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Transcription factors (TFs) guide effector proteins like chromatin-modifying or -
remodeling enzymes to distinct sites in the genome and thereby fulfill important early
steps in translating the genome’s sequence information into the production of proteins
or functional RNAs. TFs of the same family are often highly conserved in evolution,
raising the question of how proteins with seemingly similar structure and DNA-binding
properties can exert physiologically distinct functions or respond to context-specific
extracellular cues. A good example is the TALE superclass of homeodomain-containing
proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long
homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-
redundant functions even in domains of co-expression and are subject to regulation
by different signaling pathways. Here we provide an overview of posttranslational
modifications that are associated with murine and human TALE-homeodomain proteins
and discuss their possible importance for the biology of these TFs.
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INTRODUCTION

TFs recognize specific DNA sequences, often depending on DNA shape or methylation status, to
control the local assembly of larger protein complexes that induce the transcriptional activation
or repression of nearby genes. Transcription factors (TFs) are thus vital to determining which
gene product is produced when, where, in which quantities, and in response to what external
signal(s). In human, these multifaceted tasks are performed by an estimated ~1,600 different TFs
(Lambert et al., 2018). Although this seems like an impressive repertoire, TFs use a limited number
of DNA binding domain (DBD) types, with most metazoan TFs belonging to the C,Hj zinc- finger-,
homeodomain (HD)-, basic helix-loop-helix (bHLH)-, basic leucine zipper-, forkhead-, nuclear
hormone receptor-, or high-mobility group (HMG)/SRY-related HMG-box (SOX)-superclasses.
DBD-types are highly variable across classes but very similar in TFs belonging to the same class.
Evolutionary related TFs often also share extensive sequence similarity outside of the DBD. This
raises the conundrum how physiologically distinct functions may be carried out by proteins that
possess the same overall structure and, at least in vitro, nearly identical DNA-binding properties.
TFs almost always function as ensembles, consistent with the concept that the composition of
the multiprotein complex dictates the affinity and specificity of DNA binding (Slattery et al., 2011;
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Bridoux et al., 2020). The ability of a TF to interact with DNA or
with other proteins depends on the biochemical properties of the
amino acids involved in binding, which in turn can be profoundly
altered by the attachment of additional chemical moieties
in a process known as posttranslational modification (PTM).
Consequently, the type of binding partners a TF assembles with,
the sequence motif recognized by the complex, and the strength
of interaction with this motif are sensitive to PTMs (Filtz et al.,
2014; Draime et al, 2018). These are important features for
any TE because the composition of transcriptional multiprotein
complexes determines the cellular and physiological context in
which the TF acts, while recognition of motif variations can lead
to high- or low affinity DNA binding, which in turn may result
in dynamic gene expression levels (Crocker et al., 2016). In this
minireview, we manually surveyed high-throughput proteomics
studies, published in peer-reviewed journals or deposited to
open-source platforms, to compile PTMs that were recorded in
TALE-HD TFs isolated from various murine and human sources.
Comparing these PTMs between paralog and ortholog proteins
revealed general principles by which PTMs may shape the activity
of individual members of conserved TF protein families.

TALE-HD PROTEINS

Three amino acid loop extension-homeodomain (TALE-HD)
TFs are evolutionary highly conserved and found in single-cell
eukaryotes (e.g., Matal/Mata2 in yeast), plants (e.g., KNOX and
BELL), and animals (see below; Mukherjee and Biirglin, 2007).
The TALE-HD differs from the canonical, 60 amino acid-long
HD by the insertion of three extra residues between helix 1 and
helix 2 of the HD. This motif, known as the TALE-motif, forms
a hydrophobic pocket to mediate protein-protein interactions
(Figure 1A; Biirglin, 1997; Piper et al., 1999; LaRonde-LeBlanc
and Wolberger, 2003; Mukherjee and Biirglin, 2007). For this
feature, TALE-HD proteins have been classified as “atypical”
HD proteins. In animals, they have been grouped into five
classes, PBC, MEINOX, TGIE, IRO and MKX, based on the
sequence of the HD itself and conserved, class-specific motifs
flanking the HD (Figure 1B). The developmental functions of
individual TALE-HD genes and the defects associated with their
mutation in animal models or in human diseases have been
covered by a series of excellent recent reviews and will therefore
not be discussed in detail (Kim et al., 2012; Blasi et al., 2017;
Schulte and Geerts, 2019; Selleri et al., 2019). Instead, we here
provide an overview of the different PTMs detected in mouse
and human TALE-HD TFs and explore how such PTMs may
help to convey functional specificity among these structurally
similar proteins.

