
of neuron structure and machinery. Cholesterol, in particular, is
not only an essential structural component of the lipid bilayer but
also a highly enriched component within synaptic vesicles and
synaptosomes (Goritz et al., 2005; Pfenninger, 2009). In terms of
cholesterol metabolism, the brain is considered an autonomous
entity, given the difficulty of penetrating the blood-brain barrier.
Thus, brain cholesterol supply is primarily dependent on de novo
synthesis (Bjorkhem and Meaney, 2004). Seminal experiments
have shown that neurons can synthesize a sufficient amount of
cholesterol to survive, grow, and form inefficient synapses, but
must uptake additional astrocytic cholesterol for the formation
of massive functional synapses (Pfrieger and Barres, 1997; Mauch
et al., 2001; Ullian et al., 2001). The first evidence suggesting
that cholesterol is the active component in GCM was performed
on RGC cultures. In vitro experiments found that adding
cholesterol to glia-free RGC cultures increased the frequency of
spontaneous excitatory post-synaptic currents to more than ten
times, which was comparable to GCM. Lowering the cholesterol
concentration in GCM blocks GCM-induced enhancement

of synaptic activity, which can be fully restored by additional
cholesterol (Mauch et al., 2001). In cholesterol absent single-
neuron microcultures, most microtubule-associate protein 2
(MAP2), a neuron dendrite specific marker, accumulates in the
soma, with only 20% of dendrites harboring MAP2. In contrast,
the presence of cholesterol leads to a greater increase of neurotic
cholesterol content and the number of MAP2-positive dendrites,
indicating that dendritic development is the rate-limiting step
for cholesterol-induced synaptogenesis. Accordingly, increased
GluR2/3 expression and evoked excitatory post-synaptic
currents were also observed in both GCM and cholesterol-
containing conditions, while the absence of cholesterol eliminates
GluR2/3 and dendrites (Craig et al., 1993; Goritz et al., 2005).
Taken together, these pieces of evidence demonstrated that
glia-derived cholesterol promotes synapse formation and
functional maturation.

How does glia deliver cholesterol to neurons? Apolipoprotein
E (apoE) has been identified when comparing RGC membrane
composition between culture conditions with and without glia
by mass spectrometry (Mauch et al., 2001). Apolipoproteins
are components of different lipoproteins that form lipoprotein
particles and transport lipids. Astrocytic apoE and cholesterol
can be complexed to apoE containing lipoproteins, and then
be recognized by neuron apoE receptors, such as the light-
density lipoprotein (LDL) receptor (Mahley, 2016). Interestingly,
additional glia-derived apoE gives no synaptogenesis effect,
although apoE plus cholesterol lead to significant synaptogenesis.
This finding suggests that apoE is only responsible for neuron-
glia cholesterol delivery, and neuron-glia lipid metabolism is vital
for supporting synaptogenesis properly.

THE ROLE OF NEURO-GLIA
METABOLISM IN SYNAPTOGENESIS

In vivo experiments have demonstrated that astrocyte lipid
metabolism modulates pre-synaptic terminal maturation and
post-synaptic receptor clustering and stability as well as dendritic
arborization. The sterol regulatory element-binding protein 1
(SREBP-1) is a basic helix-loop-helix leucine zipper (bHLH-Zip)
transcription factor, which regulates the synthesis and cellular
uptake of cholesterol and fatty acids. In the hippocampus,
SREBP-1 is expressed by astrocytes and can be activated by
SREBP cleavage-activating protein (SCAP), especially during
lipoprotein assembly (Madison, 2016). SCAP depletion in the
hippocampal astrocytes severely suppresses the secretion of
cholesterol and phosphatidylcholine. In SCAP conditional KO
mice, pyramidal neurons exhibited a higher number of synapses
but smaller spine head diameter, indicating an immature
phenotype of post-synaptic compartments. These mice also
displayed a lack of mature pre-synaptic terminals, characterized
by a decreased level of synaptosomal-associated protein 25
(SNAP-25), a key molecule involved in pre-synaptic vesicle
release, and a reduced number of pre-synaptic docked vesicles
(van Deijk et al., 2017). Besides SCAP, fatty acid binding protein 7
(FABP7), a protein related to fatty acids transport, is also involved
in synaptic maturation. In the medial prefrontal cortex (mPFC),
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FABP7 preferentially localizes in astrocytes and oligodendrocyte
progenitor cells, but not localizes in neurons and microglia
cells. FABP7 KO mice exhibited reduced neuronal dendritic
arborization and impaired synaptic plasticity (Ebrahimi et al.,
2016). Particularly, mPFC pyramidal neurons revealed decreased
dendritic branches and length, the extent of area covered by
the dendritic arbor, synapse density, and excitatory synaptic
transmission. Consistently, co-cultures of wild-type neurons
with FABP7-deficient astrocytes also lead to a reduction in
dendritic complexity and spine density, confirming that FABP7
KO astrocytes are unable to fully support dendritic arborization
and maturation of cortical neurons. In summary, neuron-glia
lipid metabolism is critical for synaptogenesis, and any factors
that can potentially disturb neuron-glia lipid metabolism can also
potentially affect proper synaptogenesis.

