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Mitochondrial function is multifaceted in response to cellular energy homeostasis and
metabolism, with the generation of adenosine triphosphate (ATP) through the oxidative
phosphorylation (OXPHOS) being one of their main functions. Selective elimination of
mitochondria by mitophagy, in conjunction with mitochondrial biogenesis, regulates
mitochondrial function that is required to meet metabolic demand or stress response.
Growth hormone (GH) binds to the GH receptor (GHR) and induces the JAK2/STAT5
pathway to activate the synthesis of insulin-like growth factor 1 (IGF1). The GH–GHR–
IGF1 axis has been recognized to play significant roles in somatic growth, including
cell proliferation, differentiation, division, and survival. In this review, we describe recent
discoveries providing evidence for the contribution of the GH–GHR–IGF1 axis on
mitochondrial biogenesis, mitophagy (or autophagy), and mitochondrial function under
multiple physiological conditions. This may further improve our understanding of the
effects of the GH–GHR–IGF1 axis on mitochondrial function, which may be controlled
by the delicate balance between mitochondrial biogenesis and mitophagy. Specifically,
we also highlight the challenges that remain in this field.

Keywords: growth hormone, growth hormone receptor, insulin-like growth factor 1, mitochondrial biogenesis,
mitophagy, mitochondrial function

INTRODUCTION

Growth hormone (GH), also known as somatotropin, is an amino acid peptide that, together with
prolactin (PRL) and human placental lactogen, belongs to the somatotropin family (Strobl and
Thomas, 1994). GH is produced by the pituitary gland, which is under the positive control of the
hypothalamic peptide GH-releasing hormone (GHRH) and the negative feedback of somatostatin.
GH mediates its functions directly through its receptor (GHR) or indirectly via insulin-like growth
factor 1 (IGF1) (Yang et al., 2008). Meanwhile, a complex feedback system can regulate GH
secretion, including IGF-1, leptin, and ghrelin along with the central nervous system.

GH receptor, a member of the class I cytokine receptor family, is an amino acid dimeric
receptor with an extracellular domain (ECD), a single-pass transmembrane domain (IMD), and
a cytoplasmic intracellular domain (ICD) (Dehkhoda et al., 2018). GHR is widely expressed
in GH target cells, which can combine with GH to activate diverse signal cascades, including
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mitogenic signaling through Janus kinase (JAKs) signal
transducers and activators of transcription (STATs) (Brooks et al.,
2008), mitogen-activated protein kinase (MAPK) (Vanderkuur
et al., 1997), phosphoinositide-3-kinase (PI3K)/Protein kinase
B (PKB or AKT)/mammalian target of rapamycin (mTOR)
pathways (Hayashi and Proud, 2007) and phospholipase C
(PLC)/Protein kinase C (PKC) (Bergan et al., 2015). Accordingly,
normal function of GHR directly influences the physiological
effects of GH. The deficiency in GHR will further disrupt the
normal development of the organism and lead to dwarfism
phenotype in a wide array of species (Lin et al., 2018).

Insulin-like growth factor 1, the main mediator of GH
actions, is an amino acid insulinoid peptide with an amino
acid sequence similar to that of proinsulin (positions 1–29
are homologous to insulin B chain and positions 42–62
to insulin A chain). GH combines with GHR to regulate
IGF1 production via the JAK2/STAT5 pathway through
endocrine and paracrine/autocrine mechanisms (Sjogren
et al., 1999; Junnila et al., 2013). IGF1 mainly occurred in the
liver and also in several tissues including the brain, testes,
skeletal muscle, bone, and cartilage. Meanwhile, the roles
of GH and IGF1 are influenced by GH-binding proteins
(GHBPs) and IGF-binding proteins (IGFBPs), respectively
(Baumann et al., 1988; Duan and Xu, 2005). Analogous to
GH, IGF1 acts through its receptor (IGF1R), a tyrosine kinase
receptor that can activate multiple pathways including the
PI3K/AKT, MAPK, and PLC pathways (Hakuno and Takahashi,
2018). However, GH and IGF-1 have very different roles
on glucose and lipid metabolism. GH primarily blocks
the action of insulin, promotes lipolysis, and prevents
fat production, whereas IGF1 has the opposite effects
(Moller and Jorgensen, 2009).

Overall, the GH–GHR–IGF1 axis, part of the somatotropic–
hypothalamic–pituitary axis, has been commonly recognized
in response to somatic growth, including cell proliferation,
differentiation, division, and survival (Figure 1). On the other
hand, the GH–GHR–IGF1 axis also plays essential roles in
mitochondrial function with an unexpected complexity and
versatility regulation mechanisms. In this review, we describe
recent discoveries providing evidence for the contribution of the
GH–GHR–IGF1 axis on mitochondrial biogenesis, mitophagy
(or autophagy), and mitochondrial function under multiple
physiological conditions. Based on this integrative view, we
also emphasize the remaining challenges in this field. Besides,
there is a long list of studies utilizing different cell lines or
mice with varying membership of the GH–GHR–IGF1 axis,
showing the effects of the GH–GHR–IGF1 axis on aging and
cellular senescence. Although important, they were not described
primarily in this review.

