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An artificial neural network (ANN) model for predicting the stability of rectangular tunnels
in rock masses based on the Hoek–Brown (HB) failure criterion is presented in this study.
Since the safety assessment of the tunnel stability is one critical issue for civil engineers
during the construction, it is very important to develop a reliable and accurate stability
analysis of such problems. The finite element limit analysis (FELA) with the HB failure
criterion is used to develop the numerical upper and lower bound solutions of the
problem of rectangular tunnels in rock masses. A novel machine learning-aided
prediction of this problem is then developed based on the datasets of the numerical
bound solutions obtained from the FELA. The inputs consist of six dimensionless
parameters including the cover-depth ratio of tunnels, the width ratio of tunnels, the
normalized uniaxial compressive strength, the geological strength index, the mi

parameter, and the degree of disturbance of rock masses. The results show that the
optimal ANN models provide very great accuracy in predicting the stability of the
rectangular tunnels based on the HB failure criterion. The solutions will provide a
prompt assessment of tunnel stability in rock masses for geotechnical engineers
during the construction of rock tunnels.
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INTRODUCTION

Tunnel safety has been a classic issue for geotechnical engineers during the processes of both
construction and operation. It has been challenging to design and construct a large tunnel (e.g.,
highway tunnel and railway tunnel) especially in the area located on a weak ground. The catastrophic
collapses of the tunnel due to the loss of stability and external disturbance have been found around
the globe (Chung et al., 1995; Shin et al., 2006; Ngamkhanong et al., 2018; Ngamkhanong and
Kaewunruen, 2018; Aygar and Gokceoglu, 2020). Therefore, it is very important to ensure the
stability to prevent a collapse inside the tunnel during the construction process. To assess the stability
of rock masses during the tunnel construction by an open-face conventional tunneling or a tunneling
boring machine, the failure criterion for capturing the collapse of rocks is required to accurately
compute the tunnel stability in rocks. The Hoek–Brown (HB) failure criterion is one of the famous
criteria for capturing the failure behaviors of rock masses. The first version of this failure criterion
was introduced by Hoek and Brown (1980) in the 1980s by employing the curve-fitting of triaxial test
data of intact and jointed rocks. Later, in 2002, Hoek et al. (2002) updated the old version by
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accounting for the effect of highly fractured properties. A brief
history and the development of this failure criterion can be found
in the study by Hoek (Hoek, 2004; Hoek, 2007).

The HB failure criterion has a complex non-linear expression,
where the dependency of shear strength of rock masses on the
non-linearity of the minor principal compressive stress was taken
into account. The input strength parameters for the HB failure
criterion can be obtained from (i) uniaxial compressive tests of
rock samples, (ii) mineralogical and geological examinations, (iii)
characterization of rock discontinuities, and (iv) the degree of
disturbance due to blast damage and stress relaxation. In the past,
various works employed the HB failure criterion to investigate the
stability of several rock engineering problems such as bearing
capacity and shaft resistance of foundations (e.g., Serrano and
Olalla, 1998a; Serrano and Olalla, 1998b; Yang and Yin, 2005;
Merifield, et al., 2006; Saada et al., 2008; Clausen, 2013; Serrano
et al., 2014; Serrano et al., 2015; Serrano et al., 2016; Chakraborty
and Kumar, 2015; Keshavarz and Kumar, 2018; Alkhafaji et al.,
2020; Wu et al., 2021), stability analysis of rock slopes (You et al.,
2000; Yang et al., 2004; Li et al., 2008; Li et al., 2011; Shen et al.,
2013; Shen and Karakus, 2014; Dongping et al., 2016), and
underground openings and caverns (e.g., Sakurai, 1993;
Carranza-Torres and Fairhurst, 1999; Martin and Maybee,
2000; Carranza-Torres, 2004; Swift and Reddish, 2005; Fraldi
and Guarracino, 2009; Yang and Huang, 2011; Yang and Huang,
2013; Senent et al., 2013).