ASTROCYTES REGULATE
SYNAPTOGENESIS OF MANY TYPES OF
SYNAPSES

After the initial findings from Barres laboratory, astrocyte-
derived synaptogenic factors have received significant attention,
and various synaptogenic factors have been discovered, including
thrombospondins (TSP), high endothelial venule protein (hevin),
secreted protein acidic and rich in cysteine (SPARC), brain-
derived neurotrophic factors (BDNF), transforming growth
factor β (TGF β) and γ-protocadherin. Among these secreted
factors, most molecules are critical for glutamatergic synapse
formation and maturation, or both, with some of these
factors also regulating gamma-aminobutyric acid (GABA)-ergic,
cholinergic, and glycinergic synaptogenesis.

Thrombospondins Regulate Excitatory
Synapse Formation
The most well-studied molecule involved in facilitating
glutamatergic synapse formation is TSP. TSPs are soluble
oligomeric extracellular matrix proteins that modulate cell-cell
or cell-matrix contact by binding to membrane receptors or
matrix proteins and cytokines. There are five TSPs in mammals,
with three (TSP-1/2/4) of them being expressed in the CNS. All
five TSPs are encoded by different genes and can form trimeric
proteins including TSP-1/2, or pentameric proteins including
TSP-4. Application of purified TSP-1 in RGCs increases the
number of synapses indicated by pre-synaptic markers and
post-synaptic markers. The increase of synaptic proteins is not
due to increased protein expression level but increased synaptic
localization (Christopherson et al., 2005). Consistently, electron
microscope measurements show that a TSP-1 present medium
is necessary for normal synapse formation. Synapses induced
by TSP-1 are ultrastructurally identical to the chemical synapses
promoted by an astrocyte feeding layer, specifically when looking
at the length or thickness of post-synaptic density protein
between synapses, and the number of docked and total vesicles
per synapse. Interestingly, TSP-1 can only promote pre-synaptic

function but not post-synaptic α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) receptor synaptic insertion.
The astrocyte feeding layer treatment enhances pre-synaptic
uptake of the antibody to the synaptotagmin luminal domain
but fails to enlarge the amplitude of miniature excitatory post-
synaptic currents (mEPSCs) and glutamate-evoked currents.
Accordingly, biochemical experiments revealed that the C
terminal of TSP1 interacts with the astrocytic Pentraxin 3′
N terminal. This interaction blocks Pentraxin3’s ability in
promoting AMPA receptor synaptic clustering. Because applying
Pentraxin3 in culture alone results in an increased dendritic
AMPA receptor content and mEPSCs, which can be abolished
by additional TSP1 but not TSP1 N terminal un-containing
fragments (Fossati et al., 2019). Further in vivo experiments
discovered that TSP-1/2 double null mutations, but not TSP1-
or TSP-2-deficient, lead to a ∼40% decrease in the puncta
number of pre-synaptic marker synaptic vesicle glycoprotein
2 (SV2), which indicates the functional pre-synaptic active
zone, suggesting a robust mutual compensation between TSP-1
and TSP-2. In summary, TSP1/2 initiate events relating to the
establishment of pre- and post-synaptic specializations and
are thus critical components in promoting astrocyte-induced
synaptogenesis. Furthermore, questions have been raised: “How
do TSP play roles in synaptogenesis? Is there any neuronal
receptor for TSP?” Using domain structure analysis, Eroglu
et al. (2009) identified a voltage-gated calcium channel (VGCC)
auxiliary subunit α2δ-1 (Cacna2d-1) as the neuronal receptor
for TSP mediated synaptogenesis and proved that the von
Willebrand factor A (VWF-A) domain of α2δ-1 directly interacts
with epidermal growth factor like (EGF-like) repeats of TSP.
Using gabapentin to disturb TSP-1/2 and α2δ-1 interactions,
excitatory synapse formation can be dramatically inhibited
in vivo and in vitro. Interestingly, pharmacological blocking of
VGCC conductance or disturbing VGCC membrane expression
had no effects on TSP-induced synaptogenesis. Instead, Risher
et al. (2018) demonstrated that α2δ-1 promotes synaptogenesis
and spinogenesis through the post-synaptic Ras-related C3
botulinum toxin substrate 1 (Rac1), a small Rho GTPase mainly
involving in the regulation of the actin cytoskeleton. A landmark
study also demonstrated how the expression of astrocytic factors
is tightly controlled during development stages. Astrocytic
TSP-1/2 reaches peak expression during post-natal days 5–10
and decreases in adulthood (Christopherson et al., 2005).
Correspondingly, synaptogenesis peaks ∼10 days after TSP-1/2
peak expression. Thus, TSP-1/2 through α2δ-1-Rac1 pathways
regulate synaptogenesis in the developing brain. However,
there is little known about how post-synaptic Rac1 can affect
pre-synaptic protein localization and vesicle docking.