OVERVIEW OF THE MITOCHONDRIAL
BIOGENESIS

Mitochondria are double membrane-bound organelles, especially
with the generation of adenosine triphosphate (ATP) through
oxidative phosphorylation (OXPHOS) being one of their main

functions. The OXPHOS proteins comprise five complexes (I–
V) embedded in the inner mitochondrial membrane that are
uniquely controlled by mitochondrial DNA (mtDNA) and the
nuclear DNA (nDNA). In mammals, the mtDNA encodes only
37 genes, of which 13 are subunits of the OXPHOS (complexes
I, III, IV, and V), two are rRNA genes, and 22 are tRNA genes
required for mitochondrial protein synthesis.

Mitochondrial biogenesis is a self-renewal process by which
new mitochondria are produced from the ones already
existing. The sophisticated process of mitochondrial biogenesis
requires coordination between mtDNA and nDNA, including
mtDNA transcription and translation, translation of nDNA-
encoded transcripts, membrane recruitment, protein import, and
assembly of the OXPHOS complexes (Attardi and Schatz, 1988).
So far, it has been widely accepted that the members of the
peroxisome proliferative-activated receptor gamma coactivator
1 (PGC1) family of coactivators act as key players in the
regulation of energy metabolism and mitochondrial biogenesis.
PPARG coactivator 1 alpha (PGC1α) was first described in
1999 (Wu et al., 1999), and PPARG coactivator 1 beta
(PGC1β) along with PPARG related-coactivator 1 (PRC) were
discovered subsequently (Andersson and Scarpulla, 2001; Lin
et al., 2002). These coactivators generally orchestrate with
DNA-bound transcription factors, such as nuclear respiratory
factors (NRF1, NRF2), estrogen-related receptors (ERRα, ERRβ,
and ERRγ), and myocyte enhancer factor 2 (MEF2) to drive
the expression of target genes. Furthermore, their regulations
on transcription or post-translation level are responsive to
meet the multiple metabolic demands induced by physiological
signals, senescence, and diseases (Cui et al., 2006; Bellance
et al., 2009; D’Errico et al., 2011; Patel et al., 2012; Tsunemi
and La Spada, 2012). For instance, PGC1-related coactivators
can activate the expression of NRF1, NRF2, and transcription
factor A (TFAM, the final effectors of mtDNA transcription
and replication) to regulate the expression of respiratory chain
and the biogenesis of mitochondria, a process that has been
well-documented in previous reviews (Gleyzer et al., 2005;
Scarpulla, 2008; Scarpulla et al., 2012; Villena, 2015; Popov, 2020).
Therefore, we commonly regard the expression of PGC1α, NRF1,
TFAM, and mitochondrial-related genes, as well as mtDNA
copy number as the markers for mitochondrial biogenesis.
Notably, a recent study has underlined that the relationship
between TFAM expression and mitochondrial biogenesis is
more complex than is generally appreciated and may be
ambiguous in most mammalian cells. As TFAM does not always
exhibit parallel with the mtDNA copy number, TFAM should
be used judiciously as a marker of mitochondrial biogenesis
(Kozhukhar and Alexeyev, 2019).

OVERVIEW OF THE MITOPHAGY

Autophagy, meaning “self-eating” in Greek, is a process by
which portions of cytoplasm, such as the organelles and
protein aggregates, are sequestered and subsequently delivered
to lysosomes for degradation (Klionsky et al., 2003; Nakatogawa
et al., 2009). Three major types of autophagic pathways,
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FIGURE 1 | Schematic representation of growth hormone (GH)–GH receptor (GHR)–insulin-like growth factor 1 (IGF1) axis. GH is produced by the pituitary gland,
which is under the positive control of the GH-releasing hormone (GHRH) and the negative feedback of somatostatin. GH combines with GHR to regulate the
production of IGF1, in response to somatic growth, including cell proliferation, cell differentiation, cell division, and cell survival. In this process, several signaling
pathways are activated, such as JAK2/STAT5, MAPK, and PI3K/AKT signaling under an anabolic state (such as during periods of feeding), as well as PLC/PKC
signaling under a catabolic state (such as during periods of fasting).

macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA), have been recognized in eukaryotic cells
(Mizushima and Komatsu, 2011). Macroautophagy (hereafter
referred to as autophagy) sequesters cytosolic cargo, mainly
organelles, by a double membrane vesicle called autophagosome,

which is formed through conjugation of specific proteins among
themselves in an intricate process. Subsequently, autophagosome
is fused with endolysosome to constitute autolysosome, in which
the cytosolic cargo is degraded. Although autophagy was first
considered to perform in a bulk manner, it is now clear that
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autophagy is mainly a selective process that originally encounters
considerable resistance (Mizumura et al., 2014).

Early in the 20th century, the concept of mitochondrial
degradation was proposed by Margaret and Warren Lewis
(Lewis and Lewis, 1915). Later, mitochondria sequestered
in lysosomes were first observed in rat tissues by electron
microscopy studies (Ashford and Porter, 1962; Novikoff and
Essner, 1962). Until the beginning of the 21st century, the idea
of mitochondrial autophagy was initially termed as “mitophagy”
to define the selective elimination of depolarized mitochondria
in autophagosome (Scott and Klionsky, 1998; Elmore et al.,
2001; Lemasters, 2005). Up to now, mitophagy is considered
as a selective form of autophagy to deliver dysfunctional or
superfluous mitochondria to the lysosome for degradation, which
has exhibited an essential contribution to cell homeostasis
under different stimuli or cellular contexts, including cellular
differentiation, oxidative stress response, and aging, as well
as various disease conditions (Um and Yun, 2017; Palikaras
et al., 2018). In yeast, Ohsumi’s and Klionsky’s laboratories first
identified that ATG32 acts as the mitophagy-specific receptor,
which directly interacts with the selective autophagy adaptor
ATG8 via an ATG8-interacting motif (AIM) and ATG11 to
form the nascent autophagosome (Kanki et al., 2009; Okamoto
et al., 2009). Recently, ATG43 is identified as another mitophagy-
specific receptor, which is localized on the mitochondrial outer
membrane and binds to ATG8 (Fukuda and Kanki, 2021).