To estimate the stability of tunnels in rock masses, the finite
element limit analysis (FELA) is one of the efficient techniques which
has been commonly used to provide the stability solutions of the
tunnels (Sloan, 2013). This technique employs plastic bounding
theorems, finite element discretization, and non-linear
programming. This technique consists of the associated upper
and lower bound theorems (UB and LB) in conjunction with a
perfectly plastic material with an associated flow rule. A true stability
solution can be obtained by bracketing from UB (above) and LB
solutions (below). The FELA with the HB failure criterion (Kumar
and Rahaman, 2020) has been used to solve the tunnel stability by
following the methods of Ukritchon and Keawsawasvong (2019a),
Keawsawasvong and Ukritchon (2020), and Xiao et al. (2021) for a
single circular, square, and rectangular tunnel in a rock mass,
respectively. The solutions of the stability of a plane strain
heading of tunnels were also studied by Ukritchon and
Keawsawasvong (2019b). Moreover, the stability of unlined dual
circular, square, and horseshoe tunnels in rock masses was also
carried out by Zhang et al. (2019), Xiao et al. (2019), and Rahaman
and Kumar (2020), respectively. However, these works only
proposed the solutions of the tunnel stability in rock masses as
tables and design charts which cannot be directly applied for
arbitrary values of all considered parameters such as the HB
parameters or the tunnel’s geometries without the approximation
or the interpolation of the solutions. In addition, the previous study
by Xiao et al. (2019) provided some numerical results for the stability
of rectangular tunnels in rock masses. However, they did not
comprehensively consider the impact of the degree of disturbance
of rock masses on their numerical results (only demonstrating some
examples). Therefore, a new procedure providing an accurate and
reliable calculation of this stability problem should be carried out to

accurately obtain the solutions of the stability of tunnels in rock
masses by fully considering the effect of the degree of disturbance of
rock masses.

Soft computing appeared as an alternative to the common
analytic and numeric approaches, especially an artificial neural
network (ANN) approach. This approach enables us to learn
from a sufficiently dense dataset, and then configure a black-box-
type predictionmodel in order to solve the problems in the form of a
closed simple equation. The ANN approach has been used to
identify various rock parameters from several empirical tests in
the field of rock engineering (e.g., Yang and Zhang, 1997; Mert et al.,
2011; Ocak and Seker, 2012; Gholami et al., 2013; Miah et al., 2020;
Mohamad Ali Ridho et al., 2021). In addition, the soft computing of
the bearing capacity of foundations on rock masses using the ANN
approach has also been presented by a few researchers (Ziaee et al.,
2015; Alavi and Sadrossadat, 2016; Millán et al., 2021). An extreme
learning neural network and terminal steepest descent algorithm
were carried out by Li et al. (2016) to predict the stability of rock
slopes by adopting the dataset from the FELA with the HB failure
criterion. For the application of tunnel stability, Naghadehi et al.
(2019) utilized the ANN approach to estimate the face stability of
mechanized shield tunneling in cohesive-frictional soils. To the best
of the author’s knowledge, there is no previous study of the
assessment of the stability of tunnels in Hoek–Brown rock
masses using the ANN technique and the FELA solutions. The
objective of this study is to develop a convenient tool based on the
ANN approach for providing a prompt assessment of the stability of
rectangular tunnels in Hoek–Brown rock masses.

PROBLEM STATEMENT

Hoek–Brown Failure Criterion
The Hoek–Brown (HB) failure criterion is a well-recognized rock
failure model accounting for the non-linearity of the minor

FIGURE 1 | Problem definition of an unsupported infinitely long
rectangular tunnel in a rock mass.
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principal (compressive) stress. The form of a power–law
relationship between the major and minor principal stresses
(i.e., σ1 and σ3) is the mathematical expression of the HB
failure criterion. Taking tensile normal stresses as positive, the
HB failure criterion can be expressed as (Hoek et al., 2002)

σ3 � σ1 − ( −mbσ1(−σci)(1−a)/a + s(−σci)1/a)a, (1)
where σci is the uniaxial compressive strength of intact rock mass,
and the parameters mb, s, and a are expressed in Equations 2–4.

a � 1
2

+ 1
6
{exp(−GSI

15
) − exp(−20

3
)}, (2)

mb � mi exp(GSI − 100
28 − 14DF

), (3)

s � exp(GSI − 100
9 − 3DF

). (4)

In the previous equations, the geological strength index (GSI)
has typical values from 10 to 100 (extremely poor rock mass to a
perfectly intact rock mass). Also, DF represents the degree of
disturbance, and it has typical values from 0 (undisturbed in-situ
rock masses) to 1 (extremely disturbed in situ rock masses).