PBC-Class

Mammals have four Pbx (pre-B-cell leukemia homeobox) genes:
Pbx1, which was first identified in acute pre-B-cell leukemias,
and Pbx2 to Pbx4, which were identified later by sequence
homology to Pbxl (Figure 1A; Kamps et al., 1990; Wagner
et al, 2001; Rhee et al, 2004; Selleri et al., 2004). PBC-
class TFs dimerize with MEINOX-class proteins through a

conserved 180-amino acid-long domain termed PBC-homology
domain (Figure 1B; Biirglin and Ruvkun, 1992; Bruckmann
et al, 2020). Monomeric PBX proteins or PBX-MEINOX
dimers form cell type-specific transcriptional regulatory units
with other TFs, including HD transcription factor like HOX-
proteins, basic helix-loop-helix (bHLH), nuclear receptors,
Smad2,3,4 intracellular signaling proteins of the TGF-f pathway,
as well as chromatin modifying enzymes (Peltenburg and
Murre, 1996; Wang et al, 2001; Subramaniam et al, 2003;
Bailey et al., 2004; Choe et al, 2009, 2014; Merabet and
Galliot, 2015). In fact, PBC-class proteins are essential co-
factors of HOX-proteins, which themselves are subject to
multiple forms of PTM (Draime et al., 2018). Pbx1, Pbx2, and
Pbx3 are extensively co-expressed and can partly compensate
for each other in domains of co-expression (Selleri et al,
2001, 2004; Rhee et al., 2004; Capellini et al., 2006). Genetic
mutant models in rodents are diverse, but defective skeletal
patterning and hematopoiesis, as well as hypoplasia and defective
development of multiple organs, including pancreas, spleen,
face, heart, vascular system, and brain are frequent phenotypes
(Selleri et al., 2019).

MEINOX-Class

The vertebrate MEINOX-class is divided into two subclasses,
MEIS (Myeloid ecotropic viral integration site) with three
genes in mammals, MeisI-3, and PREP/PKNOX (Pbx-
regulating  protein/PBX-Knotted Homeobox) with Prepl
and Prep2. Meis and Prep are widely co-expressed, compete
for heterodimerization with PBC-class proteins and play
opposing roles in tumorigenesis (Dardaei et al, 2014).
MEISI is upregulated in many human cancers, including
the majority of acute myeloid leukemias (AML), whereas
PREPI has tumor-suppressive properties (Lawrence et al,
1999; Longobardi et al., 2010; Blasi et al., 2017; Schulte
and Geerts, 2019). In addition to the C-terminal HD,
MEINOX proteins possess a N-terminal bipartite domain,
termed MEIS homology region (MHR) -A and -B, which
mediates the binding to their PBX partners (Figure 1B;
Birglin, 1997; Knoepfler et al, 1997; Shanmugam et al,
1999; Bruckmann et al,, 2020). Mutant mouse models exist
mostly for Meisl and Prepl. Consistent with MEIS" or PREP’s
heterodimerization with PBX1, many defects associated with
Meisl or Prepl loss-of-function overlap with those seen in
Pbx1 mutants.