In mammals, the regulation of mitophagy appears to be
more complex, both ubiquitin-mediated and receptor-mediated
pathways have been described in response to mitophagy. To our
knowledge, the most studied and understood mitophagy pathway
is mediated by PTEN-induced kinase 1 (PINK1) and the E3
ubiquitin ligase Parkin (Narendra et al., 2008; Vives-Bauza et al.,
2010), both of which have been linked to forms of Parkinson’s
disease (Kitada et al., 1998; Valente et al., 2004). The complicated
mechanisms of canonical and non-canonical PINK1/parkin-
mediated mitophagy have been well summarized in previous
reviews (Eiyama and Okamoto, 2015; Lazarou et al., 2015;
Nguyen et al., 2016; Clark et al., 2020; Malpartida et al., 2020).
Moreover, two main types of receptor-mediated mitophagy
pathway have been classified as follows in brief: ubiquitin-
independent mitophagy receptors, including BCL2-interacting
protein 3 (BNIP3) (Quinsay et al., 2010), BCL2-interacting
protein 3 like (NIX/BNIP3L) (Sandoval et al., 2008), FUN14
domain-containing 1 (FUNDC1) (Liu et al., 2012), BCL2-like 13
(BCL2L13) (Otsu et al., 2015), autophagy and beclin 1 regulator
1 (AMBRA1) (Strappazzon et al., 2015), FKBP prolyl isomerase
8 (FKBP8) (Bhujabal et al., 2017), prohibitin 2 (PHB2) (Wei
et al., 2017), and NLR family member X1 (NLRX1) (Zhang et al.,
2019); lipid-mediated mitophagy receptors, including ceramide
(Sentelle et al., 2012) and cardiolipin (Li et al., 2015). It has been
identified that these mitophagy receptors can directly interact
with the autophagy mediators LC3/GABARAP via a conserved
LC3-interacting region (LIR) motif or ULK1 protein to form the
nascent autophagosome. These intricate processes of receptor-
mediated mitophagy pathways also have been well summarized
in previous reviews (Liu et al., 2014; Ploumi et al., 2017; Villa
et al., 2018; Montava-Garriga and Ganley, 2020). However,

whether each type of mitophagy receptor functions in a distinct
pathway, or there is cooperation between them under various
mitochondrial stresses are still not completely understood.

A BALANCED ACT OF MITOCHONDRIAL
BIOGENESIS AND MITOPHAGY

Mitochondrial function is multifaceted in response to cellular
energy homeostasis and metabolism, including calcium
homeostasis, amino acid metabolism, pyridine synthesis,
cellular replication, apoptosis, reactive oxygen species (ROS)
production, and senescence (Spinelli and Haigis, 2018). In order
to perform these many functions, mitochondria are structured in
a dynamic network where, for instance, mitochondria biogenesis,
elimination, fission, and fusion are harmoniously orchestrated
(Ploumi et al., 2017). Accordingly, maintenance of a healthy
mitochondrial network, defined as mitochondrial homeostasis, is
critical for normal mitochondrial function during development
and even throughout life. Like ancient Chinese philosophy
“Ying” and “Yang,” both generation of newly synthesized
mitochondria, by mitochondrial biogenesis, and elimination of
detrimental and/or superfluous mitochondria, by mitophagy,
are predominantly required for maintaining mitochondrial
homeostasis. Recent findings have hinted that any abnormality
in these two opposing processes can influence the quantity and
quality of mitochondria, which will further affect mitochondrial
function and the ability of cells to adjust their mitochondrial
networks in response to physiological adaptations and stress
conditions (Palikaras et al., 2015; Singh et al., 2018; Wang et al.,
2019; Yau et al., 2019; Zhou et al., 2019; Chen et al., 2020). At the
same time, impaired mitochondrial function and homeostasis
are now widely accepted to be associated with multiple aspects of
the aging process and age-onset diseases (Lopez-Otin et al., 2013;
Mattson and Arumugam, 2018; Akbari et al., 2019).