Hevin/SPARC Control Excitatory and
Cholinergic Synapse Formation
Besides the extracellular matrix protein TSP, Kucukdereli et al.
(2011) found two more astrocyte-derived matricellular proteins
that modulate glutamatergic synapse formation. Specifically, they
found hevin promoting synaptogenesis and SPARC antagonizing
synaptogenic effects produced by hevin. Hevin null mutant
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mice had a smaller number of excitatory synapses than SPARC
null mutant mice. The reason that SPARC acts as a competitive
inhibitor of hevin is due to their similar domain structures.
Similar situations exist among retinocollicular synapses, and
the mechanism underlying the hevin-mediated glia-neuron
signaling pathway has been identified. Hevin is a glycoprotein
localized to synaptic clefts, where it is also localized with
pre-synaptic neurexin-1 alpha (NRX1α) and post-synaptic
neuroligin-1 (NL1). Hevin serves to bridge NRX1α and NL1
simultaneously to catalyze the formation of trans-synaptic
neurexin/neuroligin complexes and downstream signaling
pathways in thalamocortical glutamatergic connections (Risher
et al., 2014; Singh et al., 2016). To further elucidate downstream
signaling of the complex, a recent study surprisingly found
that neurexin-1/2/3 triple KO or neuroligin-1/2/3/4 KO mice
are both fully responsive to hevin, indicating that a novel
mechanism exists beyond neurexins and neuroligins (Gan and
Sudhof, 2020). In the hippocampus, SPARC ablation causes
decreased synapse formation and aberrant surface AMPARs
accumulation as well as impaired synaptic plasticity (Jones et al.,
2011). Further evidence proves that SPARC disrupts properties of
neuronal β3-integrin complexes, which are coupled to AMPAR
synaptic stabilization. Unlike hevin, SPARC is responsive in
blocking the maturation of cholinergic synaptic terminals
(Albrecht et al., 2012), and autonomously triggers synapse
elimination (Lopez-Murcia et al., 2015). Thus, hevin boosts
glutamatergic synapse formation by forming NRX1α-hevin-
NL1 complexes or other unknown mechanisms, while SPARC
inhibits glutamatergic and cholinergic synaptogenesis by
disrupting the function of neuronal β3-integrin complexes and
NRX1α-hevin-NL1 complex formation across different regions
in the developing brain.

Glypicans Boost Synapse Formation and
Maturation
TSP-1/2 and hevin make remarkable contributions to the initial
formation of AMPA receptor lacking synapses, while astrocyte
conditioned medium (ACM) can boost forming functional
synapses, indicating that other unknown molecules exist in
initiating AMPARs synaptic trafficking and clustering. To
narrow down potential candidates, Allen et al. (2012) carefully
analyzed ACM components by conducting two-dimensional
electrophoresis and affinity column fractionation, and found that
glypican (Gpc) 4/6 strengthen synapses by recruiting AMPARs
to the surface and forming clusters. Western blots show that
Gpc4/6 recruit the GluR1, but not the other subtypes, to the
synaptic membrane. In vivo data confirmed that Gpc4 KO leads
to a 22% decrease of matured synapses in the hippocampal CA1
region with less effect on total synapse number, as Gpc4 null mice
show significantly reduced co-localization of GluR1 and post-
synaptic marker. A further study uncovered the signaling cascade
that Gpc4 upregulates neuronal expression of pentraxin 1 (NP1),
which controls AMPAR synaptic localization (Farhy-Tselnicker
et al., 2017). This study also reported that Gpc4 induces
NP1 pre-synaptic release via type 2a receptor protein tyrosine
phosphatases (RPTPδ). RPTPδ binds GluR1 receptors and