Parametermi is a material constant that is related to the frictional
strength of an intact rock mass and has typical values from 5
to 30.

Problem Definition
Figure 1 shows the problem definition of 2D unlined rectangular
tunnels in a plane strain condition. Due to the assumption of the
plane strain condition, the problem represents a very long
unlined rectangular tunnel. The tunnels have a width (D), a
length (B), and a cover depth (C) above their crown. The
parameters of rock masses based on the Hoek–Brown failure
criterion consist of GSI, DF,mi, σci, and unit weight, γ. A uniform
surcharge pressure (σs) is applied over the rock surface as shown
in Figure 1.

According to the aforementioned parameters, there are eight
design parameters in this study (i.e., C, D, B, σci, GSI, DF, mi, and
γ). The dimensionless output parameter of this problem is the
stability factor denoted by σs/σci. Eq. 5 represents the stability
factor as a function of six dimensionless parameters as follows:

σs
σci

� f(C
D
,
B

D
,
γD

σci
, mi, GSI,DF), (5)

FIGURE 2 |Model geometry for three unlined rectangular tunnels in rockmass (C/D = 2, γD/σci = 0,GSI = 80,DF = 0, andmi = 20). (A)B/D = 0.5. (B)B/D = 1. (C)B/
D = 2.
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where B/D represents the width ratio, C/D represents the cover
depth ratio, DF represents the degree of disturbance, GSI
represents the geological strength index, mi represents a
material constant related to the frictional strength, and γD/σci
represents the normalized uniaxial compressive strength.

In this study, a non-linear input–output mapping of the
system of tunnels in rock masses is constructed using a neural
network trained by an extreme learning algorithm. The training
data are the FELA solutions of the tunnel stability factor.

METHODOLOGY

Finite Element Limit Analysis
The finite element limit analysis (FELA), which is the computational
method based on a perfectly plastic material with an associated flow
rule, employs the plastic bound theorems, finite element
discretization, and mathematical optimization (Sloan, 2013;
Keawsawasvong and Ukritchon, 2017; Ukritchon and
Keawsawasvong, 2017; Krishnan et al., 2019; Ukritchon et al.,
2019; Ukritchon and Keawsawasvong, 2020a; Ukritchon and
Keawsawasvong, 2020b; Ukritchon et al., 2020; Keawsawasvong

and Ukritchon, 2021). This FELA technique is carried out to
derive the bracket of the true limit load from the targeted upper
Bound (UB) and lower Bound (LB) solutions. A new computer
software, namely, OptumG2 (OptumCE, 2020), is employed to
compute the active collapse pressure (σs) of unlined rectangular
tunnels in rock masses. The results will be used as datasets for
constructing a machine learning model.

Figures 2A–C show three numerical models of unlined
rectangular tunnels in rock masses for the cases of B/D = 0.5, 1,
and 2, respectively, where the others are C/D = 2, γD/σci = 0, GSI =
80, DF = 0, and mi = 20. Due to the symmetry of the problem, only
half of the domain is used in themodeling. The boundary conditions
at the left plane of symmetry and the right plane are set tomove only
in the vertical direction. The boundary condition at the bottomplane
is not allowed tomove in both vertical and horizontal directions. The
sizes of the domain are chosen to be sufficiently large in order to
avoid any error from the problem size on the computed bound
solutions. The tunnel is unlined, and there is no pressure applied on
the periphery of the tunnel. At the rock surface, the uniform
surcharge σs is applied overall the area. This surcharge at the
active collapse state will be optimized and used as the output
from the LB and UB FELA using OptumG2.

FIGURE 3 | Typical adaptive meshes of unlined rectangular tunnels in rock mass (C/D = 2, γD/σci = 0,GSI = 80,DF = 0, andmi = 20). (A) B/D = 0.5. (B) B/D = 1. (C)
B/D = 2.
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The recent adaptivity meshing technique is also employed in
this study to improve computational efficiency (e.g., Ciria et al.,
2008). Using this adaptivity meshing technique, a number of
elements are automatically added in the zones that contain large
plastic shear strain. As a result, the differences between UB and
LB solutions become smaller after a few iteration steps. The
setting of the adaptivity meshing technique in this study is set as
an initial mesh of 5,000 elements at the first step and then will be
increased to 10,000 elements after three iterations of mesh
adaptivity. Examples of typical adaptive meshes can be seen in
Figures 3A–C for the cases of B/D = 0.5, 1, and 2, respectively.