Therefore, maintaining the healthy function of mitochondria
by biogenesis and mitophagy is conducive to cellular life
activity. The balance between mitochondrial biogenesis and
mitophagy requires delicate regulation to maintain a sustainable
mitochondria population in healthy cells (Pickles et al., 2018).
Several signaling pathways have been implicated in both
mitochondrial biogenesis and mitophagy, and they may play
important roles in coordinating these processes (Figure 2). For
instance, cyclic-AMP (cAMP) is one of the upstream signals
that regulate both mitochondrial biogenesis and mitophagy.
cAMP level can regulate the protein kinase A (PKA)-dependent
activation of the cAMP response element-binding protein
(CREB), which in turn upregulates the expression of PGC1α

and inhibits LC3-II (Cherra et al., 2010; Chowanadisai et al.,
2010). Also, mammalian target of rapamycin (mTOR) signaling
promotes mitochondrial biogenesis by activation of PGC1α and
ERRα, and inhibits mitophagy by phosphorylation of ULK1
or inhibition of PINK1 expression and Parkin translocation
(Cunningham et al., 2007; Bartolome et al., 2017). Under
energy stress condition, AMP-activated protein kinase (AMPK)
promotes mitochondrial biogenesis through phosphorylation of
SIRT1 to activate PGC1α, and promotes mitophagy through
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FIGURE 2 | A balanced act of mitophagy and mitochondrial biogenesis. Coordination between mitochondrial (mt) biogenesis and mitophagy results in generation of
new synthesized mitochondria, and elimination of detrimental and/or superfluous mitochondria, which is controlled by several signaling pathways, including
cyclic-AMP (cAMP)/protein kinase A (PKA), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin
(mTOR) signaling, in response to physiological adaptations and stress conditions. Relative to normal condition, increased mitophagy or impaired mt biogenesis will
lead to reduced mitochondria mass, contributing to cell death that be dependent on mitochondrial function. Reversely, impaired mitophagy or increased mt
biogenesis will lead to imbalanced responses, resulting in increased mitochondria mass, increased reactive oxygen species (ROS) production, and cellular
degeneration. However, restoration of mitochondrial homeostasis with increased mitochondrial damage will require simultaneous upregulation of mitophagy and
mitochondrial biogenesis.

inhibition of mTOR and activation of ULK1 (Herzig and Shaw,
2018). Also, mitogen-activated protein kinase (MAPK) signaling
is associated with mitochondrial homeostasis, MAPK1/3 potently
inhibit mitochondrial biogenesis (Zhu et al., 2012); however, p38
MAPK exerts a positive regulation on PGC1α, and MAPK1 along
with MAPK14 promote both starvation- and hypoxia-induced
mitophagy in HeLa cells (Akimoto et al., 2005; Hirota et al., 2015).

On the other hand, in addition to its well-known functions,
PGC1α, a master regulator of mitochondrial biogenesis,

positively regulates mitophagy by directly inducing the
expression of transcription factor EB (TFEB) that mediates
lysosomal biogenesis (Settembre et al., 2011). NRF2 is also
required to couple mitochondrial biogenesis with mitophagy by
inducing BNIP3 expression, which is essential for facilitating
cancer progression (Riis et al., 2020). Meanwhile, Parkin is
involved in the regulation of mitochondrial biogenesis via PARIS,
a transcription factor that negatively regulates PGC1a and its
target NRF1 or directly enhances TFAM-mediated mitochondrial
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transcription in proliferating cells (Kuroda et al., 2006; Shin et al.,
2011). Furthermore, it was found that the general control of
amino acid synthesis 5-like 1 (GCN5L1) negatively regulates both
mitochondrial biogenesis and degradation pathways through
acting on both PGC1a and TFEB in mouse embryonic fibroblasts
(Scott et al., 2014).

So far, many upstream signals have been implicated in both
mitochondrial biogenesis and mitophagy as described above.
However, there is still a lack of systematic research on whether
there are interactions among them. Notably, the versatility
of the key regulators of mitochondrial biogenesis (PGC1α,
NRF2) and mitophagy (Parkin) may further underline that
these two processes are balanced and constrained with each
other in order to control mitochondrial function under multiple
physiological conditions.

THE EFFECTS OF GROWTH HORMONE
ON MITOCHONDRIAL BIOGENESIS

The relationship between GH and mitochondrial biogenesis
was initially explored in the early 1970s. The first question is
whether the GH performs a direct interaction with mitochondrial
membranes (Maddaiah et al., 1970). After administration of
radio-labeled bovine GH to rats, radioactive signals were detected
in the mitochondria of liver and kidney (Groves et al., 1972).
Later, this question was further explored by Mutvei et al. in
hypophysectomized rats treated with T3 and/or human GH by
the continuous infusion of hormone for 6 days. Intriguingly, they
found that T3 exerts a direct effect on mitochondrial biogenesis.
However, the high-affinity binding sites for GH are not present
in the liver mitochondria; only a few negligible amounts of
radio-labeled bovine GH are transported to the mitochondria
compared with other subcellular compartments (Mutvei et al.,
1989). This compelling evidence demonstrates that mitochondria
are not a direct target for GH and/or its receptor.

Growth hormone is considered to be a conducive hormone
that enhances mitochondrial biogenesis. Human GH treatment
of hypophysectomized rats increases incorporation of leucine
in vivo and in vitro, indicating that GH has a significant
effect on liver mitochondrial protein synthesis (Maddaiah et al.,
1973). Administration of either human or bovine GH restores
the cytochrome level and increases the cytochrome oxidase
activity in hypophysectomized rats (Maddaiah et al., 1976).
Also, administration of bovine GH to hypophysectomized
rats partially restores the respiration rate and ATPase activity
of liver mitochondria, and increases the heart mitochondrial
protein synthesis measured by the incorporation capacity of
radioactive leucine (Katkocin et al., 1979; Maddaiah and Clejan,
1986). Furthermore, GH replacement therapy restores the age-
associated impairments in the skeletal muscle mitochondrial
biogenesis, which is mainly manifested by the increased PGC1α,
NRF1, cytochrome c expression, and citrate synthase enzymatic
activity (Brioche et al., 2014). Consistently, PGC1α protein
level is diminished in bovine GH transgenic (bGH Tg) mice,
which overexpresses GH and are short-lived (Al-Regaiey et al.,
2005). These investigations are consistent with the results

in the early 1970s showing the beneficial effects of GH on
mitochondrial biogenesis.