recruits more AMPARs to the post-synaptic membrane, further
promoting the maturation of synapses Thus, astrocytic Gpc4
through pre-synaptic RPTPδ and NP1 boots synapse maturation.
Similar to RPTPδ, leucine-rich repeat transmembrane proteins
(LRRTMs) also bind to Gpc4 to regulate synapse formation (de
Wit et al., 2013; Siddiqui et al., 2013; Ko et al., 2015). Recent work
discovered that post-synaptic LRRTM3 and LRRTM4 interact
simultaneously with pre-synaptic neurexins and PTPσ to induce
pre-synaptic differentiation (Roppongi et al., 2020). These two
pre-synaptic hubs are capable of working separately and parallelly
in a context-dependent manner, highlighting the complexity of
the molecular logic of synaptogenesis.

TGFβ Promotes Excitatory and Inhibitory
Synapse Formation
In addition to extracellular matrix proteins, extrinsic cytokine
TGF-β released from astrocytes boosts glutamatergic and
GABAergic synaptogenesis (Bae et al., 2011; Diniz et al., 2012,
2014a,b). Astrocytic TGF-β1 binds to synaptic or astrocytic
TGF-β receptors to induce D-serine release, and then together
with glutamates to initiate post-synaptic N-methyl-D-aspartate
(NMDA) receptor-dependent synapse formation and maturation
(Diniz et al., 2012, 2014a,b). Interestingly, TGF-β1-induced
inhibitory synapse formation also requires the activation of
post-synaptic Ca2+/calmodulin-dependent protein kinase II
(CaMKII), meaning that glutamate and D-serine bind to
post-synaptic NMDAR and initialize neuroligin2 clustering
at GABAergic synapses. In vivo data finds that TGF-β1
promotes the formation of ultrastructural normal and functional
synapses. In contrast, genetic or pharmacological inhibition of
D-serine signaling prevents synaptogenic effects of TGF-β1,
further confirming that D-serine mediates TGF-β1-induced
synaptogenesis. Since TGF-β is secreted as a precursor protein
that requires extracellular proteolytic activation, it is important
to elucidate the activator of TGF-β1 in the future study.

BDNF Facilitates GABAergic
Synaptogenesis
An in vivo work from the vestibular system reported that
BDNF works with neuronal tyrosine receptor kinase B (TrkB)
regulates the growth and branching of GABAergic axons
(Gomez-Casati et al., 2010). The BDNF was released from
supporting cells which have many characteristics of glia including
the expression of glial fibrillary acidic protein (GFAP). It has
been discovered that GFAP-DN-erbB4 mice (expression of a
dominant-negative erbB4 receptor under glial fibrillary acidic
promoter) display a severe deficiency in synapse formation
and maintenance. By post-natal day 21, biochemical staining
data revealed that presumptive synaptic sites in the utricle
were reduced to 5%, with the presence of fewer pre- and
post-synaptic specializations. This phenotype is due to erbB4
deficiency-induced reduction of BDNF secretion, because (1)
glia-erbB is critical for BDNF production, (2) GFAP-DN-erbB4
expresses a substantial reduction in BDNF mRNA level, and
(3) loss of BDNF phenocopies GFAP-DN-erbB4 effects. Taken
together, glia induce synapse formation through reciprocal

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 July 2021 | Volume 9 | Article 680301

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-680301 July 2, 2021 Time: 15:17 # 7