Examples of absolute velocity contours of an unlined rectangular
tunnel in the rock mass are also shown in Figures 4A–C for the
cases of B/D = 0.5, 1, and 2, respectively, which depict the
associated failure mechanisms of this tunnel stability problem.
All results of the tunnel stability obtained from the LB and UB
FELA (about 2,160 solutions) will be averaged and then used as
the training datasets in the machine learning approach as
described later in the next section. The results of the stability
index obtained by the FELA will be used in the output layer
datasets in order to construct a machine learning model.

Table 1 concludes the ranges of dimensionless parameters
considered in the FELA. It is important to note that these ranges
cover realistic geometrical and geological properties of the tunnel
and rock masses. The input includes major parameters: γD/σci,
GSI, mi, DF, C/D, and B/D affecting the stability index that is
analyzed using the FELA and applied as an output variable in
machine learning models.

Machine Learning
Multiple Linear Regression
Linear regression is a linear approach for modeling the linear
relationship between the dependent variable (scalar response) and

FIGURE 4 | Absolute velocity contours of unlined rectangular tunnel in rock mass (C/D = 2, γD/σci = 0,GSI = 80,DF = 0, andmi = 20). (A)B/D = 0.5. (B)B/D = 1. (C)
B/D = 2.

TABLE 1 | Input parameters.

Input parameters Values Average

C/D 1/2/3/4/5 3
B/D 0.25/0.5/0.75/1/2 1.063
γD/σci 0/0.001/0.01 0.004
GSI 60/80/100 80
mi 5/10/20/30 16.25
DF 0/0.25/0.5 0.25
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one or more independent variables (also known as explanatory
variables). The case of one dependent variable is called simple linear
regression. In this study, there are six independent variables so that
the process is called multiple linear regression. It is noted that this
method is one of the most well-known and simplest algorithms in
statistical analysis and machine learning.

The output is a dependent variable that can be calculated from
the combination of the input or independent variables as shown
in the following equation:

yi � β0 + β1xi1 + β2xi2 + . . . + βpxip + ϵ, (6)
whereyi = dependent variable (output);xi1, xi1, . . . xip =
independent variables (input);β0 = y-intercept (constant term);
β1, β1, . . . , βp = slope coefficients for each explanatory variable;ϵ
= the model’s error term (also known as the residuals).

A regression model assumes that the linear relationship
between dependent variable y and the p-vector of regressors x
is linear. This relationship is modeled via a residual term or error
variable ϵ—an unobserved random variable that adds “noise” to
the linear relationship between the dependent and independent
variables. This study uses the linear regression function inWEKA
to perform standard least-squares multiple linear regression and
optionally perform attribute selection, either greedily using
backward elimination or by building a full model from all
attributes and dropping the terms one by one, in the
decreasing order of their standardized coefficients, until a
stopping criterion is reached.

Artificial Neural Network
An artificial neural network (ANN) is also applied in this study.
This method is a data prediction framework based on existing
features created from the human mind structure. It simulates the
processing mechanism of the human brain’s nervous system to
complex information. A neural network is a computational model
consisting of a large number of nodes (or neurons) connected to
each other.

ANN consists of three layers: input layer, hidden layer, and
output layer, as shown in Figure 5. The first layer is the input

layer, where the feature vector is passed through. In this study, the
input layer consists of six nodes representing γD/σci, GSI, mi, DF,
C/D, and B/D. The second layer is the hidden layer, which consists
of one or more threshold logic unit layers. Generally, the number
of hidden layers and hidden neurons is chosen on the basis of a
trial-and-error method until the best model is obtained. This
layer aims to convert the information into content so that the
output layer can be used to predict the data. It is within this layer
that the weighted sums of the inputs are calculated and a step
function is applied to it before being sent off as an output through
the use of the rectified linear unit (ReLU) activation function,
which provides non-linearity in the network. The final layer is the
output layer presenting an independent variable or a predicted
value. The output layer consists of one node presenting a
predicted stability factor of rectangular tunnels in rock masses.