On the other hand, some different views concerning the effects
of GH on mitochondrial biogenesis have also been discovered.
The expression of PGC1α and OXPHOS activities are increased
in the long-living Ames dwarf mice (lack of GH, prolactin,
and thyroid-stimulating hormone), demonstrating a negative
effect of GH on mitochondrial biogenesis (Westbrook et al.,
2009; Brown-Borg et al., 2012). Moreover, Mutvei et al. (1989)
suggested that GH is not a major regulator of mammalian
mitochondrial biogenesis. They considered that previous results
concerning the effect of GH on mitochondrial biogenesis were
based on the incorrect interpretations of the data, as increased
respiration does not necessarily reflect increased mitochondrial
biogenesis. Similarly, it was recently reported that the expression
of mitochondria-specific markers (PGC1α, AMPKα, SIRT1, and
cytochrome b, etc.) along with the protein levels of electron
transport chain (complexes I, II, III, IV, and V) in osteocytes are
not significant differences between bGH Tg and control mice (Liu
et al., 2019). Taken together, these different results mentioned
above indicate that GH may account for complex functions
on mitochondrial biogenesis during different physiological
conditions in vivo and in vitro.

THE EFFECTS OF GROWTH HORMONE
ON MITOPHAGY

Mitophagy is a well-studied type of cargo-specific autophagy
to selectively eliminate mitochondria. However, no direct
relationship between GH and mitophagy has been reported.
Therefore, in this section, we only summarize the connection
between GH and autophagy, which may throw the rope for the
future researches.

Early study initially suggested that disruptions of the insulin
or GH/IGF1 axis with low insulin and IGF1 levels may enhance
autophagy to prevent the age-related mitochondrial degradation
and extend the lifespan (Bergamini et al., 2003). Wang and Miller
(2012) demonstrated that fibroblasts in Snell mice (which secrete
very low amounts of GH, prolactin, and thyroid-stimulating
hormone) are more susceptible to autophagy induced by amino
acid withdrawal or by oxidative stress than control cells. They also
found evidence of reduced mTOR function in dwarf cells under
autophagy conditions, which is consistent with the evidence
that increased autophagy requires lower mTOR activity (Wang
and Miller, 2012). Furthermore, somatostatin analog treatment
might induce apoptosis, increase autophagy, and decrease cell
proliferation in GH-secreting adenomas (Dagistanli et al., 2018).
A recent study also showed that reduced GH signaling in the liver
of Snell mice upregulates the CMA (Endicott et al., 2020). These
findings indicate a negative regulatory effect of GH on autophagy.

In contrast with these results, lack of the GH secretagogue
ghrelin causes lethal hypoglycemia in mice under fasted and
fat-depleted state; however, the wild-type mice under the same
conditions exhibit a massive increase in plasma GH and hepatic
autophagy, suggesting the positive connection between the
plasma GH and hepatic autophagy (Zhang et al., 2015). Besides,
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GH acts through its receptor GHR in the liver to activate
autophagy, preserve triglycerides, enhance gluconeogenesis, and
prevent hypoglycemia in calorie-restricted mice (Fang et al.,
2019). Accordingly, similar to the effects of GH on mitochondrial
biogenesis, the findings above indicate the different roles of GH
on autophagy during diverse physiological conditions in vivo.

THE EFFECTS OF GROWTH HORMONE
RECEPTOR ON MITOCHONDRIAL
BIOGENESIS

In recent decades, genetically engineered mouse strains (GHR
gene disrupted or knockout mouse) have become vital tools for
exploring the various activities of GH and GHR in vivo (List et al.,
2020). Similarly, the genetic background of the sex-linked dwarf
(SLD) chickens, which are caused by GHR gene mutations, also
allows this strain to become a model system to understand the
roles of GHR in vivo (Luo et al., 2016).

Early in the 21st century, GHR is considered to exhibit
a negative effect on the process of mitochondrial biogenesis
in vivo. Al-Regaiey et al. (2005) published a paper in which they
described that PGC1α protein level was increased in the liver
of male GHRKO mice. The gene expression and protein level
of mitochondrial biogenesis markers, including PGC1α, AMPK,
SIRT3, eNOS, and MFN2, are increased in GHRKO mice (Gesing
et al., 2011a,b). A recent study also showed that the PGC1α

protein levels in liver are significantly increased in both male
and female GHRKO pigs compared with sex-matched controls
(Riedel et al., 2020). However, the decrease in NRF1 and TFAM
expression in the skeletal muscles and TFAM expression in
kidneys of GHRKO mice was also demonstrated (Gesing et al.,
2011b). The authors suggested that the decrease in TFAM may
reflect potentially unaltered mtDNA content in GHRKO mice
(Gesing et al., 2013). Notably, the increased expression of key
regulators of mitochondrial biogenesis in GHRKO mice is not
improved further by calorie restriction or visceral fat removal
(Gesing et al., 2011b).