Shan et al. Astrocytes Control Synaptogenesis

signals between neurons and glia, including BDNF-TrkB
and neuregulin 1 (NRG1)-erbB pathways. Besides GABAergic
synaptogenesis, glia also promotes glycinergic synaptogenesis.
For example, in developing spinal cord neuron cultures, glia-
free conditions reduce the frequency of spontaneous glycinergic
inhibitory post-synaptic currents (IPSCs) but not GABAergic
IPSCs. Adding ACM can prevent this decrement, suggesting
that glia-derived soluble molecules can enhance glycinergic
synaptic transmission (Cuevas et al., 2005). One study shows
that adding purified TSP-1 in culture increases the number
of synapses with inhibitory glycine receptors (GlyRs); blocking
β1-integrins can abolish TSP-1’s effects. This finding provides
a potential pathway for explaining the mechanism of glia-
induced glycinergic synaptogenesis (Hennekinne et al., 2013).
It is important to recognize that this study was conducted on
a mature neuron culture different from the developing context.
Future studies may provide more evidence relating to the
identity of glia-neuron factors and the corresponding signaling
cascade in neurons.

In summary, astrocytic TSP-1/2 and its partner α2δ-1
bind to their neuronal receptors and initiate synaptogenesis,
while the NRX1α-hevin-NL1 complex bridges pre-synaptic
and post-synaptic cell adhesion proteins. Moreover, adhesion
molecule γ-protocadherins (Garrett and Weiner, 2009) can
form glia-neuron homophilic interactions to initiate neuronal
synaptogenic signaling cascades. It is worth mentioning that
the neuron-astrocyte signal changes with development. At
embryonic stages, RGCs develop pre-synaptic terminals and
dendrites intrinsically but cannot gain synaptic receptivity;
by embryonic day 19, astrocytes and RGCs generate direct
contacts, resulting in synaptic receptivity. This indicates that
astrocytic soluble factors alone are insufficient in inducing
synapse maturation at an early stage (Barker et al., 2008).
Consistently, in in vitro neuron cultures, young hippocampal
neurons fail to utilize ACM for synaptogenesis, but physical
neuron-astrocyte contact can promote functional maturation
(Hama et al., 2004). During gestation, a prominent type
of neuronal-astrocytic contact is electrical synapses which
herald the later chemical synapse establishment (Fischbach,
1972; Connors et al., 1983; Jabeen and Thirumalai, 2013,
2018), therefore, electrical gap junction proteins may play a
role in boosting chemical synapse formation and sculpting
neurotransmission during synaptic development (Baker
and Macagno, 2014). Imaging and electrophysiological data
demonstrated that electrical gap junctions bridge bidirectional
astrocytic-neuronal ionic and metabolic signaling in the
human fetal hippocampal formation (Rozental et al., 2001).
Knocking down the gap junction protein innexin 1 during
early embryonic development resulted in impaired neuronal
excitatory synaptic strength in juveniles (Todd et al., 2010).
Moreover, glia also control their nearby GABAergic axon
specification through the gap junctions in C. elegans (Meng
et al., 2016). Taken together, astrocytes mainly use membrane-
bound proteins to promote synaptogenesis at embryonic stages,
whereas post-natal neurons can sense soluble factors released
from astrocytes.

ASTROCYTIC FACTOR SECRETION IS
UNDER TIGHT CONTROL

Astrocytes secrete various synaptogenic factors and express
different cell adhesion proteins to induce neuronal responses.
This raises interesting questions: What are the mechanisms
underlying the synthesis and release of glia synaptogenic factors?
Are these mechanisms programed as an intrinsic property
of astrocytes or triggered by extrinsic signals? Few studies
address these questions directly, but some have provided hints
that can potentially lead to an answer. For example, repeated
in vivo hippocampal electroconvulsive seizures (ECSs) upregulate
TSP-1 mRNA level and protein expression but not TSP-2/4.
This upregulation is transient, lasting ∼2 h and returning to
basal level 24 h after ECSs (Okada-Tsuchioka et al., 2014).
In vitro experiments have shown that ATP participates in TSP-1
production and release (Tran and Neary, 2006). This treatment of
ATP in cultured cortical astrocytes results in a significant increase
in TSP-1 expression in a time- and concentration-dependent
manner, which can be blocked by antagonists of type 1/type 2
purinergic receptor (Tran and Neary, 2006). In addition, TSP-
1 expression can be inhibited by exposure to reactive oxygen
species (Chen et al., 2011). This means that TSP-1 expression can
be triggered by external stimulation, though it is unclear whether
astrocytes sense stimulation directly or detect cues released by
neurons to trigger intrinsic TSP-1 generation. On a similar
note, there are pieces of evidence supporting the possibility that
neuronal cues could control the release of astrocytic factors.
Firstly, astrocytes express neurotransmitter receptors. Secondly,
manipulating neuron activity or dark rearing postpones astrocyte
structural maturation in the visual cortex (Muller, 1990). Thirdly,
genetic and pharmacological silencing of neuronal glutamatergic
signaling leads to immature astrocytes in terms of structure
and protein level (Morel et al., 2014). From this information,
it is likely that extrinsic neurotransmitters can temporally and
spatially regulate the release of glia factors. By controlling
synaptogenic factors and CAMs, studies further uncovered the
intra-astrocyte processes to answer how synaptogenic factors
are precisely delivered to target sites, given that astrocytes can
wrap up to 140,000 synapses. Sakers presents evidence that
de novo protein synthesis occurs in fine astrocytic processes
and ribosomal proteins present adjacent to synapses (Sakers
et al., 2017). These findings convey the possibility that local
productions in fine astrocytic processes play a role in the spatial
control of synaptogenesis.

