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Materials characterisation plays a crucial role in developing thermal barrier coatings
and environmental barrier coatings for gas-turbine engines. The failure of thermal
barrier coatings and environmental barrier coatings is influenced by a complex
interdependence of microstructure, residual stress, and thermomechanical
properties. Validating our mechanistic understanding of each of these factors
that contribute to failure requires a selection of suitable characterisation
techniques. Presented in this review are characterisation techniques, both ex situ
and in situ, that have advanced the understanding of thermal barrier coating and
environmental barrier coating failure. Targeted coating development that is both
effective and efficient depends on these characterisation techniques to obtain
superior coatings with improved performance and lifetime.
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1 Introduction

Thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs) facilitate
using nickel based superalloys and silicon carbide composites respectively in demanding
environments, such as the gas-turbine engine. Subjecting materials in a gas-turbine engine to
ever more demanding environments is desirable to improve efficiency, accessed by
increasing engine core temperatures. As a result, this reduces fuel burn, which
simultaneously lowers operating costs and reduces environmental impact. However,
limitations in the high-temperature performance (>1,200°C) and steam corrosion of the
substrate materials require the introduction of TBCs and EBCs for protection.

The lifetime of TBCs and EBCs is dependent on their many failure mechanisms arising
because of their demanding, operating environment. This environment typically involves
thermal cycling, steam exposure and ingested contaminants, such as calcium magnesium
alumino-silicates (CMAS), that can also result in solid particle erosion and foreign object
damage (FOD) (Spitsberg and Steibel, 2004; Lee, 2018; Padture, 2019). Commonly, these
conditions occur simultaneously, posing challenges to accurately model and predict the
evolution of coating properties throughout lifetime.

Understanding TBC and EBC failure and consequently developing coatings with longer
lifetimes is therefore only possible with an extensive use of characterisation techniques.
Characterisation techniques, both ex situ and in situ, evidence the evolution of
microstructure, residual stresses and thermomechanical properties throughout lifetime,
Figure 1. This leads to a better understanding of the complex interplay between these
factors contributing to coating failure. Understanding their failure then facilitates the
targeted development of more effective coatings by tailoring compositions and obtaining
better microstructures to extend lifetime.
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2 Purpose of TBCs and EBCs

TBCs are designed to thermally insulate nickel based superalloy
components from the gas-turbine engine core’s operating
temperature. Typical TBC systems consist of two layers: a
ceramic top coat (6-8 wt% Y2O3-ZrO2) and a metallic bond coat
(NiCoCrAlY, β-(Ni,Pt)Al or Pt-diffused γ/γ’-based NiAl).
Commonly resulting in a millimetre scale TBC, the coating must
then have a low thermal conductivity to insulate the nickel based
superalloy from a combustion environment that is now hotter than
the superalloy’s melting temperature. Publications highlighting the
development of TBC systems can be found elsewhere (Miller, 1997;
Evans et al., 2008; Clarke et al., 2012; Ghosh, 2015; Bakan and
Vaßen, 2017; Gopal Thakare et al., 2021).

A step change to engine performance requires even higher engine
core temperatures, whichmeans replacing nickel based superalloys with
silicon carbide (SiC) based composites. SiC composites’ advantages
include: higher temperature capability (above 1,200°C); higher creep
resistance, and lower density (1/3rd of nickel based superalloys) (Lee,
2000; Spitsberg and Steibel, 2004). Consequently, the introduction of
SiC composite components results in weight reduction and removes the
need for additional cooling infrastructure, which increases the available
air for combustion to generate engine thrust (Lee et al., 2021).
Therefore, next-generation gas turbine engines can achieve currently
unattainable thrust to weight ratios (Lee et al., 2021).

Despite these advantages, SiC in the combustion environment of a
gas-turbine engine is susceptible to steam corrosion at an unacceptable
rate of 1 μm/h at 1,200°C (Jacobson, 1993; Opila et al., 1999). Therefore,
EBCs are required to protect SiC (Eaton et al., 2000; Eaton and Linsey,
2002; Kimmel et al., 2002) and enable even higher efficiencies in the gas-
turbine engine (Spitsberg and Steibel, 2004).

A common EBC system, with a sub-millimetre thickness, is
composed of a mixed rare-earth silicate (i.e Yb2Si2O7/Yb2SiO5) top
coat and a silicon bond coat. Advantages of these silicate based top coats
include their stability at high-temperatures and their lack of polymorphs
and resulting phase transformations. Their thermal expansion coefficient
is also similar to SiC (4.5 x 10−6 ⁰C−1 (Padture, 2019)), which prevented
the established TBC system containing zirconia-based materials (10 x
10−6 ⁰C−1 (Hayashi et al., 2005)) protecting SiC. The silicon bond
coat improves the adhesion between the coating and substrate

(Kane et al., 2021), but the silicon imposes a temperature limit to an
EBC, given its melting temperature of ~1,416°C (Desai, 1986; Zhang
et al., 2022). Therefore, this has started the development of alternative
EBC systems with different bond coats (Anton et al., 2020; Harder, 2020;
Lee et al., 2022; Zhang et al., 2022). Comprehensive reviews of other EBC
systems and compositions can be found in separate publications (Tejero-
Martin et al., 2021; Paksoy and Xiao, 2023).

3 Failuremechanisms of TBCs and EBCs

The extreme and complex in-service environmental conditions of
TBCs andEBCs, which can simultaneously involve thermal cycling, steam
oxidation and CMAS interaction, result in various failure mechanisms.

For TBCs, the thermally grown oxide (TGO), formed at temperatures
exceeding 700°C at the bond coat/top coat interface (Stott and Wood,
1987; Takahashi et al., 2019), highlights the need for a holistic approach to
understand its associated failure. The TBC TGO can contain a variety of
phases dependent on the underlying bond coat; these includeα-Al2O3 and
mixed oxides, potentially consisting of metastable alumina, zirconia and
NiAl2O4 spinel phase (Stiger et al., 1999; Chen et al., 2012). Consequently,
residual stresses can then arise from TGO growth, and also from the
thermal mismatch between the TGO and adjacent coating layers (Evans
et al., 2001). These stresses can then result in buckling and spallation of the
coating, initiated at imperfections in the TGO (Evans et al., 2001).
Identifying the mechanisms that cause these residual stresses is
important to understand their interplay with microstructural evolution.

Similarly, oxidation of EBCs forming a SiO2 TGO is an important
failure site. Silicon bond coat oxidation occurs with a typical parabolic
growth rate at micrometre thicknesses (Deal and Grove, 1965; Jacobson,
1993; Richards et al., 2016) and residual stresses arise from the difference
in bulk thermal expansion coefficients between coating layers. These
include: silicon (4.1 × 10−6 °C−1 (Desai, 1986; Richards et al., 2016)), one of
the most used EBC top coat materials, Yb2Si2O7 (4 × 10−6 °C−1

(Fernandez-Carrion et al., 2013)), and an α-cristobalite, SiO2 TGO
(30 × 10−6 °C−1 (Peacor, 1973; Perrotta et al., 1989)). Consequently,
multi-layer models estimate thermal mismatch stresses of 4 GPa in the
TGO (Richards et al., 2016; Begley and Hutchinson, 2017). However,
these models assume planar interfaces, and that there is no stress relief by
cracking or creep deformation (Richards et al., 2015; Richards et al., 2016;

FIGURE 1
Outlining the role of characterisation techniques to understand the failure of thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs).
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Begley and Hutchinson, 2017). An added complication for modelling is
representing the complex, inhomogeneous microstructures achieved by
thermal spray processes, such as air plasma spray (APS). Therefore, an
evaluation of these coatings’ thermomechanical properties and residual
stresses is required to validate the suitability of these simplified models.

Furthermore, the EBCs’ high temperature cubic, β-cristobalite SiO2

TGOalso transforms to the tetragonal α-cristobalite phase upon cooling
at approximately 220°C (Evans et al., 2001; Richards et al., 2016). The
associated 4.5% volume shrinkage upon cooling can initiate cracks to
cause coating spallation (Evans et al., 2001; Breneman and Halloran,
2014; Richards et al., 2016). In situ characterisation techniques to
evaluate the resulting microstructure changes and residual stresses as
a function of temperature are consequently important here.

The morphology of the TBC TGO also affects failure. Repeated
thermal cycling can result in a roughening of the TBC bond coat, termed
ratcheting, which propagates top coat cracks on each thermal cycle,
before eventual crack coalescence and coating spallation (Evans et al.,
2001). Therefore, models assuming planar interfaces are unsuitable given
the concave and convex interfacial regions more closely resemble a
misfitting sphere model (Evans et al., 2001). Furthermore, these models
need to incorporate the microstructural evolution to track the change in
residual stress distribution along an undulating interface, and the residual
stress relief provided by cracking. Consequently, tracking the evolution of
microstructure, determining the thermomechanical properties, and
evaluating the local distribution of residual stress are all required to
fully understand the TGO’s role in TBC failure.

As well as undulations at the TGO interface, an increased TGO
thickness also increases the likelihood for failure. Considering an
energy-based approach for fracture, a thicker TGO increases the strain
energy release rate, increasing the driving force for crack propagation
and coating delamination (Hutchinson and Suo, 1991; Evans and
Hutchinson, 1995; Begley and Hutchinson, 2017). Therefore, a critical
TGO thickness is a simple failure criterion, commonly cited for both
TBCs (Evans et al., 2001) and EBCs (Richards et al., 2016).

Reducing and controlling the TGO growth rate are therefore
approaches pursued for both TBCs and EBCs. These include altering
the bond coat morphology with TBCs (Gil et al., 2006; Yanar et al.,
2006; Martins et al., 2020) and for EBCs, making top coat additions,
such as Al2O3 or Al2O3-containing compounds including mullite
and YAG (Y3Al5O12) (Lee, 2018; Lee et al., 2021; Paksoy et al., 2022)
Validating these approaches requires quantifying the thermal oxide
thickness by evaluating microstructure evolution throughout
lifetime from deposition to failure.

However, since coating delamination is typically life-limiting, this
involves mixed-mode loading propagating interfacial cracks between
dissimilar materials (Piva and Viola, 1980; Liechti and Hanson, 1988;
Hutchinson and Suo, 1991). Inducing this failure mode with
representative loading boundary conditions is difficult. Hence, the
evaluation of the fracture toughness is simplified to individual
coating layers, meaning that nanoindentation or micromechanical
approaches (Di Maio and Roberts, 2005) are necessary to satisfy the
assumptions that the crack size is much smaller than the sample
geometry (Irwin, 1948; Irwin, 1957; Lawn, 1993).

