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The prominence gained by Artificial Intelligence (AI) over all aspects of human activity today
cannot be overstated. This technology is no newcomer to structural engineering, with
logic-based AI systems used to carry out design explorations as early as the 1980s.
Nevertheless, the advent of low-cost data collection and processing capabilities have
granted new impetus and a degree of ubiquity to AI-based engineering solutions. This
review paper ends by posing the question of how long will the human engineer be needed
in structural design. However, the paper does not aim to answer this question, not least
because all such predictions have a history of going wrong. Instead, the paper assumes
throughout as valid the claim that the need for human engineers in conventional design
practice has its days numbered. In order to build the case towards the final question, the
paper starts with a general description of the currently available AI frameworks and their
Machine Learning (ML) sub-classes. The paper then proceeds to review a selected
number of studies on the application of AI in structural engineering design. A
discussion of specific challenges and future needs is presented with emphasis on the
much exalted roles of “engineering intuition” and “creativity”. Finally, the conclusion section
of the paper compiles the findings and outlines the challenges and future research
directions.
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1 INTRODUCTION

We call structural design the process by which the number, distribution, shape and size of structural
elements, and their connectivity is determined so that a given design objective is achieved while
meeting a number of constraints of serviceability and resistance. The objective can be the
minimization of material consumption but in practice, it is more likely to be related to cost
minimization and to involve trade-offs between manufacturing, logistical and sometimes
sustainability considerations. At the beginning of the structural design process, human engineers
are usually provided with the overall geometry—through Building Information Models (Jung and
Joo, 2011), for example—and their task is to come up with specifications of the distribution of
structural elements including their materials and sections. This process is carried out using a diverse
collection of computational tools, from information modelling to structural analysis; sampling from
catalogues involving hundreds of structural sections and with constant reference to thousands of
pages of codes of practice. Consequently, as it stands today, structural design entails a significant and
oftentimes tedious solution-searching process involving various complex and non-fully overlapping
multi-dimensional domains, multiple constraints and large uncertainties, whereby arriving to a
global optima would be a prohibitively time-consuming endeavour. Therefore, more often than not,
the engineer’s search will be brief and they will settle for the first sub-optimal design that satisfies all

Edited by:
Izuru Takewaki,

Kyoto University, Japan

Reviewed by:
Xinzheng Lu,

Tsinghua University, China
Kazuki Hayashi,

Kyoto University, Japan

*Correspondence:
Christian Málaga-Chuquitaype

c.malaga@imperial.ac.uk

Specialty section:
This article was submitted to

Earthquake Engineering,
a section of the journal

Frontiers in Built Environment

Received: 15 November 2021
Accepted: 13 January 2022

Published: 09 February 2022

Citation:
Málaga-Chuquitaype C (2022)

Machine Learning in Structural Design:
An Opinionated Review.

Front. Built Environ. 8:815717.
doi: 10.3389/fbuil.2022.815717

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 8157171

REVIEW
published: 09 February 2022

doi: 10.3389/fbuil.2022.815717

http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.815717&domain=pdf&date_stamp=2022-02-09
https://www.frontiersin.org/articles/10.3389/fbuil.2022.815717/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.815717/full
http://creativecommons.org/licenses/by/4.0/
mailto:c.malaga@imperial.ac.uk
https://doi.org/10.3389/fbuil.2022.815717
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.815717


the hard constraints. Unsurprisingly, a range of tools have been
proposed to carry out the optimization of some of the better-
posed problems involving a relatively low number of structural
elements, e.g., (Jewett and Carstensen, 2019; Amir and Shakour,
2018; Tsavdaridis et al., 2015); and more recently these tools have
started to incorporate additional and more realistic complexities
like dynamic actions (Giraldo-Londoño and Paulino, 2021),
manufacturing processes (Zegard and Paulino, 2016;
Carstensen, 2020), etc. However, the emphasis of this paper is
not on the generation of targeted topology-optimized solutions
for which excellent review articles can be found elsewhere, e.g.,
(Thomas et al., 2021). Instead, this opinionated review
concentrates on the exploration of large and complex
integrated design spaces with the aid of artificial intelligence
(AI) and, more specifically, the increasing role that Machine
Learning (ML) algorithms are playing in this search.

Artificial Intelligence (AI) is the branch of science that is
concerned with the re-creation of human cognitive functions by
artificial means. Although this is most commonly attempted via
digital computers, other media, notably biological systems (Qian
et al., 2011; Sarkar et al., 2021), have been and continue to be used
with this purpose. This paper, however, focuses on the role of
intelligent algorithms for digital computers; or more precisely,
algorithms whose distinctive feature is their ability to learn. In
this context, Machine Learning (ML) is a branch of AI whose
central advantage is its potential to automatically detect patterns
in data under uncertainty (Murphy, 2012). This uncertainty arises
inevitably from the limited size of the datasets employed but it
also reflects errors in data collection (including measurement) as
well as hard epistemic paucities.