ASTROCYTES ARE HETEROGENOUS

Histologically, astrocytes have been studied as a group of
homologous cells, and it was considered that the properties of
astrocytes in different CNS regions were interchangeable. The
heterogeneity of astrocytes has been unappreciated for a long
time, even though astrocytes have exhibited their morphological
heterogeneity since Ramón y Cajal’s study. In recent years, glia
biologists have noticed the diversity of astrocytes from every
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aspect and are aware of the importance of studying astrocytes
as a group of heterogeneous cells. Various approaches have been
adopted to address the heterogeneity of astrocytes, such as RNA-
seq, proteomic analyses, and flow cytometry (Chai et al., 2017;
Morel et al., 2019). Also, genetic approaches (Chai et al., 2017;
John Lin et al., 2017; Morel et al., 2017, 2019; Miller et al.,
2019), including translational ribosome affinity purification,
promoter fragment labeling, and interceptional strategy, have
been employed in accessing specific astrocyte subpopulations
from intact tissues and in characterizing cell morphology or
intrinsic properties. Indeed, astrocytes show inter-regional and
intra-regional diversity in terms of origination, morphology,
gene expression profile, and functional properties (Prochiantz
and Mallat, 1988; Miller and Szigeti, 1991; Miyamura et al.,
1998; Khakh and Sofroniew, 2015; John Lin et al., 2017;
Taheri et al., 2017; Seifert et al., 2018; Weise et al., 2018;
Durkee and Araque, 2019; Khakh and Deneen, 2019; Zhou
et al., 2019; Batiuk et al., 2020; Gomes et al., 2020; Pham
et al., 2020; Westergard and Rothstein, 2020). Using single-cell
RNA sequencing, five astrocyte subtypes have been identified
across mouse forebrain regions (Batiuk et al., 2020). Common
genes across these five subtypes include Dbx2, Sox9, and
Apoe, indicating their conserved functions in neural patterning,
astrocyte specification, and cholesterol synthesis and trafficking,
respectively. Meanwhile, these subtypes could possess a different
capacity in regulating neurogenesis and neuronal differentiation,
since over 70 percent of enriched genes are expressed in
only one subtype of astrocytes. Here, we review how the
heterogeneity of astrocytes impacts synaptogenesis. Other aspects
involving astrocyte heterogeneity have been reviewed recently
(Ben Haim and Rowitch, 2017; Durkee and Araque, 2019;
Siracusa et al., 2019; Westergard and Rothstein, 2020) and,
therefore, will not be covered here. An early study shows
that glial cells from striatal or mesencephalic regions have
different abilities in dendritic arborization (Denis-Donini et al.,
1984). Dopaminergic neurons co-cultured with mesencephalic
glia exhibit a great number of highly arborized neurites, but
only long thin neurites are present when co-culture with striatal
glia. Similarly, hippocampal astrocytes can differentiate adult
rat hippocampal neural stem cells into neurons, whereas spinal
cord-derived astrocytes do not have such capacity (Song et al.,
2002). These findings highlight the inter-regional heterogeneity
that astrocytes display regarding their capacity for promoting
stem cell differentiation and neurites formation. One potential
explanation for this distinct capability is the diversity of the
astrocyte gene expression profiles. Recent findings proved that
astrocytes derived from different brain regions exhibit variations
of synaptogenic potential due to heterogeneity of synaptogenic
relevant gene-expression profiles (Buosi et al., 2018). Astrocytes
derived from the same anatomical region display higher
synaptogenic capacity compared to mismatched co-cultures
(Morel et al., 2017), indicating that synaptogenic matching of
ligand and receptor is region-specific. A transcriptome study
confirmed that most astrocyte-enriched genes are differentially
expressed between regions (Boisvert et al., 2018; Bayraktar
et al., 2020), which is analogous to neuronal cell-subtypes.
For future studies, it would be useful to understand what