Another environmental challenge for TBCs and EBCs is the
ingestion of siliceous contaminants into a gas-turbine engine. These
can include sand, salt, and volcanic ash, also termed calciummagnesium
alumino-silicates (CMAS) (Kim et al., 1993; Poerschke et al., 2017; Cao
et al., 2021). The reaction of the coating andCMAS can cause dissolution-

reprecipitation of new phases, and at very high temperatures
(i.e. >1,100°C), the infiltration of molten CMAS through porosity and
grain boundaries (Stott et al., 1994; Borom et al., 1996; Grant et al., 2007;
Levi et al., 2012). The infiltration of CMAS can also lead to a loss of strain
tolerance, provided by the columnar structure of TBC top coats deposited
by electron-beam physical vapour deposition (EB-PVD) (Mercer et al.,
2005; Evans and Hutchinson, 2007; Krämer et al., 2008). Understanding
themechanisms of infiltration, phase transformation andmicrostructural
evolution inform the choice of coating compositions that are stable, and
alsomicrostructures that provide enhanced CMAS protection (Cao et al.,
2021; Morelli et al., 2022).

Furthermore, the physical interaction of ingested contaminants can
also result in solid particle erosion and foreign object damage (FOD) of
coatings (Wellman and Nicholls, 2004; Bhatt et al., 2008; Gohardani,
2011; Presby et al., 2023). Erosion can also reduce the thermal
insulation provided by the coating from a reduction in thickness
and thus accelerate TGO growth for failure (Wellman and Nicholls,
2008). This highlights the need for testing in representative
environments to establish the links between multiple environmental
conditions, for example, between steam oxidation and foreign object
damage (Hoffman et al., 2023) that together accelerate coating failure.

In conclusion, a wide variety of failuremechanisms occur in complex
multi-layered TBC and EBC systems operating in extreme environments.
All these failure mechanisms involve a complex interplay between
microstructure, residual stresses, and thermomechanical properties. As
a result, it is challenging to obtain reliable and representative models,
meaning that characterisation techniques are essential to understand
failure and then develop coatings with predictable performance
throughout lifetime.

The following sections detail techniques suited to characterising
microstructure (Section 4), evaluating stress (Section 5) and also
inducing failure (Section 6) in TBCs and EBCs.

4 Characterising microstructure

4.1 Morphology evolution

Characterising a coating’s morphology is necessary to study its
evolution as a function of its extreme environmental conditions.
There are several microstructural features of particular interest for
TBCs and EBCs; these include the top coat grain size and grain
orientation, and also the top coat’s porosity. Additionally, the
oxide layer thickness and bond coat roughness play a significant
role in the interfacial failure mechanisms related to the TGO.

Furthermore, once failure mechanisms are established, the
visualisation of the microstructure is an important feedback loop for
optimising coating processing to avoid failure (Whitehouse, 1997). For
example, achieving a grain size that reduces steam permeation (Wada
et al., 2017; Kitaoka et al., 2018; Matsudaira et al., 2021); optimising the
orientation of porosity for strain tolerance (Singh and Wolfe, 2005;
Mauer and Vaßen, 2020), or obtaining a suitable interfacial roughness
for adherence without increasing the likelihood for failure by ratcheting
or rumpling (Evans and Hutchinson, 1984).

The following sections present the application of various
characterisation techniques visualising and quantifying
microstructural features in the top coat (4.1.1), thermally grown
oxide (4.1.2) and bond coat (4.1.3) in TBCs and EBCs.
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4.1.1 Top coat
Porosity in the top coats of TBCs and EBCs has both

advantages and disadvantages. Porosity present between EB-
PVD columns or between APS splats is essential for ensuring
stress compliance during extreme thermal cycling conditions
(Fleck et al., 2014). However, porous coatings can also increase
the rates of CMAS corrosion by providing pathways for diffusion
or infiltration (Naraparaju et al., 2017; Tejero-Martin et al., 2022).
Furthermore, pores can accelerate the steam corrosion of the
Yb2Si2O7 EBC top coat (Mccormack et al., 2023), affect the
resistance to foreign object damage (Wellman and Nicholls,
2007; Kedir et al., 2020), and increase solid particle erosion
(Presby et al., 2023). Thus, porosity is a parameter influencing
TBC and EBC performance, and evaluating its evolution is
important to obtain predictable performance (Nakamura et al.,
2000; Tejero-Martin et al., 2021).

There are many methods to evaluate porosity within coatings. The
Archimedes method is simple (ASTM International, 2013), but cannot
quantify a distribution of pore sizes as achieved with mercury intrusion
porosimetry (MIP) (Siebert et al., 1999;Medricky et al., 2015). However,
both these techniques cannot indicate the spatial distribution of pores.
This is important as densification gradients, due to sintering, can lead to
elastic modulus variation as a function of depth into a coating (Kulkarni
et al., 2006; Fleck et al., 2014). Other techniques include X-ray computed
tomography (XCT) to provide this spatial distribution, although its
resolution is limited (>1 µm), while SEM offers improved resolution,
but the investigated region is limited to the sectioned area.

Characterisation techniques with improved resolution are also
required since EB-PVD TBCs contain nanometre scale porosity.
Capable techniques include small angle neutron scattering (SANS)
and transmission electron microscopy (TEM) (Kulkarni et al., 2006).
For example, in situ SANS at temperatures up to 1,100°C and laser flash
analysis indicate pore coarsening increases the thermal conductivity
after thermal ageing (Saruhan et al., 2011). The development of
anisotropic intra-columnar porosity, observed with bright field TEM
images after isothermal ageing (over 100 h at 1,100°C), also explains the
plateauing of thermal conductivity with thermal ageing of a fully-
stabilised EB-PVD YSZ top coat (Saruhan et al., 2011). The limited
sample volume of a TEM lamella, means that significant effort is
required to reliably investigate any evolution of this porosity.

Measuring the grain size and determining the grain boundary
density is another common and straightforward microstructural
feature to quantify. As EBC top coat grain boundaries are
pathways for both steam permeation (Wada et al., 2017;
Kitaoka et al., 2018; Matsudaira et al., 2021) and CMAS
infiltration (Sternlicht et al., 2022b), determining the grain
size can provide a measure of the EBC’s corrosion resistance.
Additionally, measuring grain size can evaluate grain coarsening
during thermal exposure (Yilmaz et al., 2023), or understand the
effect of secondary phases pinning grain boundaries (Paksoy and
Xiao, 2021). For this measurement of grain size, electron
backscattered diffraction (EBSD) (Humphreys, 2001) or image
processing of SEM micrographs are standard methods (ASTM
International, 2021b). More traditional methods using intercept
methods (Heyn, 1903; Abrams, 1971) are unsuitable given the
heterogeneity with thermal spray microstructures.

Grain orientation can also affect thermal conductivity (Zhu and
Miller, 2000) and CMAS infiltration (Naraparaju et al., 2017),

especially with the highly orientated columnar structure of EB-
PVD TBCs. Identifying the intensity variation of X-ray diffraction
(XRD) pattern peaks and SEM cross-section micrographs can
determine suitable preheating temperatures and deposition times
to achieve well-orientated and strain tolerant EB-PVD TBC
columnar structures (Czech et al., 1999; Wada et al., 2004).

4.1.2 Thermally grown oxide
Examining a coating’s cross-section is a common

characterisation approach for assessing the evolution of oxide
layers. Microstructures can be imaged with SEM or optical
microscopy, with the greyscale contrast variation aiding the
identification of oxide layers, Figure 2 (Ridley et al., 2022; Ridley
et al., 2023). Capturing high-resolution SEM micrographs of oxide
layers with automated sample stages and then stitching these images
enables the measurement of thickness variation across significant
regions of interest (Ridley et al., 2022, Ridley et al., 2023). For
example, cross-sectioning identified that the EBC top coat
thickness is not a limiting factor in TGO thickness,
suggesting that the diffusion of oxidants across the TGO is
the growth rate limiting mechanism (Lee, 2018; Lee et al., 2021;
Lee et al., 2021).

Methods for segmenting microstructural features, such as oxide
layers, are also advancing. Software tools, such as AutoTracer (Su
et al., 2021), CMAT (Su et al., 2021) and SOFIA (Stack, 2022),
provide a user-interface to segment images and identify the oxide
according to greyscale contrast. This automation streamlines the
measurement of oxide thickness and roughness, Figure 2 (Ridley
et al., 2022; Ridley et al., 2023). Additionally, automatic
segmentation with machine learning driven approaches is
progressing. For instance, the successful segmentation of EBC
oxides has been achieved through transfer learning and
MicroNet, a training dataset of over 100,000 microscopy images
(Stuckner et al., 2022). Providing open access to these methods leads
to greater standardisation and ultimately offers more reliable
comparison of TGOs formed in different environments with a
variety of coating microstructures and compositions.

4.1.3 Bond coat
Measuring the bond coat’s roughness evolution with thermal

cycling can be performed with confocal microscopy (Evans et al.,
2001). Confocal microscopy reveals the 3D morphology of an
exposed surface, such as an oxidised TBC bond coat (Chen et al.,
2017; Martins et al., 2020). Correlating between roughness datasets
from confocal microscopy and TBC lifetime, enabled the definition
of a Total Thresholded Surface Area parameter (Martins et al.,
2020). Notably, this parameter reflected the bond coat morphology
and showed that bond coats with broad, symmetric peaks resulted in
longer lifetimes than bond coats with steep, narrow, asymmetric
peaks (Martins et al., 2020).

However, confocal microscopy cannot characterise bond coats
or TGOs when a top coat is present. Therefore, for real coating
systems, other non-destructive techniques are necessary. An
alternative approach is XCT, which has tracked the TBC bond
coat roughness evolving with thermal exposure time (Zhao et al.,
2012). XCT has also provided insight into the 3D crack geometry
relative to the bond coat’s peaks and troughs, Figure 3 (Ahmadian
et al., 2015). Moreover, XCT identified cracks initiated at off-peak
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bond coat locations rather than on the peaks (Ahmadian et al.,
2015), further highlighting the effect of bond coat morphology
influencing failure.

4.1.4 Technique overview
Table 1 provides an overview of techniques for characterising

the morphology of TBCs and EBCs.
The morphology features of particular interest include the top

coat grain size and the TGO interface roughness on representative
regions of interest to reliably inform of their evolution and spatial
variation. SEM and EBSD, additionally with stitching, provide
suitable regions of interest (centimetre-scale) at high resolution
(tens of nanometres). However, these techniques are only
representative of the prepared slice of material. Confocal
microscopy is advantageous for quantifying interfacial roughness
of exposed surfaces. Although, this limits any study of bond coat
roughness evolution with confocal microscopy as a top coat cannot
be present or must be removed.

Alternatively, XCT provides a 3D perspective of the entire
coating, with a useful interpretation of porosity. However, the
limited resolution (>1 µm) and restricted penetration depth
without specialist synchrotron facilities limit XCT’s application in
characterising ceramic coatings. A representative quantification of
porosity at high resolution, while also mapping its spatial
distribution is a limiting factor for characterisation techniques
with a safer alternative to MIP not currently available.