However, several recent findings are different from the
previous results. Our previous study has revealed that the
gene expression of mitochondrial biogenesis markers (PGC1α,
NRF1, and TFAM) and mtDNA-encoded OXPHOS genes are all
downregulated in the skeletal muscle of SLD chickens and GHR
knockdown cells (Hu et al., 2019). At the same time, we observed
that the enzymatic activities of OXPHOS complexes (complexes I,
II, III, and IV) are reduced in the skeletal muscle of SLD chickens
and GHR knockdown cells, indicating that GHR exhibits a
positive effect on mitochondrial biogenesis. Furthermore, the
expression of mitochondria-specific markers (PGC1α, AMPKα,
SIRT1, and cytochrome b, etc.) and the protein levels of OXPHOS
complexes (complexes I, II, III, IV, and V) in osteocytes are
not significantly different between GHRKO and control mice
(Liu et al., 2019). This investigation suggested that GHR has no
effect on mitochondrial biogenesis, at least in vitro. On the other
hand, the gene expression of mitochondrial biogenesis markers
(PGC1α, AMPK, SIRT1, NRF2, and MFN2) and mitochondrial
activity marker (COXIV) in liver-specific GHRKO (LiGHRKO)

and wild-type mice are significantly different between the males
and females, suggesting that sexual dimorphism may also play
an essential role in regulating the mitochondrial biogenesis
(Zawada et al., 2015).

As the middle of the GH–GHR–IGF1 axis, GHR plays a
pivotal role in its functions. Taking into account these important
observations, it seems that the effects of GH and GHR on
mitochondria biogenesis are similar, as they both exhibit a
multifaceted feature that are summarized in Table 1. There
may be many explanations accounting for this difference.
One explanation might be that the roles of GH and GHR
on mitochondrial biogenesis may be different among cell-,
organ-, and species-specific factors. The other explanation
might be that mitochondrial biogenesis per se is not always
assayed. The induction or repression of some mitochondrial
markers is not always representative of the expansion of the
mitochondrial network.

THE EFFECTS OF GROWTH HORMONE
RECEPTOR ON MITOPHAGY

In recent decades, similar to GH, no direct relationship has been
reported between GHR and mitophagy. Therefore, in this part, we
merely summarized the connection between GHR and autophagy
from sporadic studies. It was found that GHR expression and
its protein level are reduced in the skeletal muscle of ATG7
knockout mice, implying a synchronous relationship between
GHR and autophagy (Zecchini et al., 2019). Furthermore, the
level of the autophagy marker LC3-II is increased in GHRKO
osteocytes (Liu et al., 2019). A recent study also showed that LC3-
II flux is increased in the liver of GHRKO mice, but unaltered in
LiGHRKO mice (Endicott et al., 2020). Up to now, the above two
studies suggest a negative regulatory effect of GHR on autophagy.
These new findings only reveal a fraction of the relationship
between GHR and autophagy. Meanwhile, it is currently observed
that these multifunctional effects of GHR on autophagy may be
similar to GH. In the future, more research will be needed to
deepen our understanding of the relationship between GHR and
autophagy, even mitophagy.

THE EFFECTS OF INSULIN-LIKE
GROWTH FACTOR 1 ON
MITOCHONDRIAL BIOGENESIS

Cells generate new mitochondria when stimulated by
extracellular factors to grow and divide. Numerous studies
have aimed at assessing the effects of IGF1 on mitochondrial
biogenesis. Neuregulin and IGF1 can act synergistically to
increase mitochondrial biogenesis and mtDNA replication
in primary Schwann cells, which requires both the ERK and
PI3K signaling pathways (Echave et al., 2009). This process is
mediated by the transcription factor ERRα and is independent of
AKT/mTOR signaling pathways. IGF1 also enhances the level of
mitochondrial protein involved in signal transduction, protein
import and folding, mtDNA transcription, and bioenergetics in
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TABLE 1 | The multiple effects of growth hormone (GH) and growth hormone receptor (GHR) on mitochondrial biogenesis.

Protein Impact on
mitochondrial
biogenesis

Model Tissue or cell References

GH Positive effect Hypophysectomized rats Liver, heart Maddaiah et al., 1973, 1976; Katkocin et al., 1979;
Maddaiah and Clejan, 1986

Bovine GH transgenic mice Liver Al-Regaiey et al., 2005

Rats Skeletal muscle Brioche et al., 2014

Negative effect Long-living Ames dwarf mice Liver Westbrook et al., 2009; Brown-Borg et al., 2012

No effect Hypophysectomized rats Liver Mutvei et al., 1989

Bovine GH transgenic mice Osteocyte Liu et al., 2019

GHR Positive effect GHRKO mice Liver Al-Regaiey et al., 2005

GHRKO mice Skeletal muscle, kidney Gesing et al., 2011a,b

GHRKO pigs Liver Riedel et al., 2020

Negative effect SLD chickens Skeletal muscle,DF-1 cell Hu et al., 2019

No effect GHRKO mice Osteocyte Liu et al., 2019

Huntington’s disease (HD) striatal cells (Ribeiro et al., 2014).
Similarly, the aging rats untreated with IGF1 exhibit a significant
mitochondrial dysfunction, including reduced activity of ATPase
and complex IV (Garcia-Fernandez et al., 2008; Puche et al.,
2008). Furthermore, cMYC regulates the expression of PGC1β in
breast cancer cells in response to Her2/IGF1 activation (Chang
et al., 2011). There is also evidence showing that IGF1 promotes
mitochondrial biogenesis through the induction of PGC1β and
PRC, not PGC1α, in vitro (Lyons et al., 2017). Likewise, loss of
IGF1 signal reduces the expression of mitochondrial biogenesis
markers (PGC1α, TFAM) in the steroidogenic cells of prepubertal
testis (Radovic et al., 2019). Overall, these compelling evidences
demonstrate that IGF1 acts as a protector in the process of
regulating mitochondrial biogenesis.