causes the divergent capability of synaptogenesis and to ask
whether transcriptional regulation and neuron-derived signals
play roles in regulating astrocyte diversity (Farmer et al., 2016;
Huang et al., 2020).

THE APPLICATION OF ASTROCYTES
DERIVED FROM hiPSCs

Human induced pluripotent stem cell is an attractive tool used
to model a variety of neurological disorders (Solis, 2016; Chen
et al., 2021), shedding light on the possibility of establishing
a patient-based therapy using their cells. One challenge with
hiPSC is the time-consuming process of in vitro differentiation
and limited consistency across different studies (Tcw et al.,
2017), meaning a large emphasis must be placed on minimizing
variability. The nature of astrocytes in synaptogenesis inspires
the use of astrocytes in the promotion of synapse maturation
in hiPSC-derived neurons. Studies have shown that mouse
primary astrocytes can boost neural differentiation, proliferation,
survival, dendritic complexity, and expression of functional
channel receptors when co-cultured with neural progenitor cells
(NPCs) derived from hiPSCs (Tang et al., 2013). Two months
of co-culture is sufficient for hiPSC derived neurons to display
action potential, evoked currents, and spontaneous synaptic
transmissions. Interestingly, the primary mouse astrocytes
display higher potency compared to GCM, implying that physical
contacts of astrocyte-neuron are pivotal in advancing the
functional development of NPCs.

A caveat is that mouse astrocytes are dramatically different
from human astrocytes in terms of morphology, gene profile,
and function, with human astrocytes displaying significantly
higher complexity and diversity compared to mouse astrocytes
(Zhang et al., 2016). Specifically, observations from postmortem
human tissues revealed that protoplasmic astrocytes in the
human brain are three times larger and elaborate primary
processes ten times more than those in rodents. Moreover,
the interlaminar astrocytes in cortical layer 1 exist uniquely in
humans and primates, and human cortical layer 5–6 polarized
astrocytes exhibit extreme long processes compared with their
rodents counterparts (Oberheim et al., 2006). Considering
these differences, it is obvious that astrocytes derived from
humans are more suitable for answering the questions about
astrocyte pathology in neurological disorders at molecular and
functional levels. Utilizing antibody-targeted surface protein or
immunopanning-based method, Barres lab compared human
astrocyte transcriptome profiling and functions (Zhang et al.,
2016). Transcriptome data showed that 52% of genes enriched
in mice were also identified in humans, whereas only 30% of
human enriched genes were also enriched in the mouse. Over 600
human astrocyte genes that were not found in mouse astrocytes,
such as intracellular calcium release relevant genes ryanodine
receptor 3 (Ryr3) and mouse AIDS-related virus integration
site 1 (MRVI1), which cloud help in understanding the distinct
calcium properties present in human and murine astrocytes.
However, it is still unknown if distinct calcium properties will
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FIGURE 2 | Approaches for generating human iPSC-derived neuron-astrocyte co-cultures. Human fibroblasts can be reprogrammed to a pluripotent state and yield
cells exhibiting neuron or astrocyte features through monolayer generation (Tcw et al., 2017; Lundin et al., 2018) or 3D generation (Sloan et al., 2017) À. Besides, a
more direct and time-saving way is direct conversion via transcription factors (TF), or expressing a minimal set of cell-lineage-specific TF in fibroblasts (Caiazzo et al.,
2015) Á. These neuron-astrocyte co-cultures can be assembled in multiple ways, such as 2-dimensional (2D) neuron-astrocyte co-culture Â, plating astrospheres
into 2D neuron culture Ã (Krencik et al., 2017), plating astrocytes into 3D neurospheres culture Ä (Krencik et al., 2017) or cortical organoids Å.