More Distantly Related TALE-HD

Proteins: TGIF-, IRO- and MKX-Classes

Tgifl and Tgif2 (Transforming growth factor beta (TGEF-B)-
induced factor/TG-interacting factor) are phylogenetically most
closely related to the MEINOX class (Mukherjee and Biirglin,
2007). They carry a distinct variation of the TALE-motif, AYP,
instead of the PYP found in all other TALE-HD proteins
(Figure 1A) as well as two short sequence motifs C-terminal
to the HD (Figure 1B). TGIF proteins are transcriptional
repressors that have been implicated in the regulation of various
signaling pathways, most prominently TGF-B- and retinoic acid
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FIGURE 1 | Structure of TALE-HD proteins and examples of abundant, class-specific PTMs. (A) Comparison of the amino acid sequence of mouse TALE-HD
domains. Helices 1-3 are highlighted in blue, the name-giving TALE-motif in red. (B) Domain structure of the five TALE-HD protein classes. The HD is shown as gray
cylinder, conserved protein domains outside the HD in blue; nuclear export signal (NES): green; nuclear localization signal (NLS): orange. See text for details. Domain
sizes are not drawn to scale. (C-E) PTM comparison among paralogs and between human and mouse orthologs. (C) Lysine-ubiquitination and serine-, threonine-
and tyrosine-phosphorylation C-terminal to the HD in PBC class proteins. (D) Serine-phosphorylation in PBC class proteins N-terminal to the HD.

(E) Arginine-methylation, lysine-ubiquitination and serine/threonine-phosphorylation in MEINOX-proteins. (F) Ubiquitination and phosphorylation in TGIF-class
proteins. Numeration of modified amino acids in reference proteins is shown below each amino acid alignment. Color code: green: phosphorylation, blue:
methylation, pink: ubiquitination; dark shades indicate PTMs, bright shades indicate residue conservation. A list of PTMs assessed in PBC, MEIS/PREP and TGIF as
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signaling (Bertolino et al., 1995; Wotton et al., 1999; Shen and
Walsh, 2005; Guca et al., 2018). Loss-of-function phenotypes
for Tgifl in mice are strain-dependent and range from no
overt defect to holoprosencephaly, a brain malformation that
has also been linked to TGIFI mutations in humans (Kuang
et al., 2006; Taniguchi et al., 2012). Constituting another TALE-
HD class, the six mammalian Irx genes, taking their names
from the Iroquois complex in D. melanogaster, are located in

two paralogous clusters in the genome and characterized by a
bipartite IRO-box C-terminal of the HD (Figure 1B; Peters et al.,
2000; Mukherjee and Biirglin, 2007). Loss-of-function models
in mice were generated for all six Irx genes and established
that Irx3, -4 and -5 are important transcriptional regulators
in the developing and adult heart, that IrxI controls lung-
and tooth development, and that Irx5- and -6 participate in
retina development (Bruneau et al., 2001; Costantini et al., 2005;
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Zhang et al., 2011; Gaborit et al, 2012; Star et al., 2012;
Yu et al, 2017). Finally, the single gene Mohawk (Mkx, also
known as iroquois homeobox protein-like 1) most closely related
to IRX but recognized as separate class, plays a prominent
role in tendon development (Mukherjee and Biirglin, 2007;
Ito et al., 2010).

In short, members of the same class of TALE-HD
proteins share a high degree of sequence similarity, are
frequently co-expressed, and functionally cooperate in some
physiological contexts but fulfill unique developmental functions
in others.