4.2 Assessing chemistry and phase analysis

The high-temperature environment of TBCs and EBCs means
that oxidation, phase transformations and amorphous/crystalline
transitions all occur. Affecting these processes are diffusion
mechanisms, composition effects and elemental segregation. The

characterisation techniques informing their roles in TBC and EBC
failure are outlined in this section.

4.2.1 Top coat
With EBCs, crystalline, crack-free top coats are preferred to

reduce TGO formation. Typically this involves performing a heat-
treatment (above 1,200°C) to crystallise the amorphous phases
present after APS deposition, given the high cooling rates
(Richards et al., 2015; Garcia et al., 2019; Xiao et al., 2020).
Choosing suitable heat-treatment temperatures is important as
metastable phases can induce volumetric changes from phase
transformations that also affect the porosity and micro-crack
density (Garcia et al., 2021; Bakan and Vaßen, 2023).

In situ variable temperature XRD is valuable in identifying
such an amorphous to crystalline phase transformation and
tracking the EBC top coat’s evolution at temperatures of
interest, Figure 4 (Garcia et al., 2021). In an investigation of a
Yb2Si2O7-based EBC system, the top coat’s amorphous to
crystalline transformation started at around 1,050°C.
Furthermore, the heat treatment temperature determined the
crystallised phase; above 1,220°C resulting in the stable β-
Yb2Si2O7 phase, rather than metastable phases (Garcia et al.,
2021). These metastable phases were also only present with
particular processing conditions, Figure 4B, so in situ variable
temperature XRD can inform the choice of desirable EBC
processing parameters.

For TBCs, the yttria doped zirconia top coats can transform due
to the limited composition variation of its phase fields (Scott, 1975).
Furthermore, top coats are typically only partially stabilised with
yttria to obtain better erosion resistance, which inherently means the
phase stability needs understanding through operation (Stecura,
1978; Fang et al., 1999; Medvedovski, 2001; Reed, 2006). The yttria
content and hence the ZrO2 phase has a large effect on the thermal
cycling lifetime (Stecura, 1985; Miller, 1987). For example, the

FIGURE 2
Evolution of an EBC SiO2 TGO layer with steam cycling. (A) 120 (B) 300 and (C) 500 cycles with each cycle consisting of a 1-h exposure at 1,350°C
with a 10-min air quench cool and calculated steam flow rate of 1.5 cm s-1. Blue and pink lines indicate evaluated contours by image thresholding
performed by SOFIA software (Stack, 2022). Reprinted from Ridley et al. (2022) with permission from Elsevier.
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metastable tetragonal phase or cubic phase yttria-stablised zirconia
(YSZ) is preferable to avoid the martensitic transformation and the
associated unit cell volume change from tetragonal to monoclinic
(Kobayashi et al., 1981; Chevalier et al., 2009). Although, rate-
dependent with temperature and composition, a heat treatment
around and above 1,300°C can also lead to the as-sprayed metastable
tetragonal phase decomposing (Stecura, 1985; Miller, 1987; Brandon
and Taylor, 1991).

Therefore, the phase stability of a variety of TBC YSZ
compositions has widely been studied with XRD (Brandon and
Taylor, 1991; Jones, 1997; Witz et al., 2007). However, XRD can
misjudge the cubic phase fraction and also the yttria content in the
tetragonal phase (Argyriou and Howard, 1995; Ilavsky and Stalick,
2000). Neutron diffraction can provide a more representative
estimation with better peak separation between zirconia’s
tetragonal and cubic phases, although the limited availability of

neutron sources restricts its use (Ilavsky and Stalick, 2000; Ilavsky
et al., 2001; Kulkarni et al., 2006).

The phase stability of TBC top coat phases can also be changed by
interaction with CMAS. The Y3+ can diffuse from the metastable
tetragonal yttria-stabilised zirconia (t’-YSZ), given the higher solubility
of Y3+ in CMAS (Nagelberg, 1985). Consequently, this yttrium depleted
ZrO2 can transform upon cooling to the monoclinic phase at 600°C,
evaluated by in situ variable temperature Raman spectroscopy (Garces
et al., 2014). In situ techniques are again invaluable in defining the
temperature dependence of phase transformations.

CMAS infiltration and reaction with the top coat on small length
scales means that TEM is important. For example, the formation of
wetting films at grain boundaries and penetration of CMAS glass
into inclusions in contact with grain boundaries are seen in EBCs by
TEM techniques, such as scanning transmission electron
microscopy (STEM), high-angle annular dark-field (HAADF) and

FIGURE 3
X-ray computed tomography (XCT) of an air plasma spray (APS) TBC. (A) Segmentation of cracks showing clusters of cracks (colour) with bond coat/
substrate (grey). (B) Contour map of bond coat surface roughness with centroid of cracked region overlaid (centre mark) for geometry shown in (A).
Reprinted from Ahmadian et al. (2015) with permission from Elsevier.
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TABLE 1 Overview of techniques characterising the morphology of TBCs and EBCs.

Measurement
technique

Application area Advantages Disadvantages Further information (e.g.
standards, software and

technique-based
publications)

Archimedes method • Global estimate of porosity
Lima (2020); Mccormack et al.
(2023)

• Simple • A comparative parameter and
only distinguishes between open
and closed porosity

• Standard Test Methods for
Density of Compacted or
Sintered Powder Metallurgy
(PM) Products Using
Archimedes Principle ASTM
International, (2013)

• Potential for large systematic
error due to the assumption
about the total sample volume

• Minimum pore size relates to the
choice of solvent

Confocal microscopy • Oxidised TBC bond coat
surface morphology Martins
et al. (2020)

• Simple (only requires a level
sample)

• Limited field of view requires
multiple, stitched scans

• Surface texture parameters -
International Organization
for Standardization, (2021)• Non-contact • Requires an exposed surface

• A comparison of surface
metrology techniques Conroy
et al. (2005)

Electron Backscattered
Diffraction (EBSD)

• Grain orientation and texture
Chen et al. (2020), Chen et al.
(2021)

• Choice of section – cross-
section or a particular depth in
the coating

• Advantageous compared to
more subjective intercept or
planimetric procedures using
the contrast difference from
etched SEM or optical
micrographs Heyn, (1903);
Abrams, (1971); ASTM
International, (2021b)

• Only representative of a chosen
2D section

• Grain size measurement
standard with EBSD
International Organization
for Standardization, (2020)

• Requires a smooth, level surface,
typically achieved by final
polishing with colloidal silica • Review: Grain and subgrain

characterisation by electron
backscatter diffraction
Humphreys, (2001)

• A conductive coating (e.g., Au,
Pt or C) may be required to
minimise sample charging

• MTEX Open Source Software
Bachmann et al. (2010)

• AZtecCrystal Processing
Software, Oxford Instruments

Mercury Intrusion
Porosimetry (MIP)

• Crack healing mechanisms in
APS EBC top coats Bakan and
Vaßen, (2023)

• Quantify a pore size
distribution between 50 nm
and 400 µm Rouquerol et al.
(2012)

• Only evaluates open porosity • Liquid intrusion and
alternative methods for the
characterisation of
macroporous materials
Rouquerol et al. (2012)

• Use of mercury requires
adequate safety precautions

• BS ISO 15901–1:2016 –

Mercury Porosimetry The
British Standards Institution,
(2016)

Scanning Electron
Microscopy (SEM)

• Development of TGO
morphology as a function of
environment (i.e., time,
temperature, steam corrosion)
Chen et al. (2008); Richards
et al. (2016); Lee, (2018);
Ridley et al. (2022)

• Resolution suitable for many
microstructural features such
as oxide topography or
micron-sized grains

• Only representative of a chosen
2D section

• ASTM: E112-13 Standard
Test Methods for
Determining Average Grain
Size ASTM International,
(2021b)

• Steam degradation of EBC top
coat Richards et al. (2016); Al
Nasiri et al. (2017); Paksoy
et al. (2022)

• Large field of views with
automated stages and stitching
of SEM micrographs

• Potential for damage from
sectioning

• Fiji - Image Analysis software
Schindelin et al. (2012)

• Location of porosity Richards
et al. (2016); Bakan and
Vaßen, (2022)

• Choice of investigated
area—cross-section or a
particular depth in the coating

• A conductive coating (for
example, Au, Pt or C) may be
required to minimise sample
charging • Image analysis software for

TGO examination
• AutoTracer Su et al. (2021),

CMAT Su et al. (2021) and
SOFIA Stack, (2022)

• Modelling electron
interactions with the CASINO
Monte Carlo simulation
software Drouin et al. (2007);
Demers et al. (2011)

• Coating thickness measurement
review Giurlani et al. (2020)

X-ray Computed
Tomography (XCT)

• Location of internal porosity
and cracks Ahmadian et al.
(2015); Zhang et al. (2018);
Zhu et al. (2018)

• Non-destructive evaluation of
3D geometry of internal
porosity

• X-ray attenuation may limit the
sample size

• Segmentation software - Avizo,
Thermo Fisher Scientific

• Resolution typically limited to
features greater than 1 µmMaire
and Withers (2014)

• Techniques for image
enhancement and
segmentation of porous
materials Sheppard et al.
(2004)

• Porosity segmentation
Iassonov et al. (2009)
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electron energy loss spectroscopy (EELS) (Sternlicht et al., 2022a;
Sternlicht et al., 2022b). Complementing this understanding at
larger length scales can be XCT, showing a time lapse of CMAS
infiltration and the effect of pore morphology (Stolzenburg et al.,
2016a; Zhang et al., 2020).

4.2.2 Thermally grown oxide
The formation of a thermally grown oxide (TGO) layer in TBCs

and EBCs has seen much attention due to it being a critical failure
mechanism. As a result, this has led to many segregation and phase
stability studies.

For TBCs, the underlying bond coat affects the TGO phase present.
The TGO can contain areas of coarse α-Al2O3 (above γ-phase bond
coat) and also areas withmixed oxides, consisting ofmetastable alumina,
zirconia and NiAl2O4 spinel phase (above γ’ phase bond coat) (Stiger
et al., 1999; Chen et al., 2012; Chen et al., 2022). A pre-oxidation
treatment in a low-pressure oxygen environment can suppress the
formation of NiO and the Ni(Cr,Al)2O4 spinel phase by forming α-
Al2O3, shown with XRD and TEM (Chen et al., 2008a, Chen et al.,
2008b; Zhao et al., 2008). However, the depletion of aluminium from α-
Al2O3 can result in a mixed oxide and spinel TGO after thermal cycling,
identified with XRD (Shillington and Clarke, 1999). The formation of
these different phases should be avoided to avoid spallation failure of the
TBC (Shillington and Clarke, 1999).