FIGURE 5 | ANN architecture.

FIGURE 6 | Comparison between actual and predicted σs/σci using
multiple linear regression.
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Cross-Validation
In the case of a limited number of datasets, splitting the method
into train and test datasets is not reliable. A more general
technique to offset any bias produced by the individual sample
used for holdout is to repeat the entire procedure, training, and
testing, with various random samples several times.

The general way of estimating either the accuracy or error of a
machine learning technique given a single, fixed sample of data is to
use stratified 10-fold cross-validation. The data are divided randomly
into 10 parts with the class represented in approximately the same
proportions as in the complete dataset. Each part is held out in turn
and the learning scheme trained on the remaining nine-tenths before
calculating the error rate is calculated on the holdout set. Hence, the
learning procedure has been executed a total of 10 times on different
training sets. The average of the 10 errors is finally calculated to yield
overall error estimation. However, a single tenfold cross-validation
might not be enough to get a reliable error estimate. Different tenfold
cross-validation experiments with the same learning scheme and
dataset often produce different results because of the effect of
random datasets.

It is recommended to repeat the cross-validation process 10
times—that is, 10 times tenfold cross-validation—and average the
results. This involves invoking the learning algorithm 100 times
on datasets that are all nine-tenths the size of the original.

Performance Measures
In order to investigate the performance of the trained models in
this study, three statistical analyses named correlation coefficient

(R), root mean squared error (RMSE), and mean absolute error
(MAE) are employed.

The correlation coefficient measures the statistical
correlation between the predicted value and actual value.
The correlation coefficient ranges from 0 when there is no
correlation to one for perfectly correlated results. However, a
value that is less than zero signifies a negative relationship.
Correlation is slightly different from the other measures
because it is scale-independent in that, if a particular set of
predictions is taken, the error is unchanged if all the
predictions are multiplied by a constant factor and the
actual values are left unchanged. This factor appears in
every term of SPA in the numerator and in every term of SP
in the denominator, thus canceling out. (This is not true for the
relative error figures, despite normalization; if all the
predictions are multiplied by a large constant, then the
difference between the predicted and actual values will
change dramatically, as will the percentage errors.) It is also
different in that good performance leads to a large value of the
correlation coefficient, whereas because the other methods
measure error, good performance is indicated by small values.

r � SPA




SPSA

√ , (7)

where SPA � ∑i
(pi−�p)(ai−�a)

n−1 , SP � ∑i
(pi−�p)2
n−1 , and SA � ∑i

(ai−�a)2
n−1 .

TABLE 2 | Performance measures of each methodology.

Methodology R2 Mean
absolute error (MAE)

Root mean squared
error (RMSE)

Multiple linear regression (MLR) 0.8466 3.2983 4.5924
Artificial neural network (ANN) 0.9992 0.2685 0.3588

FIGURE 7 | Performance evaluation of rectangular tunnel models
against the number of hidden neurons.

FIGURE 8 | Comparison between actual and predicted σs/σci
using ANN.
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The coefficient of determination (R-squared, R2) is the square
of the coefficient of correlation. It is important to note that in the
case of multiple variables, R2 can better quantify the strength of
the developed model since r cannot be calculated when the
variables are more than 1. Thus, this study uses R2 as one of
the performance measures of the developed model.

In addition, the mean absolute error (MAE) is an average of
the magnitude of the individual errors without taking account of
their sign. The mean-squared error tends to exaggerate the effect
of outliers—instances when the prediction error is larger than the
others—but the absolute error does not have this effect. All sizes
of error are treated evenly according to their magnitude. The
equation for MAE is shown in

MAE �
∣∣∣∣p1 − a1

∣∣∣∣ + . . . + ∣∣∣∣pn − an
∣∣∣∣

n
. (8)

In addition, the mean-squared error (MSE) is the principal
and most commonly used measure; sometimes, the square root
(root mean-squared error, RMSE) is taken to give it the same

dimensions as the predicted value itself. Many mathematical
techniques use the mean-squared error because it tends to be
the easiest measure to manipulate mathematically. It is, as
mathematicians say, “well behaved.” However, RMSE is more
widely used than MSE to evaluate the performance of the
regression model with other random models as it has the
same units as the dependent variable. Note that the lower
MSE and RMSE value indicates a model with higher accuracy.