PTMS IN TALE-HD PROTEINS

We manually surveyed 26 high-resolution and/or quantitative
mass-spectrometry analyses, as well as data deposited in the
open-source platform PhosphoSitePlus® to compile PTMs that
had been detected in mouse or human TALE-HD proteins
(Table 1). Although this information is freely available in
the supporting information of the respective publications, it
had not been systematically assessed nor had the data been
compared among studies or between protein groups. We
limited our search to the three PTMs that were most frequently
detected in these studies: phosphorylation, lysine-ubiquitination
and arginine-methylation. This search identified a total of
187 distinct phosphorylation sites, 11 ubiquitinated and 3
methylated residues. Many of these PTMs were detected in
various physiological contexts and across species, suggesting
that common regulatory mechanisms apply. Particularly
arginine-methylation and lysine-ubiquitination occurred almost
exclusively at amino acids that were highly conserved among
paralogs, indicating that significant evolutionary pressure may
act on these residues (Figures 1C,E,F). The amino acid arginine
forms more hydrogen bonds with protein or DNA than any
other amino acid, with particularly strong bonds formed with
guanine bases and the DNA phosphate backbone (Luscombe
et al, 2001). Arginine residues are therefore important to
stabilize the intra- and intermolecular interaction of amino
acids in proteins and multiprotein complexes as well as the
contact of proteins to DNA (Luscombe et al., 2001; Bedford
and Clarke, 2009; Lorton and Shechter, 2019). Consequently,
methylation of arginine residues in TFs can profoundly alter
their function. In fact, although the significance of arginine-
methylation in hPBX2 and hMEISI is still unknown, methylation
of R174 in mMEIS2 controls nucleo-cytoplasmic translocation
(Kolb et al., 2018).

In ubiquitination, the 76-amino acid protein ubiquitin is
covalently attached to lysine residues of protein substrates.
Ubiquitination generates conjugates that widely differ in
structure, size, composition, and function (Pickart, 2001).
The many ways by which lysine-ubiquitination impacts on
gene expression include modification of histone tails and the
subsequent change in chromatin structure and the ubiquitin-
guided partial processing or full degradation of TFs (Rape, 2018).
The presence of several, highly conserved ubiquitination sites
in TALE-HD proteins argues for important regulatory roles,

although it is presently unexplored what type(s) of ubiquitin
modification TALE-HD proteins carry (e.g., monomeric,
polymeric, linear, branched, carrying additional PTMs or not),
whether ubiquitin-conjugation targets TALE-HD proteins for
degradation, and what the cellular consequences of TALE-HD
protein ubiquitination are.

Compared to arginine-methylation and lysine-ubiquitination,
protein phosphorylation emerges as more wide-spread
and diverse type of PTM in TALE-HD proteins. Protein
phosphorylation, the covalent attachment of phosphate
groups on serine, threonine, or tyrosine residues, acts within
milliseconds to seconds to control protein function by primarily
two mechanisms: it locally changes the electrochemical
properties of a protein and by this its conformation, and it
creates docking sites for intermolecular protein interactions,
which in turn can propagate cellular signals or create recognition
sites for other post-translationally modifying enzymes that
catalyze the deposition of further PTMs nearby (Filtz et al,
2014). Phosphorylation of TFs can thereby increase or decrease
protein stability, control nuclear import or export, alter the
secondary structure of the TF to expose or hide its DBD,
and modify the DBD’s affinity to distinct sequences in the
DNA resulting in high-affinity or low-affinity binding (Filtz
et al., 2014). In TALE-HD proteins, phosphosites often cluster
together, frequently in regions anterior or posterior of the
HD (Figures 1C-F). For instance, several studies identified
phosphorylated serine, threonine, and tyrosine residues in PBX
family proteins just C-terminal to the TALE HD (Figure 1C).
In particular phosphorylation at T325 and S330 (numeration
according to hPBX2, NCBI# NP_002577) had been detected in
different mouse tissues (Huttlin et al., 2010), murine pancreatic
cells following glucose exposure (Sacco et al., 2016), EGF-
stimulated HeLa cells (Pan et al., 2009; Sharma et al., 2014),
FGF-stimulated adipocytes (Minard et al., 2016), mouse AML
models and human AML cell lines (Trost et al., 2012; Weber
et al,, 2012), breast cancer samples (Mertins et al., 2016), human
embryonic stem cells during differentiation (Rigbolt et al,
2011), and etoposide-treated human osteosarcoma (U20S) cells
during DNA damage response (Beli et al., 2012). Interestingly,
only some of these residues are conserved among paralogs.
For instance, while phosphorylation is frequent at S330 in
PBX2 and at the corresponding S321 in PBX1, PBX3 carries
an asparagine residue and PBX4 bears a microdeletion at this
position, suggesting that PBX3 and PBX4 may be insensitive
to the kinase networks that impact on $321/S330 in PBX1 and
PBX2, respectively (Figure 1C). In addition, these differentially
phosphorylated sites are close to a NLS (KRIRYKKNI; Saleh
etal,, 2000). Given that controlled nuclear import is an important
mechanism by which the transcriptional activity of TALE-HD
proteins is regulated, these observations raise the intriguing
possibility that differential phosphorylation at these residues
may influence nuclear localization (Mann and Abu-Shaar,
1996; Abu-Shaar et al., 1999; Berthelsen et al., 1999; Huang
et al., 2003; Kolb et al., 2018). Supporting this view, protein
kinase A (PKA)-mediated phosphorylation of mammalian
PBX1 at S187, S193, S202, S209, and S218, all located near
a second NLS (RRKRR, N-terminal to helix 1 of the HD),
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TABLE 1 | Summary of post-translational modifications of TALE-HD proteins.