One of the first approaches to replicate human cognition was
to organize “knowledge” as a collection of mutually related facts.
Once a database of facts was built, so the belief went, inference
rules could be used to query it, revealing the interconnections and
allowing questions, including those related to engineering design,
to be answered. The use of this type of AI in structural design was
discussed as early as 1978 by Fenves and Norabhoompipat (1978)
and application examples appeared in the early 1980s. For
example, Bennett et al. (1978) developed a program consisting
of 170 production rules and 140 consultation parameters to assist
the engineer in the application of Finite Element Analysis (FEA)
to the design of building structures. Also, Maher and Fenves
(1985) constructed an expert system for the preliminary design of
high-rise framed buildings. They used weighing factors to
compare different gravity and lateral resisting structural
systems highlighting the “best” design according to the
criterion of a linear evaluation function. Other researchers like
Ishizuka et al. (1981) used rule-based systems to infer seismic
damage on the basis of a database of earthquake accelerograms
and visual inspection reports. However, it soon became apparent
that hard rules can not replicate the human inferential process
and that their contribution to design would be limited, not least
because the world for which engineers design is brimming with
uncertainty but also because exceptions to the rule are all too
common. Logic-based AI was abandoned.

With the passage of time, probabilistic reasoning made its way
into ML and message passing architectures, which model

intelligence on the basis of human neural information passing
(Rumelhart et al., 1986), started to take the computational
demands on storage and processing down to manageable
levels. By the end of the 1980s, Bayesian Networks (BN) had
become a practical scheme for ML (Pearl, 1988). BN have proven
useful in evaluating the reliability of structures and infrastructure
systems with multiple components andmultiple failure sequences
(Mahadevan et al., 2001). And Naive Bayes classifiers have been
used to construct damage fragilities, e.g. (Kiani et al., 2019),
predict the strength of structural components, e.g. (Mangalathu
and Jeon, 2018), or estimate structural failure modes, e.g.
(Mangalathu et al., 2020).

Meanwhile, Artificial Neural Networks, or Neural Networks
(NN) for short, started to be used in all branches of engineering
design. One of the first studies to apply back-propagation
NN—an approach initially devised by Rumelhart et al.
(1986)—to structural engineering was conducted by
Vanluchene and Sun (1990). In their pioneering study,
Vanluchene and Sun (1990) applied NN to the pattern
recognition of a loaded beam, to the design of a simply
supported reinforced concrete beam and to the structural
analysis of a plate. NNs are abstractions of the functioning of
the human brain that aim to replicate its ability to acquire
knowledge through learning and storing in the form of
interconnecting synaptic weights. In true fashion of the
process originally hypothesised by Rumelhart et al. (Figure 1)
the network takes a set of features as inputs and applies complex

FIGURE 1 | (Rumelhart, 1994) Message Center near the end of
processing when the semantics of the imput have been well defined.
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feature fusion operations through a series of layers of neurons.
The final layer outputs the end response either as a prediction or
as a form of classification.

NN models (and their deep learning variants) have become
extremely popular nowadays driven by the media coverage of
their superb feature recognition capabilities and the notorious
increase in computational power together with the wide
accessibility of tools and libraries. Accordingly, NN have been
used in seismic response prediction, e.g., Morfidis and Kostinakis
(2017); Lagaros and Fragiadakis (2007), system identification,
e.g., Sivandi-Pour et al. (2020), damage localization, e.g., Bani-
Hani et al. (1999); Gharehbaghi et al. (2021) and in structural
control, e.g., (Khalatbarisoltani et al., 2019; Suresh et al., 2010),
among other structural engineering tasks. The literature on NN
(and indeed ML) applications to structural engineering is vast.
Sun et al. (2021) provide a comprehensive review of ML methods
used to predict and asses structural performance and to identify
structural conditions. Some of these can be used in support of
structural design but do not directly deal with structural design
per se, defined in the form presented earlier in this paper. In fact,
issues related to ML and structural design, as defined above, are
not particularly well covered in the literature despite the proven
potential brought about by leveraging AI technologies and ML
algorithms to improve the exploration of design alternatives
beyond current human cognitive levels.

It follows from the previous discussion that existing design
optimization methods concentrate on individual structural
subassemblies and do not serve to automate the design of
entire structures. By contrast, this paper will explore the use of
ML algorithms to automate structural designs stricto sensu. To
this end, this paper proceeds to review a selected number of
studies on the application of ML in structural engineering
design. A discussion of specific challenges and future needs is
presented with emphasis on the much exalted roles of
‘engineering intuition’ and ‘creativity’. Finally, the
conclusion section of the paper compiles the findings and
outlines the challenges and future research directions. But first,

the paper will provide a general introduction to AI and ML
methods.