Rumpling of the TBCTGO is a roughening of the compressed oxide
to relieve its strain energy (Tolpygo and Clarke, 2000). An increased

TGO thickness increases this strain energy, and its growth rate can be
controlled by reducing the outward diffusion of aluminium with the
introduction of rare-earth elements in the bond coat, including rhenium
(Bai et al., 2016), yttrium (Chen et al., 2017) and hafnium (Tolpygo and
Clarke, 1998). STEM coupled with energy-dispersive X-ray spectroscopy
(EDS) can characterise the TGO grain boundary segregation of rare-
earth elements, such as yttrium (Chen et al., 2017). The accompanying
smaller lateral growth strain of the TGO then resulted in less rumpling
(Chen et al., 2017).

A more quantitative measurement of elemental segregation in
the TGO requires atom probe tomography (APT) (Miller and Kenik,
2004). Although a sample is typically only representative of a
100 nm region, APT provides unmatched resolution for 3D
mapping of elemental segregation (Miller and Kenik, 2004). Such
a technique is therefore suitable for fundamental understanding,
although sampling many regions of interest as a function of
environmental exposure is unrealistic, given the time-consuming
nature of sample preparation and experiments.

Figure 5 shows an example of elemental segregation analysed
with APT at an α-Al2O3 grain boundary (Marquis et al., 2013). The
concentration of zirconia and yttrium segregating on the α-Al2O3

grain boundary was also shown to increase with proximity to the top
coat, suggesting these elements originated from the YSZ top coat
(Chen et al., 2022). APT also showed there was preferential
segregation towards dislocations (Marquis et al., 2013; Chen
et al., 2022). Transmission Kikuchi diffraction (TKD) of needles

FIGURE 4
X-ray diffraction (XRD) patterns as a function of temperature (RT–Room Temperature, 1,000°C, 1,100°C, 1,200°C, 1,300°C) in air of (A) YbDS-3H and
(B) YbDS-9H. These are two free-standing Yb2Si2O7 (YbDS) EBC top coat samples, deposited with different APS processing parameters, with further
details in Garcia et al. (2019). Reprinted from Garcia et al. (2021) with permission from Elsevier.
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prepared for atom probe tomography also highlighted whether
segregation was related to grain boundary misorientation,
although no dependence was noted (Chen et al., 2022).

In TBCs, the segregation of sulphur and resulting sulphides
reduces the adhesion between the TGO and bond coat due to the
different bonding present (Evans et al., 2008). Secondary ion mass
spectroscopy (SIMS) and nanoscale secondary ion mass
spectroscopy (NanoSIMS) determined the elemental segregation
of sulphur at this interface to be up to 10 parts per million,
Figure 6 (Bai et al., 2016). These findings highlighted the need
for understanding the complete system (i.e. both coating and
substrate) given the sulphur was also present in the nickel based
superalloy (Lee et al., 1998). A solution to this sulphur segregation
was found with the introduction of platinum preferentially gettering
the sulphur (Gheno et al., 2010). In addition, glow discharge optical
emission spectroscopy (GD-OES) has determined the elemental
segregation of sulphur in TBCs given its high depth resolution
and capability to detect a variety of elements (Zhao et al., 2017; Lu
et al., 2019).

Understanding the crystallinity of the SiO2 EBC TGO is also
important for failure and steam degradation. SIMs studies show that
oxygen diffusivity in the amorphous state is five times greater than
crystalline β-cristobalite (Lamkin et al., 1992; Rodríguez-Viejo et al.,
1993). A crystalline TGO is then expected to be thinner, although a
crystalline TGO is commonly reported to cause spallation failure
after thermal cycling, due to the 4.5% volume shrinkage that occurs
when β-SiO2 transforms to α-SiO2 upon cooling (Breneman and
Halloran, 2014; Richards et al., 2016).

Identifying the crystalline SiO2 EBC TGO can be performed
with TEM and Raman spectroscopy. Performing selected area
electron diffraction (SAED) provides convincing evidence of α-
cristobalite at ambient temperature, Figure 7 (Kane et al., 2021).
However, TEM requires the time-consuming extraction of a TEM
lamella with a limited region of interest. Alternatively, Raman
spectroscopy provides a characteristic spectrum of α-cristobalite,
without extensive sample preparation, so a crystalline TGO can be

identified at several locations (Richards et al., 2015; K; Kane
et al., 2021).

SEM and HAADF-STEM are also effective techniques to
investigate the effect of top coat composition on TGO chemistry
and morphology. For instance, the introduction of Al2O3 into EBC
top coats can improve their steam corrosion resistance (Lee, 2018;
Lee et al., 2021; Paksoy et al., 2022). Such an alumina addition to the
top coat results in a reaction layer between the TGO and top coat,
which is rich in aluminium and ytterbium, Figure 7 (Lee, 2018; K. A;
Kane et al., 2021). The presence of aluminium then reduces the TGO
growth rate (Lee, 2018; Lee et al., 2021). Furthermore, during steam
testing, the formation of an 80–100 nm ytterbium-aluminium-
garnet (Yb3Al5O12) outer-layer on the top coat prevented
transformation of the Yb2Si2O7 to Yb2SiO5 (Paksoy et al., 2022).
The dimensions and phase identification of this layer required TEM
studies (Paksoy et al., 2022).

4.2.3 Bond coat
Understanding the TBC bond coat phase transformation of β-

(Ni,Pt)Al to γ-(Ni,Pt)Al is important due to the difference in creep
deformation. The creep strain rate of β-NiAl is about two orders of
magnitude smaller than γ-Ni, so TGO rumpling is more problematic
with these β-NiAl bond coats (Noebe et al., 1993; Chen et al., 2017).
Furthermore, with the β-(Ni,Pt)Al bond coat, a β to γ phase
transformation can occur during thermal cycling due to
aluminium depletion (Chen et al., 2017). This β to γ phase
transformation occurs above 600°C, evaluated with in situ
variable temperature XRD (Chen et al., 2015).

Within EBC bond coats, Raman spectroscopy has identified the
presence of boron. Boron is typically present in the substrate and can
diffuse during thermal treatment (Costello et al., 1981; Lee et al., 2021).
The increased asymmetry in the silicon 520.7 cm-1 vibrational mode,
and additional vibrational mode at 620 cm-1 indicate boron is present
(Nakano et al., 1992; Knauf et al., 2019; 2020; Rohbeck et al., 2019).
These changes to the Raman spectrum suggest boron concentrations
above 1019 cm-3 in the silicon bond coat (Dawber and Elliott, 1963).

FIGURE 5
(A) Atom probe tomography (APT) reconstruction from an Al2O3 TBC TGO layer containing a grain boundary and dislocation lines decorated with Y,
Zr, Hf and Si. (B)Quantification of atomic concentrations of Zr, Y, Hf and Si at the grain boundary via a concentration profile along the red arrow indicated
in (A). Reprinted from Marquis et al. (2013) with permission from Elsevier.
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FIGURE 6
Nanoscale secondary ion mass spectrometry (NanoSIMS) mapping of platinum and sulphur on TBC cross-sections with EB-PVD YSZ top coat (Bai
et al., 2016). (A) As-received with no heat treatment; (B) after 100 h at 1,150°C in vacuum and (C) after 100 h at 1,150°C in air. From left to right,
backscattered electron (BSE) micrograph, and then secondary electron (SE) micrograph with the corresponding platinum and sulphur NanoSIMS maps.
The colour scale indicates the counts per second (cps) of 32-S (0–15 cps) and 195-Pt (0–40 cps). Reprinted from Bai et al. (2016) with permission
from Elsevier.

FIGURE 7
Characterising a single layer chemical vapour deposition (CVD) SiC/Yb2Si2O7 specimen after 100 h of 1,425°C steam exposure in an alumina reaction
tube. (A) Cross-sectional backscattered electron micrograph with corresponding (B) Al, (C) Yb, (D) Si, (E) O and (F) Mg energy-dispersive X-ray
spectroscopy (EDS) maps. (G) High-angle annular dark-field imaging-scanning transmission electron microscopy (HAADF-STEM) characterising the
reaction layer above a silica TGO in the EBC. Selected area electron diffraction (SAED) patterns in the reaction layer (H) and silica TGO (I). Reprinted
from Kane et al. (2021) with permission from Wiley Materials.
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Quantitative light element detection for boron can also be performed
with wavelength-dispersive X-ray spectroscopy (WDS) (Lee et al.,
2021). Other alternatives include SIMS offering lower boron
detection limits (1014 cm-3 (Ochiai et al., 1980)), and also Inductively
Coupled Plasma Mass Spectrometry (ICP-MS) and Glow Discharge
Mass Spectroscopy (GDMS), which are more regularly used in
semiconductor research fields (Fauveau et al., 2016).

Identifying and quantifying boron concentrations are
important as boron increases the rate of oxidation in EBCs
(Lee et al., 2021; Lee et al., 2022). Furthermore, the solubility
limit of boron at temperature increases, which could also
contribute to accelerated oxidation at higher temperatures
(Knauf et al., 2020).

4.2.4 Technique overview
Table 2 summarises the techniques informing the chemistry and

phase analysis of TBCs and EBCs.
XRD techniques are the most widely used for phase analysis, but

limitations in gaining only surface-related information, requiring
previously indexed crystalline phases, and difficulty in identifying
elements in low concentrations have meant alternatives are required.
TEM, coupled with STEM EDS, EELS and HAADF, is a leader in
determining elemental segregation to grain boundaries, but can be
time consuming if the segregation is inhomogeneous and the
location is unknown. On the other hand, APT can offer
unmatched 3D spatial resolution for a targeted investigation.
Both these techniques suffer in that they are only representative
of relatively small samples, and also require expertise in sample
preparation, data processing and data analysis.

In this regard, spectroscopy techniques offer a faster alternative
and can interrogate larger regions of interest. For example, Raman
spectroscopy offers a much simpler identification of phases. WDS is
advantageous over EDS in quantitative measurement, although
NanoSIMS or glow discharge spectroscopy techniques can detect
the low concentrations (i.e. parts per million) needed to identify
sulphur segregation in TBCs.

5 Evaluating stress

Evaluating residual stress in TBC and EBC systems is not
straightforward given there are multiple layers and defects at
different length scales. The TGO, bond coat and top coat can
contain processing defects (e.g. porosity, splat boundaries, EB-
PVD columns) and multiple phases, resulting in residual stresses
from thermal mismatch and elastic mismatch. These
microstructures are prone to evolve in-service, and
environmental changes, such as the penetration of CMAS or
temperature, can also lead to residual stress changes. Such a
complex residual stress distribution resulting from
microstructures at different length scales, means that multiple
evaluation techniques are required (Withers and
Bhadeshia, 2001).

The following section outlines characterisation techniques
that can evaluate coating strains and stresses in an entire
coating system (5.1) and those which are limited to
particular coating layers (5.2). Furthermore, techniques
determining the thermomechanical properties necessary to

evaluate the residual stress, such as the elastic modulus, are
described in 5.3.