RMSE �























(p1 − a1)2 + . . . + (pn − an)2

n

√
. (9)

RESULTS AND DISCUSSIONS

Multiple Linear Regression
A multilinear regression model is first conducted, and the
regression coefficients or weights are obtained. The

TABLE 3 | Neural network constants of the optimal model for rectangular tunnel.

Hidden layer neurons (i) Hidden layer bias (b1) Hidden weight IW1

γD/σci (j = 1) GSI (j = 2) mi (j = 3) DF (j = 4) C/D (j = 5) B/D (j = 6)

1 −4.35657 0.008701 1.092828 0.974278 −0.07075 −1.18346 −0.31997
2 −1.74013 0.14891 0.113283 0.186708 −0.06272 −0.05677 0.291417
3 −1.81243 0.052832 −0.45621 0.431458 0.308563 0.502203 −0.25473
4 −4.21403 0.003004 1.067054 −1.04746 −0.07255 0.986799 −0.62285
5 −1.79845 0.179632 0.127499 0.002857 −0.08559 −0.14596 0.159884
6 −0.01549 −0.06894 0.068375 −1.03432 −0.3446 −1.04667 0.471713
7 −1.7097 0.045137 0.231877 0.176238 −0.10956 −0.0377 0.188998
8 −1.79718 −0.08952 0.160035 0.198678 −0.18394 0.026044 0.057852
9 −1.54618 −0.00516 1.039575 0.679205 −0.18985 0.749616 −0.43122
10 −4.11627 0.029432 0.980603 0.875288 −0.11099 0.339682 −1.2146
11 −4.35657 0.008701 1.092828 0.974278 −0.07075 −1.18346 −0.31997

Output layer
node (k)

Output layer
bias (b2)

Output weight IW2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

1 −1.9773 −0.1042 −0.6455 −1.3704 0.0596 −0.2669 −0.1528 −0.0343 −1.8956 0.9524 1.7108 −1.9773

FIGURE 9 | Multilayer networks with weight matrix.
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coefficients are optimized by minimizing the error in WEKA
software. The multiple linear regression equation is shown as
follows:

y � −8.9111x1 + 0.2889x2 + 0.4117x3 − 1.7415x4 + 2.4081x5

− 3.4669x6 − 25.4051,

(10)
where y represents the stability factor σs/σci, whereas
x1, x2, x3, x4, x5, and x6 are the dimensionless input
parameters, namely, γD/σci, GSI, mi, DF, C/D, and B/D,
respectively.

Figure 6 presents the comparison between the actual stability
factor (average values from UB and LB solutions) obtained from

the FELA and the predicted value obtained from the multiple
linear regression. The performance of the developed equation can
be accessed via statistical tests, R2, MAE, and RMSE which are
found to be 0.8466, 3.2983, and 4.5924, respectively (see Table 2).

Artificial Neural Network
In order to maximize the accuracy of the ANN models, the
number of hidden layers and neurons should be optimized. In
this study, one hidden layer is considered, while the number of
hidden neurons is varied. Figure 7 presents the performance of
ANN models for the stability factor of rectangular tunnels in
rock masses. It is clear that the performance of ANN models is
increased if the number of hidden neurons is increased. It
should be noted that R2, MAE, and RMSE must be calculated as

FIGURE 10 | Influence of B/D on the stability solutions of rectangular
tunnels (γD/σci = 0, GSI = 80, and DF = 0). (A) mi = 5. (B) mi = 30.

FIGURE 11 | Influence of C/D on the stability solutions of rectangular
tunnels (γD/σci = 0, mi = 20, and DF = 0). (A) GSI = 60. (B) GSI = 100.
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the R2 value alone cannot really show the performance of the
models as the variation of MAE and RMSE can still be seen
clearly. Figure 8 presents the performance of the models
against the number of hidden neurons. It is found that
when the number of hidden neurons is over 11, the
performance of ANN models is likely to be stabilized. In
this case, ANN with the architecture of 6-11-1 is chosen to
be the optimal MLP model as it shows the lowest MAE and
RMSE values among the other models, while R2 is the highest
among the models. Table 2 also compares the performance
between the MLR and MLP models. It is clear that the MLP

model performs much better than the MLR model. This
optimal MLP model with the architecture of 6-11-1 is used
in the next section for the sensitivity analysis.