result in a different capacity in synaptogenesis promotion, as
intracellular calcium wave takes the major position in regulating
glial transmitter release. Recently, by using a depletion approach,
one study proved that astrocyte lineage cells are essential for
neural differentiation and synapse maturation (Klapper et al.,
2019). However, isogenic human astrocyte feeder layers failed to
induce the display of spontaneous electrical activity in hiPSC-
derived neurons, whereas parallel primary cortical astrocytes
from mice induced such activity (Lischka et al., 2018). Clearly,
the life span between murine and human are hugely different,
which leads to a prolonged culturing period required for a human
astrocyte to maturate. Thus, these isogenic human astrocytes
were not fully mature and lacked potency revealed by RNA-seq
data. Moreover, the loss of an in vivo environment may also
be a limiting factor that dampens human astrocyte maturation
in vitro.

Fortunately, 3-dimensional (3D) neuron-astrocyte culturing is
available (Pasca et al., 2015; Sloan et al., 2017; Agoglia et al., 2021)
and can function to recapture key cellular and gene-expression
features in the brain (see Figure 2). Cells in the 3D culture display
self-organization and differentiation abilities, which recapitulate
many aspects of human brain development (Pasca, 2019;
Cherskov and Sestan, 2021). In terms of cell types, organoids
contain neural lineage cells, including oligodendrocytes, neural
stem cells, astrocytes, and neurons. Structurally, organoids
display fluid-filled ventricle-like and layered structures. Neural
lineage cells surround the ventricle-like structure forming a
subventricular zone-like layer to produce neurons, therefore,
giving rise to multiple layers. For example, pluripotent stem cell-
derived human cortical spheroids include neurons from the most

superficial to the deepest layer. Remarkably, the transcription
map even matches in vivo fetal development. Imaging data
demonstrated that neurons from human cortical spheroids are
surrounded by astrocytes and form synapses, capturing processes
including the interactions between the various neurons and glia
in the brain. Further functional experiments proved that these
synapses were electronically mature, exhibiting spontaneous
activity and participating in-network activity. Absolutely, these
properties of spheroids or organoids put them in a central
position for a detailed questioning of development events,
function and disease. Recently, the cortical organoid-based
CRISPR-LICHT method (clustered regularly interspaced short
palindromic repeats lineage tracing at cellular resolution in
heterogeneous tissue) has been developed, which enables parallel
loss-of-function screening in human organoids without the need
of laboratory animals (Esk et al., 2020). Based on this high-
throughput screening, Esk et al. (2020) revealed 25 out 173
candidate genes to be involved in known or unknown brain-
size control associated pathway as well as potential mechanisms.
This is a milestone achievement because it can help to get rid
of slow and arduous animal loss-of-function experiments and
recapture interactions among various cells. In addition, human
organoid-based screening has unreplaceable merit compared to
the use of animals, because genes associated with diseases can
be expressed with different patterns across different species, and
could therefore be problematic. Furthermore, Giandomenico
et al. (2020) produced a new protocol to maintain cerebral
organoids’ long-term viability through an increased organoid
surface area. With the modification of embryoid body’s shape and
size, their method successfully overcame the limitation involving
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the lack of nutrients and oxygen in interior organoid regions
and enables the possibility of long-term organoid maintenance.
Human organoids are a greatest tool in studying long-term
processes of synaptogenesis in vitro. Together, organoids provide
a more informative model for studying synaptogenesis and
pathogenesis over extended periods among a large diversity of
cell types, providing accessibility to the investigation of neuron-
astrocyte interactions reminiscent of in vivo brain tissue.

CONCLUSION AND FUTURE
PERSPECTIVES

Astrocytes penetrate the entire CNS, they behave as an integral
component of synapse and play essential roles in promoting
synaptogenesis. Their synaptogenic capability displays regional-
specificity given their heterogeneous identity. This laid the
groundwork for investigating the diverse way in which astrocytes
communicate with neurons. In this regard, several questions need
to be addressed by future works, including: (1) how a subtype of
astrocytes boost synapse formation and maturation in a specific
region and at a particular brain developmental state, (2) does
this signaling specificity exist in terms of the whole astrocyte
or is it restricted to subcompartments, (3) can genetic tools be

exploited to allow cell access for studying astrocyte subtype-
specific functions. Moreover, human astrocytes exhibit higher
complexity compared to rodents, studies from hiPSC derived
organoids will take us one big step closer to understanding how
the human brain is assembled in a relatively native environment.
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