5.1 Entire coating system

A non-destructive evaluation of strain as a function of coating
depth with XRD requires a transmission geometry, typically
requiring an intense synchrotron light source. For instance, the
measurement of residual strains in TBCs as a function of depth has
been performed with heat-treated yttria-stabilised top coats (Li et al.,
2016). In this experiment, the evaluated compressive strain reached
amaximum about 100 µm from the TGO/bond coat interface, which
linked with the likely failure location of TBCs (Li et al., 2016).
Further to this experiment, residual strains were measured in as-
received and heat treated APS TBC samples, again evaluating
compressive strains in the top coat and also tensile strains in the
NiCoCrAlY bond coat as a function of depth by synchrotron XRD
(Li et al., 2019). With thermal gradients also applied, synchrotron
experiments can provide the most representative strain
measurements of TBCs and EBCs (Siddiqui et al., 2013).

For EBCs, synchrotron experiments have also yielded strains
from Debye ring patterns and consequently evaluated residual
stresses in EBCs (Harder et al., 2009; Stolzenburg et al., 2011;
2016b). In combination with in situ loading (enabling the
determination of elastic constants), and also in situ heating, the
residual stress distribution was determined throughout the EBC as a
function of temperature (Harder et al., 2009; Stolzenburg et al.,
2011). Later experiments, then introduced CMAS to perform an in
situ investigation of molten CMAS with wide-angle X-ray scattering
(WAXS) (Stolzenburg et al., 2016b).

Alternatively, a commonly used destructive technique for
evaluating stress is the curvature method. A coating and a
substrate can develop a curvature, arising from a bending
moment in the coating and substrate to satisfy equilibrium. A
measurement of the beam displacement can then be used to
estimate the residual stress in the coating (Godoy et al., 2002;
Hayase et al., 2020). The curvature method has correlated the
effect of coating thickness with plasma-sprayed coatings and also
the effect of heat treatment on these macro-stresses (Godoy et al.,
2002; Hayase et al., 2020).

One mechanism commonly cited as causing residual stress is the
thermal mismatch between coating layers. The Stoney equation offers
a prediction of these macro-stresses with thermal expansion
coefficients evaluated using dilatometry (Stoney, 1909; Richards
et al., 2016; Begley and Hutchinson, 2017). Measuring the strain as
a function of temperature of bulk samples (i.e. pressed and sintered
powders, or free-standing coatings), and assuming isotropic
expansion, provides a thermal expansion coefficient representative
of a bulk sample (Al Nasiri et al., 2016; Kassem and Al Nasiri, 2021;
Ridley et al., 2023).

However, the microstructural complexity of APS and EB-PVD
deposited coatings leads to an inhomogeneous residual stress
distribution within individual coating layers. For example,
between different grain orientations, such as with EB-PVD top
coats, or between different phases in the EBC top coat (Withers
and Bhadeshia, 2001). XRD is suited to evaluate orientation
dependent thermal strains of each phase and using Rietveld
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TABLE 2 Overview of techniques informing the chemistry and phase analysis of TBCs and EBCs.

Measurement technique Application area Advantages Disadvantages Further information
(e.g. standards,
software and

technique-based
publications)

Atom Probe Tomography (APT) • Elemental segregation at
TGO grain boundaries Chen
et al. (2012); Chen et al.
(2022)

• Resolution (<1 nm) • Sample preparation to produce
sharp needle (~50 nm–150 nm
radius)

• Review of Atom Probe
Tomography Kelly and
Miller, (2007)

• Quantitative elemental
measurement for local
features • Only representative of the

prepared sample volume
• Review of Atom Probe FIB-

Based Specimen Preparation
Methods Miller et al. (2007)

• Map elemental
distribution in three-
dimensions

Glow Discharge Optical Emission
Spectroscopy (GD-OES)

• Elemental segregation in
TBCs, including sulphur and
hafnium Zhao et al. (2017);
Lu et al. (2019)

• High depth
resolution (<1 nm)

• Lack of standardisation and
reference materials for accuracy
calibrations.

• Destructive

• Radio-frequency glow
discharge spectrometry: A
critical review Winchester
and Payling, (2004)

• Elemental depth profiling of
coated and surface-modified
materials by GD-OES: hard
coatings on cutting tools
Wěiss and Marshall, (1997)

• Low concentration limit
• Elemental depth analysis
• All elements detectable

(including hydrogen)

Raman Spectroscopy • SiO2 TGO crystallinity Kane
et al. (2021)

• No extensive sample
preparation

• Surface sensitive technique • Analysis software - WiRE™
(Renishaw) and LabSpec
(HORIBA)

• Phase T transformation to
monoclinic-ZrO2 Garces
et al. (2014)

• Quick, single Raman
spectrum data acquisition
(seconds/min)

• Unable to penetrate through
EBC top coat, must be
performed on cross-section for
Raman spectra from TGO or
bond coat

• Review of Existing
Standards, Guides, and
Practices for Raman
Spectroscopy Ntziouni et al.
(2022)

• Boron detection Nakano
et al. (1992); Knauf et al.
(2019), Knauf et al. (2020);
Rohbeck et al. (2019)

• Micrometre resolution -
relevant to microstructure
variation

• Experimental parameters
specific to phases to avoid
fluorescence

Scanning Transmission Electron
Microscopy (STEM) coupled with

Energy-Dispersive X-ray
Spectroscopy (EDS), Electron

Energy Loss Spectroscopy (EELS)
and High-Angle Annular Dark-

Field (HAADF)

• Segregation of rare earth
elements rhenium Bai et al.
(2016), yttrium Chen et al.
(2017) and hafnium Tolpygo
and Clarke, (1998)

• Excellent resolution
(<1 nm) Browning and
Pennycook, (1995)

• Phase identification
• Elemental segregation

• Electron transparent sample
required.

• Only representative of the
prepared lamella region

• Difficulty in quantifying
ytterbium and aluminium given
their similar spectral peak
positions Lee et al. (2021)

• A review of focused ion beam
milling techniques for TEM
specimen preparation
Giannuzzi and Stevie, (1999)

• MC X-ray – Monte Carlo
Simulation software for X-
ray spectra from electron
scattering Gauvin and
Michaud, (2009)

• SiO2 TGO crystallinity
Richards et al. (2015); Kane
et al. (2021)

• γ and γ’ phase relationship in
TBC bond coat with TGO’
Stiger et al. (1999)

• CMAS infiltration
mechanisms Sternlicht et al.
(2022b), Sternlicht et al.
(2022a)

• Yb3Al5O12 with alumina
present in top coat Paksoy et
al. (2022)

Secondary Ion Mass Spectroscopy
(SIMS)/Nanoscale Secondary Ion
Mass Spectroscopy (NanoSIMS)

• Elemental segregation of
sulphur Bai et al. (2016)

• Quantitative analysis with
low concentration
detection limits (< parts
per million)

• Flat sample required • NanoSIMS Review Li et al.
(2020)

• Oxygen diffusivity studies
Lamkin et al. (1992);
Rodríguez-Viejo et al.
(1993); Zhao et al. (2020)

• Light element (H, Li, B)
detection possible

• No information about
microstructure

• Ability to perform
oxygen-18 tracer studies

• Destructive technique

• Spatial resolution (down
to 50 nm)

• Limited capability to perform
experiments with only a few
instruments

(Continued on following page)
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refinement has aided the evaluation of anisotropic thermal
expansion coefficients of both TBCs (Ochrombel et al., 2010) and
EBCs (Salanova et al., 2023).

A targeted evaluation of residual stress can be achieved with the
micro-ring core method (µRCM) (Korsunsky et al., 2009; Korsunsky

et al., 2010; Zhu et al., 2014). For this technique, a focused ion beam
(FIB) or laser mills an incremental annular trench while taking SEM
or optical micrographs. Performing digital image correlation (DIC)
of these micrographs, can then evaluate the displacement field
resulting from strain relief and hence determine the residual

TABLE 2 (Continued) Overview of techniques informing the chemistry and phase analysis of TBCs and EBCs.

Measurement technique Application area Advantages Disadvantages Further information
(e.g. standards,
software and

technique-based
publications)

Transmission Kikuchi
Diffraction (TKD)

• Segregation related to grain
boundary misorientation
Chen et al. (2022)

• Index grain orientations
with grain sizes below
100 nm

• Sample preparation required to
achieve an electron transparent
sample

• Using TKD for orientation
mapping of nanostructured
materials Trimby, (2012)

• Only representative of the
prepared sample volume

• Transmission EBSD from
10 nm domains Keller and
Geiss, (2012)

X-ray Diffraction (XRD) • Amorphous to crystalline
transformation of EBC
phases with in situ capability
Garcia et al. (2021)

• Identify crystalline phases • Surface limited with laboratory
X-ray sources

• Software for refining XRD
patterns—GSAS-II Toby and
Von Dreele, (2013),
Highscore Degen et al.
(2014), TOPAS Coelho,
(2018)

• TBC TGO phase
identification Shillington
and Clarke, (1999)

• Simple sample
preparation • Low concentrations may

provide weak signal

• Guidelines for Rietveld
refinement - Mccusker et al.
(1999)

• TBC top coat phase
identification Brandon and
Taylor (1991); Stott et al.
(1994); Witz et al. (2007)

• Applicable to investigating
multiple phases
simultaneously as
experimental parameters
not specific to phases

• Cannot distinguish between
composition differences within
local areas (i.e. splats in
thermally sprayed coatings or
columns in EB-PVD coatings)

• β to γ phase transformation
of β-(Ni,Pt)Al bond coat
Chen et al. (2015); Chen et al.
(2017)

FIGURE 8
Ring core drilling with focused ion beam (FIB) and optical microscopy to evaluate displacement fields with digital image correlation (DIC) of a heat-
treated APS TBC sample. (A) Depth variation of mapped surface displacements. (B) Average surface relief strain evaluated in the pillar’s radial direction.
Reprinted from Zhang et al. (2019) with permission from Elsevier.
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stress as a function of depth in a coating, Figure 8 (Zhang et al.,
2019). The technique is rather intricate, reliant on experimental
expertise, and also limited in the investigated region size, so is more
likely used to support the findings made by other characterisation
techniques.

5.2 Specific layer

Evaluating strains or stresses in a particular coating layer can
experimentally be favourable, given some techniques rely upon a
characteristic vibrational mode or photon emission. Furthermore,
many techniques also have limited penetration depths without
access to a synchrotron source.