After obtaining the optimal ANN architecture, the
approximate general functions can be employed considering
the weighted inputs and the transfer function to create the
outputs. The layer number defines the superscript on the
weight matrix in multiple-layer networks, as seen in Figure 9.
The proper notation is used in the two-layer tansig/purelin
network. This network is useful for approximating general
functions. Given a sufficient number of neurons in the hidden
layer, it can arbitrarily approximate well any function with a finite
number of discontinuities. In this section, the final weights of
each parameter have been calculated in order to study the effects

FIGURE 12 | Influence of GSI on the stability solutions of rectangular
tunnels (γD/σci = 0, C/D = 3, and B/D = 0.75). (A) DF = 0.25. (B) DF = 0.5.

FIGURE 13 | Influence of mi on the stability solutions of rectangular
tunnels (γD/σci = 0, C/D = 3, and B/D = 0.75). (A) DF = 0.25. (B) DF = 0.5.
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of each parameter on the stability index. Figure 9 shows an
example of the dimension of weight matrix and bias of the
optimal ANN model for the heading tunnel. Predictive
Equation 11 can be developed based on the tansig function,
weight, and bias from the ANN model.

Predicted value � ⎡⎢⎢⎣∑N

i�1IW2itansig⎛⎝∑J
j�1
IW1ijxj + b1i⎞⎠ + b2⎤⎥⎥⎦,

(11)
where N is the number of hidden neurons, X is the number of
input variables, and J is the number of input variables. The

weight matrix (IW1 and IW2) and bias (b1i and b2) in the
hidden and output layers corresponding to the optimal ANN
models are obtained. Hidden weight (IW1) is obtained based
on the number of input parameters (J) and hidden neurons
(N). There is one weight for every input to neuron connection
between the layers. Each neuron in the hidden layer has its
own bias constant (b1i). As for the output weight matrix
(IW2), the number of rows matches the number of hidden
layer neurons (N) and the number of columns matches the
number of output layer neurons (k). There is one column for

FIGURE 14 | Influence of DF on the stability solutions of rectangular
tunnels (γD/σci = 0, mi = 20 and C/D = 3). (A) GSI = 60. (B) GSI = 100.

FIGURE 15 | Influence of γD/σci on the stability solutions of rectangular
tunnels (DF = 0, GSI = 60, and C/D = 3). (a) mi = 5. (b) mi = 30
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every neuron in the output layer. In this case, the output layer
contains only one column. Table 3 presents the neural
network constants of the optimal ANN model including
the weight matrix and bias for the stability index
calculation of rectangular tunnels. These values obtained
from the optimal ANN networks can be used to develop
predictive equation functions and test on new datasets with
different variations of parameters within required ranges.

Sensitivity Analysis
The sensitivity analysis of the stability of rectangular tunnels
in rock masses using the ANN approach is presented next to
portray the influences of all considered input dimensionless
parameters (e.g., B/D, C/D, DF, GSI, mi, and γD/σci) on the
stability factor (σs/σci). Figures 10A,B, respectively, show the
effect of the width ratio B/D on the stability factor σs/σci for the
cases of (γD/σci = 0, DF = 0, GSI = 80, and mi = 5 and 30). The
non-linear relationship between σs/σci and B/D can be seen in
Figure 10. It is found that an increase in B/D can decrease the
geometrical arching effect resulting in the reduction of tunnel
stability. As a result, a larger B/D ratio causes a smaller value
of σs/σci. In Figure 10, the stability factor of the lowest case (B/
D = 0.5) is higher than that of the highest case (B/D = 2), which
is about 120–300%. The impact of cover depth ratio C/D on
the stability factor σs/σci for the cases of γD/σci = 0, DF = 0, mi

= 20, and GSI = 60 and 100 are shown in Figures 11A,B,
respectively. A non-linear relationship between σs/σci and C/D
is observed in Figure 11. A larger C/D value also yields an
incensement of the geometrical arching effect which is
positive in improving the tunnel stability factor (σs/σci).
Generally, when B/D = 0.5 to 1, the case of the deepest
cover depth (C/D = 5) has a larger stability factor about
three to five times of the case of C/D = 1, as shown in
Figure 11. However, when B/D = 2, the difference between
the stability for the cases of C/D = 1 and 5 becomes very large
about 40 times.