THE EFFECTS OF INSULIN-LIKE
GROWTH FACTOR 1 ON MITOPHAGY

Up to now, numerous studies have reported the relationship
between IGF1 and autophagy. Here, we only briefly elucidate
as follows. IGF1 inhibits starvation-induced cardiac autophagy
via mTOR signaling in vitro, and negatively regulates cardiac
autophagy and AMPK activity in vivo (Troncoso et al., 2012).
Conversely, high protein levels of IGF1 and its receptors,
accompanied by a reduction in AKT/mTOR signaling pathways
resulting from resistance exercise training, are associated with
increased autophagy activity in aged skeletal muscles (Luo et al.,
2013). Also, IGF1 expression is significantly reduced in ATG7
knockout mice, indicating that IGF1 plays a beneficial role in
regulating autophagy (Zecchini et al., 2019).

Nevertheless, the role of IGF1 on mitophagy is rarely reported.
IGF1 can induce the expression and accumulation of BNIP3 in
mitochondria through a PI3K-dependent manner, indicating that
IGF1 promotes mitophagy in vitro (Lyons et al., 2017). In mouse
and cell models of amyotrophic lateral sclerosis (ALS), IGF1 also
strongly protects mitochondria from apoptosis and upregulates
mitophagy, as evidenced by a decrease in the p62 level and an
increase in the LC3-II level (Wen et al., 2019). Recently, a study

further revealed that IGF1-induced BNIP3 expression requires
NRF2 to act through downstream transcriptional factors HIF-1α

and NRF1 (Riis et al., 2020). These novel findings above strongly
demonstrate that IGF1 promotes the process of mitophagy both
in vivo and in vitro. However, whether there is an interaction
between the mitochondrial biogenesis and mitophagy regulated
by IGF1 is still unknown, and further research is needed.

THE EFFECTS OF GH–GHR–IGF1 AXIS
ON MITOCHONDRIAL FUNCTION

Many methods have been utilized to measure normal
mitochondrial function or dysfunction in different systems.
Generally, mitochondrial respiration control, including oxygen
consumption rate (OCR) and respiratory control ratio (RCR),
is utilized to measure the mitochondrial function in diverse
cell populations (Brand and Nicholls, 2011). Mitochondrial
membrane potential (19m) is also used as an indicator for
mitochondrial function. Loss of 19m normally indicates
mitochondrial dysfunction and is accompanied by increased
mitochondrial swelling (Javadov et al., 2006, 2009). Furthermore,
reduced 19m will lead to uncoupling of OXPHOS and increases
ROS production accompanied by elevated malondialdehyde
(MDA) levels and reduced ATP levels (Lebiedzinska et al., 2010;
Bai et al., 2017). Notably, numerous studies have revealed a
positive correlation between 19m and ROS production in
various physiological and pathological scenarios. Mitochondrial
proton leakage, mainly due to the decrease in 19m, is
considered to counteract mitochondrial ROS production to
protect cells from oxidative stress (Turrens, 2003; Mailloux and
Harper, 2011).

Until now, a long list of studies utilizing numerous cell
types has shown the effects of the GH–GHR–IGF1 axis on
mitochondrial function in vivo and in vitro. Early in the
1970s, most of researches had revealed the positive effects of
GH on mitochondrial respiration rate and its related enzyme
activities in hypophysectomized rats (Maddaiah et al., 1976;
Katkocin et al., 1979; Maddaiah and Clejan, 1986). Short-term
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GH therapy for 3 months increases the activity of succinate
dehydrogenase, which represents the mitochondrial function in
human quadriceps muscle (Gonzalez et al., 2018). A recent
study also demonstrated that the OCR and ATP production
is significantly increased in primary osteocytes of bGH Tg
mice (Liu et al., 2019). These results suggested that GH has a
positive effect on mitochondrial function in vivo. Furthermore,
increased OXPHOS activities and oxygen consumption, along
with reduced ROS production were found in the long-living
Ames dwarf mice (Westbrook et al., 2009). Also, decreased
oxygen consumption was observed in bGH Tg mice (Brown-Borg
et al., 2012). These findings indicated that GH has a negative effect
on mitochondrial function in vivo. In addition, administration
of GH by the continuous infusion of hormone for 6 days in
hypophysectomized rat liver has no effect on mitochondrial
respiration and enzyme activities (Mutvei et al., 1989).