5.2.1 Thermally grown oxide
The thermally grown oxide layer has seen the most interest in

residual stress evaluation given the failure of TBCs and EBCs.
Photoluminescence piezo-spectroscopy (PLPS) has extensively

evaluated stresses arising in the α-Al2O3 TGO of TBCs (Christensen
et al., 1996; Schlichting et al., 2000). The technique is suitable given
luminescence (photon emission) arises from the Cr3+ impurity in
Al2O3 and the technique is advantageous because the emitted
photons can penetrate through the YSZ top coat in TBCs
(Schlichting et al., 2000). The resulting spectroscopy pattern, and
the peak’s position, asymmetry and intensity are affected by stress,
composition and defects (Shillington and Clarke, 1999; Nychka and
Clarke, 2001; Selcuk and Atkinson, 2002; Zhao and Xiao, 2006;
Wang and Atkinson, 2007). Correlating the peak shift and stress (He
and Clarke, 1995) has enabled TBC TGO stress evaluation with
PLPS, for example, as a function of top coat thickness (Lima et al.,
2017), thermal cycling (Selçuk and Atkinson, 2003), and thermal
oxidation time, Figure 9 (Christensen et al., 1996). Figure 9 also
highlights that a relative comparison of stress evolution as a function
of an environmental condition can improve understanding, even
with systematic uncertainties in accurately quantifying the stress
(Christensen et al., 1996; Luo and Jones, 2010; Chen et al., 2015).

5.2.2 Bond coat
TBC bond coat strains can be evaluated with the sin2ψ technique

using oxidised bond coat samples. X-rays can penetrate through a
TGO, so stress can be evaluated as a function of oxidation time and
temperature. An in situ variable temperature sin2ψ experiment with
a steam oxidised NiCoCrAlY bond coat showed a notable strain
change around 600°C (Chen et al., 2015). This indicated the volume
expansion from γ-phase to β-phase upon cooling in the NiCoCrAlY
bond coat is an important stress contributing mechanism, in
addition to the thermal mismatch between TGO and bond coat
(Chen et al., 2015).

Stresses in EBC silicon bond coats have been evaluated with
Raman spectroscopy using calibrated stress and Raman shift
relationships known for silicon (De Wolf, 1996; Rohbeck et al.,
2019; Lance et al., 2023). Performing Raman spectroscopy maps
across exposed steam degraded silicon samples, has identified
shifting of the Raman spectra and associated this with the
volume expansion of the SiO2 α-cristobalite to β-cristobalite
phase transformation upon heating (Swainson et al., 2003; Lance
et al., 2023).

5.2.3 Top coat
Raman spectroscopy has similarly been used for stress

evaluation in the top coat of TBCs. A mapping study showed a
correlation between microstructural porosity and Raman peak shift
for the 640 cm-1 vibrational mode of the t-ZrO2 phase (Tanaka et al.,
2006; Tanaka et al., 2009). Determining local stress is useful to
understand how microstructural features affect stress
concentrations that may lead to cracking. Stress evaluation
studies are lesser performed in the top coats of TBCs and EBCs
as the critical failure mechanism involves the bond coat and TGO.

5.3 Thermomechanical performance

Residual stresses are also dependent on thermomechanical
properties. The elasticity, plasticity and creep of the coating are

FIGURE 9
(A) Comparison of photoluminescence piezo-spectroscopy (PLPS) profiles from an intact and spalled TBC initially applied on a nickel based
superalloy (N5) substrate. (B) Evolution of frequency shift with oxidation time at 1,135°C. Reprinted fromChristensen et al. (1996) with permission fromAIP
Publishing.
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all temperature dependent, and these can all affect the residual stress.
Furthermore, the common method of evaluating stress (i.e. using a
measurement of strain) relies upon a representative evaluation of
other parameters, such as the elastic modulus and Poisson’s ratio. As
these parameters are influenced by the characterisation technique’s
sampling volume, the interrogated volume of strain should also
match to achieve a reliable evaluation of the stress at the desired
length scale. The following section describes techniques to evaluate
the elastic-plastic behaviour of the coatings (5.3.1) and also coating
creep (5.3.2).

5.3.1 Elastic-plastic behaviour
Microindentation and nanoindentation performed on coating

cross-sections are the most common techniques for elastic modulus
and hardness evaluation (Zhong et al., 2018; Jang et al., 2020).
Applying indentations in this geometry can evaluate the
variation in these mechanical properties between adjacent
layers and within individual layers. When performed on TBC
top coats, this showed a hardness and elastic modulus gradient,
with the highest values obtained at the coating’s surface (Zhu and
Miller, 2000). Furthermore, combining indentation with samples
exposed to different sintering durations, showed the
effectiveness of the technique in linking the microstructural
evolution and the increase in elastic modulus (Zhu and
Miller, 2000; Gao et al., 2023).

The elastic modulus of APS TBCs and EBCs can also be
assessed with three-point bending. This resulted in a lower
elastic modulus value when compared with indentation, which
is likely given the more local interaction volume for indentation
(Chen et al., 2020).

These scalar representations of elastic modulus evaluated by
bending or indentation may be suitable for macroscopic stress
evaluation. For example, when combined with a measured strain
that is also evaluated from a region of interest that encompasses
multiple grains, as with XRD. However, bending or indentation
techniques are not very effective in determining anisotropic elastic
properties.

Furthermore, following Neumann’s Principle, the elastic
modulus of TBC and EBC top coat materials is usually
anisotropic, given their non-cubic crystal structures (Nye, 1957).
Therefore, mechanical properties may be desirable on a much
smaller length-scale to determine how APS splat orientation or
EB-PVD column orientation affects coating compliance.
Consequently, microcantilever bending is considered as an
alternative to evaluate the elastic modulus to consider orientation
effects. Figure 10 shows microcantilevers with in-plane and out-of-
plane orientations (either parallel or normal to the bond coat/top
coat interface), and these quantified significant anisotropy resulting
from the APS splat morphology (Chen et al., 2019).

As a function of temperature, the plasticity of coating layers
also changes. Fundamental studies on single crystals of α-Al2O3

show dislocation motion on the basal plane is preferential at
high temperatures with prismatic slip preferential under 600°C
(Lagerlöf et al., 1994; Mitchell and Heuer, 2005). Therefore, as
compressive stresses in the TBC TGO increase, stress relief from
dislocation slip may occur at higher temperatures in the α-
Al2O3 TGO (Chen et al., 2022). The segregation of elements and
the temperature dependence of diffusion to these dislocations
may also affect dislocation slip (Marquis et al., 2013; Chen
et al., 2014).

FIGURE 10
Microcantilever beam bending of APS TBC for anisotropic mechanical property evaluation. (A) Schematic of the different orientations of the
microcantilever beams; (B) schematic of testing geometry with nanoindenter to apply load (refer to original publication for description of the labelled
parameters); (C) Micrograph of a microcantilever beam. Reprinted from Chen et al. (2019) with permission from Elsevier.
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5.3.2 Creep
Given the high-temperature operation of TBCs and EBCs, creep

deformation (i.e. time dependent strain) can relax the stresses at
oxidation temperatures (Evans et al., 2001). Evaluating these strains
has been performed with DIC to evaluate a stress exponent for EBCs
consistent with diffusional creep (Archer et al., 2020). DIC has also
been used with optical images to evaluate the surface displacements
and surface strains of a NiCoCrAlY bond coat as a function of
temperature (Hemker and Thompson, 2007). The high
temperatures required for creep deformation (>700°C) mean that
speckle patterns are unstable at these temperatures, so the inherent
microstructure is used to track deformation, limiting the correlation
ability at the highest resolutions.

Displacement fields can also be evaluated using the intensity
contrast in XCT tomographs with digital volume correlation (DVC)
(Bay et al., 1999). For example, displacements arising due to TGO
growth and bond coat creep can be evaluated at a given temperature
and as a function of exposure time (Khoshkhou et al., 2016). However,
the microstructure’s evolution, such as the sintering of TBC EB-PVD
columns and TGO growth, can prevent the same feature being tracked
for successful correlation. As a result, there is a time constraint
between consecutive tomographs for adequate correlation, which
typically requires an intense synchrotron source (Khoshkhou et al.,
2016). Furthermore, the voxel size (typically above 1 µm (Maire and
Withers, 2014)), also restricts the displacement field’s spatial
resolution. Techniques with in situ mechanical and in situ
temperature capability, and also better resolution, as achieved with
SEM/EBSD (Donoghue 2022; Smith 2022), can further improve the
understanding of TBC and EBC deformation.

5.4 Technique overview

Table 3 highlights the techniques evaluating the stress and
thermomechanical properties of TBCs and EBCs. Many of these
techniques lack a reliable quantitative evaluation of the stress given
the dependence on many assumptions of measured strains and
linear elastic fracture mechanics. These limitations typically lead to a
reliance on qualitative comparison between samples, which may not
provide a comprehensive understanding of what causes the relative
changes. For instance, while XRD can provide a global measure of
the coating strain, it cannot solely detect the relationship between
the microstructure and residual stresses. Raman spectroscopy has
started to offer insight here, although it relies upon calibration
measurements, and spectra require careful interpretation to ensure
the peak shift is solely from residual stress.

Synchrotron facilities are an excellent resource for residual stress
evaluation, although their availability limits the number of studies
performed. Furthermore, the speed of development of TBC and EBC
systems means that laboratory-based characterisation techniques
are typically favoured to reduce the development cycle time of these
industrially relevant coatings. However, synchrotron investigations
yield valuable experimental data, unattainable by laboratory
systems, and therefore have an important role in
comprehensively characterising residual stresses in TBCs and
EBCs. In the future, compact light sources using inverse
Compton X-ray sources may offer the advantages of synchrotron
light sources with increased availability (Gunther et al., 2020).

6 Inducing failure

As described previously, the failure of coatings in the gas-turbine
engine environment is complicated. TBCs and EBCs experience
residual stresses, oxidation and environmental degradation. The
evolving microstructure of the top coat, bond coat and TGO
consequently affect the residual stresses and thermomechanical
properties to complicate defining the main cause of failure.
Therefore, developing accurate models that predict failure
behaviour to assess coating lifetime is difficult (Hutchinson and
Hutchinson, 2011).

Consequently, experimental techniques that mechanically load
and reproduce the in-service failure modes of the coatings are
important investigative tools. For example, these techniques can
define locations that limit lifetime, while also quantifying the failure
(i.e. through measurement of adhesion strength or fracture
toughness). Obtaining accurate values for failure related
properties can be challenging. Although a relative ranking, for
example, with respect to operating conditions, can be combined
with an understanding of the morphology, elemental segregation or
residual stress discussed previously to understand coating failure.

Tools for inducing failure typically evaluate the coating’s
adhesion and cohesion. Adhesion refers to the bonding between
layers at an interface, while cohesion relates to the integrity of a
specific coating layer and how this resists fracture or separation.
Both these concepts are crucial for TBCs and EBCs to ensure the
coating remains intact and structurally stable under various
operating conditions, such as thermal cycling, steam oxidation,
and ingested contaminants.