The influences of Hoek–Brown parameters for rock masses
including DF, GSI, mi, and γD/σci are presented next. From
Figures 12A,B, the impact of geological strength index GSI on
the stability factor σs/σci is illustrated for the cases of γD/σci =
0, C/D = 3, B/D = 0.75, and DF = 0.25 and 0.5, respectively.
Numerical results in Figure 12 have shown that there is an
exponential relationship between GSI and σs/σci, where an
increase of GSI results in a non-linear increase of σs/σci for all
mi values. Such results can be referred to the exponential
function used in the model of the Hoek–Brown failure
criterion as expressed in Eqs 2–4. It is due to the fact that
a large GSI value is a highly undisturbed rock mass which
yields an increase in the stability of rock tunnels. From
Figure 12, it is also found that when the value of mi is
large, the non-linearity of the σs/σci and GSI relationship is
also high. The effect of the mi parameter on the stability factor
σs/σci is presented in Figures 13A,B for the cases of DF = 0.25
and 0.5, respectively. The plots are for γD/σci = 0, C/D = 3, and
B/D = 0.75. The results in Figure 13 show that the relationship
between σs/σci and mi is linearly increasing. An increase of mi

results in an increase of σs/σci for all B/D values. In a physical

meaning, mi depends upon the mineralogy, composition, and
grain size of the intact rock. From Figure 13, it can be
observed that the slope of the σs/σci and mi line becomes
higher when the value of GSI becomes larger, meaning that the
impact of mi is more prominent when the GSI value is high.
The influence of the degree of disturbance DF on the stability
factor σs/σci is demonstrated in Figures 14A,B for the cases of
GSI = 60 and 100, respectively, where the others are γD/σci = 0,
C/D = 3, and mi = 20. A high value of DF represents a larger
degree of disturbance meaning that the stability factor σs/σci is
reduced. The slopes of the lines of DF effect decrease as the
values of GSI increase (see Figures 14A,B). For the case of GSI
= 60 (see Figure 14A), the structure of rock masses for this
case is very blocky and has partially distributed masses so that
the impact of DF is very high due to the low quality of rocks.
On the other hand, when GSI = 100 (see Figure 14B), the
structure of rock masses is perfectly intact with few very
widely spaced discontinuities. As a result, the effect of DF
on this perfectly intact rock on the stability factor is then
smaller than that of blocky rocks. Finally, the influence of the
normalized unit weight and the uniaxial compressive strength
ratio γD/σci is presented in Figures 15A,B for the cases of DF
= 0, GSI = 60, C/D = 3, and mi = 5 and 30, respectively.
Obviously, all data are plotted horizontally, meaning that the
increase of σci/γD does not significantly affect the results of σs/
σci. This is because the stress induced by the unit weight γ of
rock masses is low in comparison to that of σci for rock masses.
Thus, the impact of γD/σci is negligible for the tunnel stability
in rock masses.

CONCLUSION

To the authors’ knowledge, this study is the first to establish a
machine learning aided design for predicting the stability factor of the
rectangular tunnel that is located in a rock mass following the
Hoek–Brown (HB) failure criterion. The stability factor of the
problem is investigated in terms of six dimensionless parameters
including the width ratio, cover depth ratio, degree of disturbance,
geological strength index, material constant related to the frictional
strength, and normalized uniaxial compressive strength. For practical
engineers, it is time-consuming to develop the algorithm of FELA
with the HB failure criterion for obtaining stability solutions of
tunnels in rock masses. Moreover, proper software is not usually
user-friendly, and additional resources capable of providing
information useful for decision-making are required. This study
provides the optimal machine learning models for predicting the
stability factor of rectangular tunnels. It is notable that only one
hidden layer is sufficient to create a high-performance neural network
model as R2 is already high and MSE is extremely low, showing that
the optimal model can be used to accurately predict the stability
factor. The trained networks are obtained and can be further used to
test new data for predicting the stability factor of the tunnel located in
a rock mass using the weight matrix and bias derived in this study.
However, the proposed ANN models should not be used when the
values of parameters are out of the certain ranges presented in
this study.
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