These discrepancy results can also be observed on GHR
functions. GHR ablation is detrimental to osteocyte and
fibroblast mitochondrial function (Liu et al., 2019). Consistently,
mitochondrial function is impeded in the skeletal muscle
of SLD chickens and GHR knockdown cells, indicating that

GHR promotes mitochondrial function in vivo and in vitro
(Hu et al., 2019). However, these data are in conflict with a
previous report that demonstrated an enhanced mitochondrial
function in the liver, muscle, heart, kidneys, and brain of
aged GHRKO mice (Brown-Borg et al., 2009). Also, the
abundance of three tricarboxylic acid cycle (TCA) cycle enzymes
(isocitrate dehydrogenase, fumarase, and malate dehydrogenase)
is significantly increased in the GHRKO pigs’ liver proteome,
suggesting that GHR inhibits mitochondrial function in vivo
(Riedel et al., 2020). Due to the lack of GH and GHR on
the regulation of mitophagy, we proposed that these discrepant
results of GH and GHR on mitochondrial function may be
explained by the coordinated regulation mechanism between
mitochondrial biogenesis and mitophagy to meet different
physiological conditions in vivo and in vitro.

In the last 10 years, most evidence has revealed that
IGF1 is regarded as a protector for mitochondrial function
under several diseases and stress conditions. IGF1 not only
protects cardiomyocytes from hypoxia/reoxygenation injury by
stabilizing 19m and reducing ROS damage but also alleviates
mitochondria dysfunction in cardiomyocytes from high-fat diet

FIGURE 3 | The GH–GHR–IGF1 axis may control mitochondrial function by regulating mitochondrial biogenesis and mitophagy. The effects of GH–GHR–IGF1 axis
on mitochondrial function may be mostly mediated by IGF1, which stimulates several signaling pathways, including phosphoinositide-3-kinase (PI3K)/AKT and
Ras/Raf/MAPK signaling, to further activate numerous transcription factors (TFs). This cascade leads to transcriptional activity of genes involved in both
mitochondrial biogenesis and mitophagy. Accordingly, IGF1 is commonly considered to enhance mitochondrial function by promoting mitochondrial biogenesis and
mitophagy under several conditions of metabolic or mitochondrial stress. However, whether there is an interaction between the mitochondrial biogenesis and
mitophagy regulated by IGF1 is still unknown, and further research is needed.
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mice (Pi et al., 2007; Zhang et al., 2012). In neuronal cells,
IGF1 protects against prion diseases caused by mitochondrial
dysfunction and increased ROS production via inhibition of Bax
translocation (Park et al., 2012). Consistently, IGF1 increases
19m in HD striatal cells in a PI3K/AKT-dependent manner
(Ribeiro et al., 2014). Activation of IGF1 signaling pathways also
ameliorates O2 consumption and 19m in HD lymphoblasts
(Naia et al., 2015). Furthermore, regulation of astrocytic
mitochondrial function and redox status by IGF1 is essential
to maintain astrocytic function and coordinate hippocampal-
dependent spatial learning (Logan et al., 2018). Knockdown
of the IGF1 leads to a reduction in 19m and alterations in
mitochondrial morphology in ALS mice (Wen et al., 2019).
In addition, IGF1 activates AMPK to augment mitochondrial
function (OCR and ATP production) in sensory neurons in type-
1 diabetes (Aghanoori et al., 2019). Of note is that a recent
study revealing that induced liver IGF1 knockout can impair
hippocampal mitochondrial OXPHOS coupling efficiency and
reduce cortex ATP levels (Pharaoh et al., 2020). However, IGF1
has no significant impact on muscle mitochondrial function,
indicating that the deficiency of IGF1 in male mice has different
roles on tissue mitochondrial function between the center and
periphery circulation (Pharaoh et al., 2020). Taken together, these
findings strongly demonstrate that IGF1 promotes mitochondrial
function to restore various diseases and stress conditions, such
as improving metabolism and exerting mitochondrial protection,
hepatoprotective as well as neuroprotective effects.

Accordingly, Sadaba et al. (2016) suggested that one of the
newest targets to recover mitochondrial dysfunction could be
the administration of low doses of IGF1. This is supported
by compelling evidences that IGF1 replacement therapy is able
to restore mitochondrial dysfunction observed in untreated
cirrhotic rats and in IGF1 partial deficiency mice (Perez et al.,
2008; Olleros et al., 2017).

FUTURE PERSPECTIVES

To sum up, it is generally believed that IGF1 enhances
mitochondrial function by promoting both mitochondrial

biogenesis and mitophagy under several conditions of metabolic
or mitochondrial stress. Accordingly, regulation of IGF1
secretion may have a therapeutic potential in the protection of
mitochondrial function for treating many mitochondria-related
diseases. In Figure 3, we delineate the hypothetical mechanism
of the GH–GHR–IGF1 axis, which may be mostly mediated by
IGF1, on the regulation of mitochondrial biogenesis, mitophagy,
and mitochondrial function based on the results of studies in
the recent decades.

On the other hand, the effects of GH and GHR on
mitochondrial function are multifaceted, which may be induced
by the differences between cell-, organ-, and species-dependent
features or various physiological conditions in vivo and in vitro.
The findings above may lead us to think deeply that GH
may exert its multiple effects on mitochondrial function under
the direct control by its receptor GHR. However, whether
GHR functions as a control valve is still currently lacking
in research. Moreover, the molecular basis of GH and GHR
on mitophagy is not well understood. In the future, more
research is needed to improve our understanding of the
effects of GH and GHR on mitochondrial function. This
intricate biological process may be explained by the balance
between mitochondrial biogenesis and mitophagy under different
physiological conditions.
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