Given these harsh operating conditions and the lifetime limiting
failure mechanisms of TBC and EBCs, typically involving cracks
propagating along or adjacent to a TGO interface, tools for
investigating adhesive failure, rather than cohesive failure, have
seen greater use. Furthermore, for TBCs there has been a focus
on room-temperature testing, with thermal mismatch contributing
to the largest residual stresses, making ambient temperature testing
the most relevant for investigating failure (Hutchinson and
Hutchinson, 2011).

6.1 Cohesive failure

Investigating cohesive failure considers the inherent fracture
resistance of a particular coating layer. Techniques such as XCT,
SEM or TEM can all identify initiating defects and crack paths, and
from these observations, failure mechanisms can be inferred. However,
characterising these cracks occurs without a measurement of the
boundary conditions (i.e. displacement or load), making it difficult
for a quantitative comparison by evaluating the fracture toughness
between coatings exposed to different environments. Therefore, using
specific testing geometries, at least with analytical solutions, is
favourable to evaluate the fracture toughness.

Additionally, the anisotropic microstructure adds complexity to
a representative evaluation of the fracture toughness. As a result,
common techniques such as bulk bending tests (i.e. three-point and
four-point bending tests) are unsuitable. Therefore, there’s a
requirement for evaluation of fracture toughness on a scale
appropriate to defect size and coating thickness.
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TABLE 3 Overview of techniques evaluating the stress and thermomechanical properties of TBCs and EBCs.

Measurement
technique

Application area Advantages Disadvantages Further information (e.g.
standards, software and

technique-based
publications)

Curvature method • Residual stress evaluation
Godoy et al. (2002)

• Evaluate macro-stresses • Substrate stiffness can limit the
deflection

• Stoney equation Stoney, (1909)

• Global estimation of stress level
(no quantification of surface or
interface stresses)

• Calculation of stress from
curvature Brenner and Senderoff,
(1949)

Digital Image Correlation
(DIC) and Digital Volume

Correlation (DVC)

• 3D-displacement field
evaluated of thermally grown
oxide layer by digital volume
correlation Khoshkhou et al.
(2016)

• Displacement fields
evaluated as a function of
temperature

• XCT is limited in resolution for
evaluating the displacement
field of microstructural
features

• Digital volume correlation Bay
et al. (1999)

• Good practice guide - digital
image correlation International
Digital Image Correlation Society,
(2018)

• Evaluate creep deformation
Archer et al. (2020)

• Strain measurement of
NiCoCrAlY bond coat as a
function of temperature
Hemker and Thompson,
(2007)

Dilatometry • Evaluate thermal expansion
coefficients of bulk material Al
Nasiri et al. (2016); Kassem
and Al Nasiri, (2021); Ridley
et al. (2023)

• Representative of a bulk
volume

• Evaluates a volumetric thermal
expansion coefficient

• ASTM E831 ASTM International,
(2014)

• Sample with parallel sides
• Measurement error reduces

with increased sample thickness

Indentation • Elastic modulus and hardness
evaluation Zhu and Miller,
(2000); Zhong et al. (2018);
Jang et al. (2020)

• Flexible indentation
interaction volume
dependent on load,
indenter size and
geometry

• Evaluates properties with a
compressive stress state

• Measurement of hardness and
elastic modulus by instrumented
indentation Oliver and Pharr,
(2004)

• Choice of indentation
location

• Microindentation hardness
ASTM E384-22 ASTM
International, (2022)

• Possible to perform
multiple indentations on
same sample to reduce
measurement error

• Destructive technique to
sampled region

• Knoop indentation hardness
ASTM C1326-13 ASTM
International, (2023)

• Vickers indentation hardness -
ASTM C1327-15 ASTM
International, (2019)

Microcantilever beam
bending

• Anisotropy of elastic modulus
in APS microstructures Chen
et al. (2019)

• Targeted location for
elastic modulus evaluation

• Need repeatable sample
geometry fabrication

• Mechanical properties of micro-
sized copper bending beams
machined by the focused ion
beam technique Motz et al. (2005)

• Property evaluation representative
of the prepared sample volume

Micro-ring core
method (µRCM)

• Evaluate strain relief as a
function of depth Zhang et al.
(2019)

• Local technique and can
correlate with the
microstructure

• Requires intricate geometry • Residual stress evaluation at the
micrometre scale: Analysis of thin
coatings by FIB milling and digital
image correlation Korsunsky et al.
(2010)

• Milling depth, limited by
milling technique. Short pulse
laser micromachining can mill
deeper than FIB

Photoluminescence Piezo-
spectroscopy (PLPS)

• α-Al2O3 stress Christensen
et al. (1996); Selçuk and
Atkinson, (2003)

• Penetration through YSZ
so can perform with top
coat present

• Method limited to stress
evaluation in TBC TGO

• Analysis of Cr3+ luminescence
spectra Selcuk and Atkinson,
(2002)

• Micrometre resolution -
relevant to microstructure
variation

• Requires calibration between
peak shift and stress • Determination of the

piezospectroscopic coefficients
for chromium-doped sapphire
He and Clarke, (1995)

• Cr3+ concentration can also
affect peak shift Henderson
and Imbusch, (1989); Yu and
Clarke, (2002)

Raman Spectroscopy • t-YSZ top coat stress Tanaka
et al. (2006), Tanaka et al.
(2009)

• No extensive sample
preparation

• Surface sensitive technique • Stress measurements in silicon
Anastassakis et al. (1970);
De Wolf et al. (1996)• Fast Raman spectrum data

acquisition (seconds/min)

• Experimental parameters
specific to phases to avoid
fluorescence

• Silicon bond coat stress
Rohbeck et al. (2019); Lance
et al. (2023)

• Micrometre resolution -
relevant to microstructure
variation

• Limited penetration depths
prevent stress study from plan-
view with EBC top coat present

• Requires calibration between
peak shift and stress

(Continued on following page)
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As such, Vickers indentations can initiate well-defined radial
crack lengths and evaluate fracture toughness (Anstis et al., 1981).
Despite challenges posed by non-homogeneous microstructures, such
as obtaining Palmqvist cracks from a Vickers indenter in plasma-
sprayed microstructures, several studies on TBCs and EBCs have
shown consistencywith other characterisation techniques (Zhou et al.,
2017; Song et al., 2019; Yuan et al., 2022). For example, Mao et al.
(2012) conducted a notable study using a modified indentation
technique to evaluate fracture toughness and residual stress in
plasma sprayed TBCs (Mao et al., 2012). By analysing crack
lengths, indentation loads, and deformation patterns, these
mechanical properties were load dependent and influenced by both
the microstructure and layer thickness.

Another option for fracture toughness evaluation is
microcantilever beam bending, Figure 10 (Di Maio and Roberts,
2005; Chen et al., 2019). This provides a local evaluation of the
fracture toughness, although the population of defects within the
sampled volume can influence the value obtained. For instance,
cantilevers manufactured in TBC APS microstructures without splat
boundaries, have significantly higher in-plane fracture toughness
values (Chen et al., 2019). The ability to machine cantilevers in
different regions can also evaluate the fracture toughness variation
as a function of depth within the coating (Jaya B et al., 2012).
Therefore, it is critical that fracture toughness is evaluated on
different length scales to evaluate the impact of different defects
contributing to failure, although this is difficult given the inherently
inhomogeneous thermal spray microstructure.

6.2 Adhesive failure

Many techniques can investigate a coating’s interfacial adhesion.
Techniques such as the tensile pull-out test, bending tests (i.e. three
or four-point bending) and transverse scratch testing provide good
qualitative, comparative understanding of how an in-service
environment affects the coating. Other testing methods such as
the shear test are also used for quantitative measurement of
interfacial properties.

6.2.1 Tensile pull-off and buckle methods
The pull-off test is one of the most widely used tests for

comparing the bonding strength between the bond coat/top coat

or bond coat/substrate interfaces (Karaoglanli et al., 2013; Ghasemi
and Vakilifard, 2017). It involves applying an adhesive bonding
agent to attach both sides of the test specimen (i.e. coating and
substrate) to a loading fixture. Consequently, a tensile load is applied
normal to the coating layer plane. Due to the complex
microstructure and composition of both TBCs and EBCs, and
also the strength limits of the adhesive agents, multiple tests are
required to obtain a statistically significant measure of the coating
adhesion or cohesion. Therefore, it is often used for quality control
or a qualitative comparison, rather than an accurate quantification
of interfacial strength.

The strain to buckle test is commonly used to assess the bonding
strength of ceramic coatings (Zhao et al., 2011). This test involves
subjecting the coated substrate to a compressive stress until the
coating buckles. However, the strain to buckle test has similar
limitations to the pull-off test. For example, only a comparative
analysis of similar coatings and it also requires many samples.
Moreover, the applicability of this technique to EBCs is limited
due to the stiffer EBC SiC substrate compared to the nickel based
superalloys used with TBCs.

Given these limitations, laser spallation tests have attracted
interest. Named the laser shock adhesion test (LASAT), a laser
generates shock waves at the substrate or coating surface, and the
resulting vibrations can result in delamination at the coating/
substrate interface. Although LASAT is currently a rare method
for assessing the interfacial properties of TBC or EBCs, its ability to
rank different coatings in terms of adhesion, and to evaluate the
evolution of adhesion over time with thermal exposure (such as
thermal cycling or aging), suggests it has potential for future
adoption (Guipont et al., 2019; Maurel et al., 2019; Mahfouz
et al., 2023).

6.2.2 Bending tests
Bending tests are also conducted widely for the interfacial

fracture behaviour and the bonding strength of TBCs and EBCs.
In these tests, a coating is applied to a substrate, and the coated
sample is subjected to a bending load with standard testing
equipment. The bonding strength of the coating can then be
calculated based on the maximum load that the sample
withstands before the coating delaminates or fractures.

Bending tests are typically performed with three-point or four-
point geometries. In three-point bending, the maximum stress

TABLE 3 (Continued) Overview of techniques evaluating the stress and thermomechanical properties of TBCs and EBCs.

Measurement
technique

Application area Advantages Disadvantages Further information (e.g.
standards, software and

technique-based
publications)

X-ray Diffraction (XRD) • Evaluate the thermal
expansion coefficient of TBCs
Ochrombel et al. (2010) and
EBCs Salanova et al. (2023)

• Non-destructive • *Access to synchrotron source
required for through thickness
and improved spatial
resolution experiments

• Software for Rietveld refinement,
listed in Table 1

• Strain in TBC as a function of
depth* Li et al. (2016); Li et al.
(2019)

• Evaluate strains between
different phases • CTEAS: determine thermal

expansion from high-temperature
XRD Jones et al. (2013)

• TBC bond coat strains as a
function of temperature Chen
et al. (2015)

• Evaluate thermal
expansion coefficients
dependent on unit cell
axes

• A critical discussion of the sin2(ψ)
technique Korsunsky, (2008)
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occurs at the loading point, so a notch is usually manufactured prior
to testing, to create a stress concentration at a specific location in the
coating thickness, for instance, at the top coat/TGO interface for
TBCs (Martins et al., 2021). On the other hand, the four-point
bending test involves two loading points and two holding points.
This configuration results in a uniform stress between the loading
points and results in a larger sample volume under a uniform stress,
therefore making the four-point bending geometry more suitable to
determining the weakest region of the coating system (Chen
et al., 2020).