Species Protein Motifs* PTMs** Detection*** References****
PBC class
Human PBX1 PBC-A: 43-122 Phosphorylation: S726, S136, agMS; Hela cells Kettenbach et al., 2011
PBC-B: 140-232 S141, S144, Y305, S321, S325, MS; Hela cells Sharma et al., 2014
HD: 236-298 T328 PhosphoSitePlus
Ubiquitination: K87, K195 MS; HEP2, Jurkat cells Akimov et al., 2018
PBX2 PBC-A: 53-132 Phosphorylation: S41, S101, qMS; Hela, K562 cells Pan et al., 2009
PBC-B: 151-243 S104, S105, S136, S151, S155, gMS; hESCs Rigbolt et al., 2011
HD: 247-309 S159, Y316, T325, $330, T332, aMS; KG1 AML cells Weber et al., 2012
8§395, 5423, 5426, S429 agMS; U20S cells Beli et al., 2012
MS; Hel a, K562 cells Zhou et al., 2013
gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
SW480, SW620 cells
MS; human liver Bian et al., 2014
MS; Hela cells Sharma et al., 2014
qMS; WM239A cells Stuart et al., 2015
gMS; breast tumors Mertins et al., 2016
qMS; HEK293 cells Boeing et al., 2016 PhosphoSitePlus
Ubiquitination: K97, K164, K308 qMS; HEK293 cells Boeing et al., 2016
MS; HEP2, Jurkat cells Akimov et al., 2018
Methylation: R15 MS; HEK293, Hel.a, U20S cells Larsen et al., 2016 PhosphoSitePlus
PBX3 PBC-A: 46-125 Phosphorylation: S121, Y307 MS; Hel a cells Imami et al., 2008
PBC-B: 134-234 MS; Hela cells Sharma et al., 2014 PhosphoSitePlus
HD: 238-300
PBX4 PBC-A: 19-98 Phosphorylation: S10, S33, 7153, gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
PBC-B: 117-209 S255, S258 SW480, SW620 cells
HD: 213-275 gMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Mouse PBX1 PBC-A: 43-122 Phosphorylation: S187, S193, 2D-SDS PAGE, in vitro phosphorylation, site Kilstrup-Nielsen et al., 2003
PBC-B: 140-232 S202, S209, S218 directed mutation; NIH3T3 cells
HD: 236-298
PBX2 PBC-A: 53-132 Phosphorylation: S736, $151, MS; 3 weeks old male mice Huttlin et al., 2010
PBC-B: 151-243 S159, $330, §395, T428, S429 MS; murine leukemia cell lines Trost et al., 2012
HD: 247-309 MS; 3T3-L1 adipocytes Minard et al., 2016
MS; pancreatic islet cells Sacco et al., 2016 PhosphoSitePlus
MEIS class
Human MEIS1 MHD-A: 72-111 Phosphorylation: S194, qMS; Hela cells Kettenbach et al., 2011
MHD-B: 136-180 $196, S198, T202 gMS; KG1 AML cells Weber et al., 2012
HD: 275-337 aMs; U208 cells Beli et al.,, 2012
gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
SW480, SW620 cells
MS; Hela, K562 cells Zhou et al., 2013
MS; Hel a cells Sharma et al., 2014
qMS; WM239A cells Stuart et al., 2015
gMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Ubiquitination: K178 MS; HEP2, Jurkat cells Akimov et al., 2018
Methylation: R383 (isoform MS; HEK293, Hel.a, U20S cells Larsen et al., 2016
EAW99896.1 only)
MEIS2 MHD-A: 74-113 Phosphorylation: S195, S196, qMS; Hela, K562 cells Pan et al., 2009
MHD-B: 138-182 $198, 5204, S206, S207, T208 MS; HeLa, K562 cells Zhou et al., 2013
HD: 279-341 GMS: WM239A cells Stuart et al., 2015
qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Ubiquitination: K180 MS; HEP2, Jurkat cells Akimov et al., 2018
MEIS3 MHD-A: 54-99 Phosphorylation: S778, 5124 PhosphoSitePlus
MHD-B: 124-168
HD: 265-327
Mouse MEIS1 MHD-A: 72-111 Phosphorylation: S27, 722, Y24, MS; 3 weeks old male mice Huttlin et al., 2010
MHD-B: 136-180 5194, 196, S198 MS; murine leukemia cell lines Trost et al., 2012
HD: 275-337 aMS; E16.5, PO, P21 mouse brain Doubleday and Ballif, 2014
MS; 3T3-L1 adipocytes Minard et al., 2016
MS; pancreatic islet cells Sacco et al., 2016 PhosphoSitePlus
MEIS2 MHD-A: 74-113 Phosphorylation: S196, $198, MS; 3T3-L1 adipocytes Minard et al., 2016 PhosphoSitePlus
MHD-B: 138-182 S261, T264
HD: 279-341 Methylation: R174 MS; adult SVZ stem-/progenitor cells Kolb et al., 2018
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TABLE 1 | Continued

Species Protein Motifs* PTMs** Detection*** References****
PREP/PKNOX class
Human PREP1 MHD-A: 52-83 Phosphorylation: S33, S41, MS; Hel a cells Kettenbach et al., 2011
MHD-B: 109-153 S156, S166, S239, S324, MS; human liver Bian et al., 2014
HD: 262-320 S$325, S327, T329, T332 MS; Hela cells Sharma et al., 2014
gMS; breast tumors Mertins et al., 2016
qMS; HEK293 cells Boeing et al., 2016 PhosphoSitePlus
Ubiquitination: K140 qMS; HEK293 cells Boeing et al., 2016
Mouse PREP1 MHD-A: 52-83 Phosphorylation: S33, S41, S47 MS; 3 weeks old male mice Huttlin et al., 2010 PhosphoSitePlus
MHD-B: 109-153
HD: 262-324
PREP2 MHD-A: 68-99 Phosphorylation: S125 MS; pancreatic islet cells Sacco et al., 2016
MHD-B: 125-169
HD: 291-353
TGIF class
Human TGIF1 HD: 164-226 (isoform 401 aa) Phosphorylation: S95, S7715, In vitro phosphorylation, site directed Lo et al., 2001
S117, 5140, S142, T144, S251, mutagenesis; L-17 mink lung epithelial cells,
T280, $286, S290, S291, 5294, COS-1 cells
T364, T368 MS; H1 hESCs Brill et al., 2009
qMS; hESCs Rigbolt et al., 2011
agMS; U20S cells Beli et al., 2012
MS; Hel a cells Sharma et al., 2014
gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
SW480, SW620 cells
qMS; WM239A cells Stuart et al., 2015
qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Ubiquitination: K259, K232 In vitro ubiquitination; MDCK, 293 cells Ettahar et al., 2013
MS; HEP2, Jurkat cells Akimov et al., 2018 PhosphoSitePlus
TGIF2 HD: 16-78 Phosphorylation: S2, S4, S109, qMS; Hela, K562 cells Pan et al., 2009
S110, S112, S153, S159, S174, MS; Hel a cells Kettenbach et al., 2011
1182, 7186, 7227 gMS; hESCs Rigbolt et al., 2011
agMS; U20S cells Beli et al., 2012
gMS; KG1 AML cells Weber et al., 2012
MS; Hel a cells Sharma et al., 2014
MS; Hela, K562 cells Zhou et al., 2013
qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Ubiquitination: K86 MS; HEP2, Jurkat cells Akimov et al., 2018
Mouse TGIF1 HD: 35-97 (isoform b, 272aa) Phosphorylation: S13, S15, S757, MS; 3 weeks old male mice Huttlin et al., 2010 PhosphoSitePlus
S162
IRX class
Human IRX1 HD: 127-189 Phosphorylation: T210, S267, gMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
S280, 5298, S325, S433, S447
IRX2 HD: 114-176 Phosphorylation: S186, T213, gMS; hESCs Rigbolt et al., 2011
S231, 8233, S236, S252, S254, gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
S$285, T310, T316, S317, S325, SW480, SW620 cells
5338, S445 qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
IRX3 HD: 127-189 Phosphorylation: S2, S208, S286, qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
S358, S365, S372, S381, $496,
S499
IRX4 HD: 142-204 Phosphorylation: 7753, 7154, MS; Hela cells Sharma et al., 2014 PhosphoSitePlus
S258, S413, 5430, S473
IRX5 HD: 113-175 Phosphorylation: Y3, Y7, Y9, Y23, MS; Hela cells Kettenbach et al., 2011
T25,T180, S185, T237, S246, MS; Hel a, K562 cells Zhou et al., 2013
$248, §274, S319, 8357, S374, MS; Hela cells Sharma et al., 2014
8377, 5383, 5385, $464 GMS: CCR tumors, normal tissue; HCT116,  Shiromizu et al., 2013
SW480, SW620 cells
agMS; WM239A cells Stuart et al., 2015
qMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
IRX6 HD: 146-208 Phosphorylation: Y739, S745, gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013 PhosphoSitePlus
S393 SW480, SW620 cells
Mouse IRX1 HD: 127-189 Phosphorylation: S241, S267, MS, 3 weeks old male mice Huttlin et al., 2010 PhosphoSitePlus
S280, S298, S447
IRX2 HD: 115-177 Phosphorylation: S187 MS; 3T3-L1 adipocytes Minard et al., 2016
IRX3 HD: 130-192 Phosphorylation: S326, S329 MS, 3 weeks old male mice Huttlin et al., 2010
IRX5 HD: 112-174 Phosphorylation: S784, S236, PhosphoSitePlus