One example of a four-point bending test that has influenced
TBC and EBC development is conducted on the fracture
characteristics and damage evolution of coatings with a notch
(Zhao et al., 2012; Martins et al., 2021). Using this geometry, the
critical strain energy release rate could be linked with the bond coat
morphology (previously specified in 4.1.3) to determine preferential
bond coat morphologies to resist failure (Martins et al., 2021).
Another modified four-point bending geometry can also generate
a single interface crack (Zhao et al., 2010). Advantageously, this
propagates a crack along the TGO/top coat interface to determine
the preferential crack path.

Overall, bending tests have played a significant role in
understanding the failure mechanisms and mechanical properties
of TBC and EBC systems. They have provided valuable data for
modelling the cracking mode, analysing the energy release rate, and
developing numerical lifetime models for the durability of
these coatings.

6.2.3 Transverse scratch testing
An alternative method evaluating the adhesion strength is

transverse scratch testing (Johnstone et al., 1997). Primarily used
to investigate APS deposited TBCs, the method involves
scratching a polished cross-section with a cone shaped
intender under a constant load from the substrate to coating
surface. The resulting scratched areas can then evaluate the
failure modes (i.e. cohesive or adhesive failure) (Lopez and

Beltzung, 1989). While not appropriate for thin EBCs (Al
Nasiri et al., 2019; Yilmaz and Xiao, 2022), it is suitable for
thicker coatings (i.e. processed using plasma spraying). Studies
comparing the technique with the pull-off test suggest it could be
useful as a simple and reliable quality control technique (Nohava
et al., 2010; Vencl et al., 2011). For example, it has been used to
evaluate the effect of heat treatment temperature on TBC bond
coat adhesion (Morrell and Rickerby, 1998).

6.2.4 Indentation
Microindentation and nanoindentation techniques can also be

used for the analysis of bonding behaviour (Vidakis et al., 2003;
Mao et al., 2012). Indentation from the top surface of the coating
to evaluate the interfacial toughness is widely used for TBCs
(Vasinonta and Beuth, 2001). Cross-sectional indentation at or
near the interface has also attracted interest to examine the
crack paths and evaluate the interfacial toughness (Lesage and
Chicot, 2002; Wang et al., 2012). However, the non-uniform
topography of the interfaces resulting from thermal spraying or
EB-PVD processing, means that indentation placement
is important.

Furthermore, a suitable choice of indenter geometry is required.
For example, using indenters with sharp corner geometries (i.e.
Vickers and Berkovich) provides an inhomogeneous stress
distribution that preferentially initiates cracks near to the corners.
Therefore, overcoming this issue is macro-scale spherical
indentations near the interface. This generates, large
displacements at the interface, with the crack paths examined to
determine preferential sites of crack propagation, Figure 11 (Wang
et al., 2012).

An appreciation of the residual stresses is also necessary in
relationship to the failure test chosen (Clyne and Gill, 1996). All test
geometries have an associated sampling volume, which will affect
the contribution of residual stresses, and may alter the propagation
of a crack (Araujo et al., 2005). Therefore, caution is required when
comparing results between different testing geometries.

FIGURE 11
(A) Cross-sectional indentation in nickel based superalloy (CMSX4) substrate near TBC interface. (B) Resulting crack path along the bond coat/TGO
interface. Reprinted from Wang et al. (2012) with permission from Elsevier.
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6.2.5 Shear test
Replicating the in-service mode of failure during testing is

important to obtain representative behaviour. In-service, cracks in

multi-layered coatings are subject to mixed mode loading (Suo and
Hutchinson, 1990; Hutchinson and Suo, 1991; Begley and
Hutchinson, 2017). For example, a crack initiated in mode I

TABLE 4 Overview of techniques used to initiate the failure of TBCs and EBCs.

Measurement
technique

Application area Advantages Disadvantages Further information (e.g.
standards, software and

technique-based
publications)

Indentation • Fracture behaviour of chosen
coating location Vasinonta and
Beuth, (2001); Wang et al.
(2012); Zhou et al. (2017); Song
et al. (2019); Yuan et al. (2022)

• Simple and reliable method.
• Flexible indentation

interaction volume
dependent on load, indenter
size and geometry

• Properties of local area may not be
representative of coating.
Therefore, may be insufficient to
examine the effect of
microstructure or morphology on
failure mechanism

• A Critical Evaluation of
Indentation Techniques for
Measuring Fracture
Toughness: I, Direct Crack
Measurements Anstis et al.
(1981)• In situ capability to obtain

intrinsic property
measurement

• Identifying crack lengths can be
subjective

• Measurement Good Practice
Guide No. 9: Palmqvist
Toughness for Hard and Brittle
Materials Roebuck, (2008)

Laser spallation/Laser
shock adhesion test

(LASAT)

• Interface strength of TBCs
Guipont et al. (2019); Maurel
et al. (2019)

• Simple and efficient method
for adhesive strength
analysis of the coating

• Only an evaluation of adhesive
strength

• Measurement of interface
strength by a laser spallation
technique Gupta et al. (1992)

• Identify weakest part of the
coating

• Qualitative and quantitative
results can be gathered

Microcantilever beam
bending

• Effect of APS splat boundaries
on TBC fracture toughness
Chen et al. (2019)

• Can be used to examine both
cohesive and adhesive
strength of the coating

• Effect of the texture and
microstructure

• Site specific evaluation

• Consistent sample preparation
requires significant time and
expertise required

• Measuring fracture toughness
of coatings using focused-ion-
beam-machined microbeams
Di Maio and Roberts, (2005)

• Fracture toughness variation
through coating thickness Jaya
B et al. (2012); Chen et al.
(2021)

• Prepared sample volume may not
be representative

Pull off tensile test • Compare the bonding strength
between the bond coat/top coat
or bond coat/substrate
interface Karaoglanli et al.
(2013); Ghasemi and
Vakilifard, (2017)

• Simple and reliable method
for quality control and
comparison

• Measured strength is limited with
the strength of the bonding
adhesive agent

• ASTM C633-13: Adhesion or
Cohesion strength of thermal
spray coatings ASTM
International, (2021a)• Adhesive and cohesive

strength can be
distinguished

• High quantity of samples is
required

• It is not possible to localise the
stress (i.e. to coating interface), for
specific strength measurement

Shear test • Interfacial adhesion and
critical strain energy release
rate in EB-PVD TBCs Guo
et al. (2005); Guo et al. (2007)

• Mode II loading – can
investigate interfacial
adhesion and delamination

• Specific test geometry required to
apply shear load to the interface

Three/four-point
bending

• Critical strain energy release
evaluation in TBCs Martins
et al. (2021)

• Simple and reliable method
for evaluation of cohesive/
adhesive bonding strength
and fracture toughness

• Multiple samples and tests
required for statistically significant
results

• ASTM C1161-18: Flexural
Strength of Advanced
Ceramics at Ambient
Temperature ASTM
International, (2018)

• Identify weakest region of the
coating system Chen et al.
(2020)

• Stress can be localised in to
specific section of the
coating (i.e. top coat bond
coat interface)

• Notching or modified four-
bending geometries require
additional sample preparation • Modified four-point bending

specimen preparation Hirakata
et al. (2005)

• In situ variable temperature
capability possible

• Not suitable for stiff SiC based
substrates

Transverse scratch test • Scratch test adhesion values for
EB-PVD TBC Johnstone et al.
(1997); Morrell and Rickerby,
(1998)

• Simple and reliable method
for evaluation of bonding
behaviour qualitatively

• Provides qualitative comparison • ISO 27307–2015: Evaluation of
adhesion/cohesion of thermal
sprayed ceramic coatings by
transverse scratch testing
International Organization for
Standardization, (2015)

• Requires suitable coating
thickness—typically limited to EB-
PVD or APS deposition methods

• The stylus or scratch method
for thin film adhesion
measurement: some
observations and comments
Butler et al. (1970)

• Initiated cracks can deflect into
microcracks
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(tensile stress normal to the crack) may then propagate into adjacent
layers with compressive stress, subjecting these cracks to shear stresses
and mode II loading. As a result, the crack changes direction and
propagates along an interface which can then lead to coating
delamination.

The shear test is a testing geometry with these mode II loading
conditions, which lead to delamination failure of TBCs. Although,
requiring a specific sample geometry, the shear test has quantified
a coating’s interfacial adhesion by evaluating the critical strain energy
release rate in EB-PVD TBCs (Guo et al., 2005; Guo et al., 2007).

6.3 Technique overview

Table 4 contains an array of techniques for initiating the failure
of TBCs and EBCs, and details their advantages and disadvantages.
Even though some techniques have been standardised by industrial
stakeholders performing TBC and EBC research and development
(i.e. pull off test, etc.), obtaining reliable results to understand
failure has proven a difficult feat, given the size and geometry of the
coatings. Furthermore, the actual failure of TBCs and EBCs often
occurs due to residual stresses evolving in environmental
conditions for extended periods, such as thermal cycling or
high-temperature steam oxidation. Therefore, work is still
needed to ensure in-service failure modes are reproduced with
failure testing that is effective and efficient.

7 Conclusion

Characterisation techniques facilitate the understanding of thermal
barrier coating and environmental barrier coating failure by revealing
the evolution ofmicrostructure, residual stresses and thermomechanical
properties throughout their lifetime. All these factors contribute to
coating performance; an appreciation of each factor and their
interconnections is crucial to successful coating development. This
understanding, in combination with techniques to initiate failure,
can then inform of desirable microstructures and compositions to
improve coating performance and prolong coating lifetime.

A wide variety of characterisation techniques are presented for
investigating thermal barrier coating and environmental barrier
coating failure. While the understanding of coating performance
is complex, it is essential that the advantages and disadvantages of
characterisation techniques in respect to thermal barrier coatings
and environmental barrier coatings are also understood. This
enables the effective choice of a combination of techniques to
investigate these coatings on a variety of length scales.

The need for characterising thermal barrier coatings and
environmental barrier coatings will only grow into the future.

Improving the efficiency and lowering the environmental impact
of gas-turbine engines remains desirable, and consequently this
requires substrates and coatings to operate in increasingly
extreme environments. Therefore, understanding coating failure
will continue to rely upon characterisation techniques to further
develop high-performance thermal barrier coatings and
environmental barrier coatings.
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