5465
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TABLE 1 | Continued

Species Protein Motifs* PTMs** Detection*** References****
MKX class
Human MKX HD: 71-133 Phosphorylation: S36, S738, gMS; CCR tumors, normal tissue; HCT116, Shiromizu et al., 2013
Y146, T239, S253, Y277, S286 SW480, SW620 cells
gMS; breast tumors Mertins et al., 2016 PhosphoSitePlus
Mouse MKX HD: 71-133 Phosphorylation: S257 PhosphoSitePlus

*Conserved sequence motifs of biological significance annotated to the canonical isoforms, provided by UniProt. HD, Homeodomain; MHD, MEINOX homology domain;
PBC, PBC homology domain. **Information about post-translational modifications were summarized from the references listed and/or UniProt, PhosphoSitePlus;, PTMs
are annotated to the isoforms as identified by UniProt ID. Residues given in italics were identified in the PhosphoSitePlus database only, references shown in bold were
detected in the majority of studies referenced. ***Detection method used, cell type analyzed. CCR, colorectal cancer; E, embryonic day; hESCs, human embryonic
stem cell line; gMS, quantitative mass spectrometry: iTRAQ (isobaric Tags for Relative and Absolute Quantitation), SILAC (stable isotope labeling by amino acids in
cell culture) or stable-isotope dimethyl labeling mass spectrometry; MS, mass spectrometry; F, postnatal day. ***PhosphoSitePlus: www.phosphosite.org. Residues
were numbered according to the following sequences (NCBI accession No): hPBX1: NP_002576; mPBX1: NP_899198.1; hPBX2: NP_002577; mPBX2: NP_059491;
hPBX3: NP_006186; hPBX4: NP_079521; hMEIS1: NP_002389 and EAW99896.1; mMEIS1: NP_001180200.1; hMEIS2: NP_733777;, mMEIS2: AAC529481; hMEIS3:
NP_064545.1; hPREP1: NP_004562.2; mPREP1: NP_057879.2; mPREP2: XP_006510190.1; hTGIF1: AAH31268.1; mTGIF1: NP_033398.2; hTGIF2: NP_068581.1;
mTGIF2: NP_775572.1; hIRX1: NP_077313.3; mIRX1: AAF63954.1; hiIRX2: NP_150366.1;, mIRX2: NP_034704.1; hiIRX3: NP_077312.2; hiIRX4: NP_057442.1; hIRX5:

NP_005844.4; mIRX5: NP_061296.1; hIRX6: NP_077311.2; hMKX: NP_001229631.1;, mMKX: AAI37729.1.

affect nuclear export of PBX1 (Figure 1D; Saleh et al.,, 2000;
Kilstrup-Nielsen et al., 2003).

MEIS1 and MEIS2 proteins exhibit a striking accumulation
of phosphosites clustered between the MHR-B domain and
the TALE-HD, with frequent phosphorylation at serines 195,
196, 198, 204, 206, 207, and threonine 208 (numeration
according to hMEIS2, NCBI# NP_733777; Figure 1E). In fact,
phosphorylation at S195/5196/S198 was detected in virtually
all phosphoproteomic studies that were examined for this
minireview (Table 1). Nestled between these phosphosites are
several aspartate and glutamate residues, amino acids with
electrically changed, acidic side chains. Phosphorylation at these
serine or threonine residues is therefore expected to create a
strong, focal negative charge in this region of the MEIS1 and
MEIS2 polypeptide.

PTMS, A WAY TO GENERATE
FUNCTIONAL DIVERSITY?

Although the physiological relevance of these phosphorylation
events and the signaling pathways that induce them remain
to be elucidated, it is worth pointing out that none of these
phosphosites are conserved in MEIS3, PREPI, or PREP2 (Figure
1E). Similarly, most of the phosphorylated amino acids that were
detected in TGIF1 are not conserved in TGIF2, and vice versa
(Figure 1F). Whether or not TALE-HD paralogous proteins are
subject to regulation by shared kinase pathways thus appears to
be dictated by the substitution of few key residues. It should
be pointed out, however, that phosphorylation is a dynamic
process in which phosphorylation and dephosphorylation may
alternate in rather rapid cycles (Gelens and Saurin, 2018).
Phosphoproteomic data hence only reflect a snapshot of a
transient phosphorylation state. Lack of evidence in literature for
a specific phosphorylation event can thus very well just reflect the
inability of detection at a specific moment and in that specific
cellular context.

Taken together, we here compiled a broad collection of PTMs
in TALE-HD proteins that had been identified in unbiased,
high-resolution mass-spectrometry analyses (Table 1). Few of

these PTMs have been assigned a physiological function. Yet,
by taking the evolutionary conservation of modification sites
into account we identified both class-specific and paralog-specific
PTMs. From comparing these, concepts emerge about how
the combinatorial use of such PTMs may generate functional
diversity from evolutionarily conserved protein structures.
Specifically, we propose that the vast repertoire of PTMs,
shared or not, in paralogous and orthologous TALE-HD
proteins, forms the structural backbone by which individual
proteins can acquire the ability to respond to context-specific
extracellular signals and exert physiologically diverse functions.
Although explored here only by the example of the TALE-
HD superclass, similar principles may very well also apply to
other evolutionarily conserved TFs. Assays based on mutational
approaches now need to be developed to test these PTMs alone
and in combination for their functionality and physiological
relevance. Ultimately, such information can pave the way for
future studies, help unravel disease processes and facilitate
rational drug design.
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