2 BACKGROUND ON AI AND ML

As mentioned above, central to AI and ML algorithms is the
ability to learn, potentially achieving the super-human ability of
recognising patters in high-dimensional datasets that have
remained impenetrable to the human mind. Figure 2
compares the way traditional and AI software operate. In a
traditional piece of software, the coder writes a
“comprehensive” set of rules that the program must follow.
Therefore, it is the sole responsibility of the programmer to
consider all possible scenarios and to hard-code into the
algorithm all the appropriate responses to these scenarios. It
should be possible, in principle, to arrive to the precise output by
following the path through the code given a specific input. By
contrast, in AI algorithms the rules are created by the algorithm
itself and the coder only provides the scaffold (or architecture)
and feeds data into it. The AI algorithm will analyse the data and
fill this scaffold with its own through training. Once those rules
are established, they can then be used in the traditional way to
predict other outputs given an input. The fact that the coder is
exempt from considering and including all potential scenarios
makes AI particularly useful when dealing with large datasets or
complex processes.

The differences in construction and operation between
traditional and AI software express themselves in a number of
ways. Traditional code is naturally transparent and generally easy
to predict while ML can be obscure and may produce unexpected
results or include biases that are not always easy to detect. On the
other hand, traditional algorithms will be limited to what the
coder has predicted at first, while AI software is in principle easy
to adapt without significant changes in the code. Traditional
software demands the coder to capture carefully and accurately all
the potential scenarios, while AI can handle complex problems

FIGURE 2 | Traditional vs. AI algorithms.
FIGURE 3 | Categories of ML algorithms.
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more efficiently than humans, especially when they involve
multiple dimensions or large datasets.

Broadly speaking, ML algorithms can be categorized in three
main groups: supervised, unsupervised and reinforcement
learning, depicted in Figure 3. Supervised learning is probably
the closest to human learning. A series of “examples” is used by
the ML algorithm to build “knowledge” about a given task in a
similar way to how humans build and use “past experience”
(Dietterich, 1996) like when small children are guided in their
association of words to meanings. To this end, supervised models
are given a set of features as input and labels as output. Then, the
models attempt to find a set of rules to match a given set of
features to the correct label guided by some measure of success.
The process employs statistical methods for the learning
operations and manual adjustments are usually not required.
However, supervised ML relies on large amounts of correctly
labelled input data, in quantities that can be significantly larger
than those required by humans (Kühl et al., 2020).

On the other hand, unsupervised learning can be applied to
different data types. In this approach, labels are not required, just
features. The model is given those features and its algorithm then
groups them according to some unknown property. In general,
unsupervised models try to do one of three things: either cluster
the data provided, find an anomaly in it, or reduce the number of
dimensions in which to express the dataset. Grouping works by
clustering data points that share some features without knowing
what labels or indeed what categories are present. In anomaly
detection or pattern recognition, a defining set of features is found
and the model classifies the data point as either part of the set or
as an anomaly. This is very helpful in failure identification or
structural characterization. Reinforcement learning builds on
these ideas and sometimes uses the algorithms developed for
supervised and unsupervised learning. It is used in situations

where it is difficult to get perfectly correct labels. In such cases, the
algorithm is provided with an input and a reward function that
gives an indication of how well or bad the algorithm is doing. The
algorithm then learns how to maximise the reward.

In general, the creation of a typical AI algorithm involves four
main stages. It starts with the data preparation. This is a crucial
stage that can take longer than the others. It involves the
acquisition of data, its analysis and pre-processing. The quality
and quantity of data are determinant for a good output of the
model. The second stage is the design of the model, which is
followed by the third stage of training and evaluation. It is not
uncommon that at the end of this process, the coder realises that
changes are required in the data or the model architecture, and
the design should be re-adjusted. Once the model is considered
well designed and trained it is ready to enter its final stage of
deployment.

3 AI AND THE DESIGN OF SPATIAL
STRUCTURES

Although shells, vaults and other spatial structures are already
among the most efficient structural forms and have a notoriously
complex structural response, they have been fertile ground for
many structural design optimization explorations. This may be
because shells can be discretised as meshes with known support
locations which, despite requiring hundreds of variables, are
usually single-layered and lend themselves more easily to
parametrization than the reticulated multi-storey frames with
a multitude of potential element locations, sizes and connection
types used in buildings. However, even if a highly parametrized
design space is used, its sheer size still makes it trackless to the
human mind. Therefore, the basic capability of machine learning

FIGURE 4 | Latent space representation of the data points coloured depending on the occupancy of the arches (a measure of the material usage) for the seismic
design scenario. The latent space (A) is presented together with the plot of the mean occupancy of each cluster (B) and sample shapes from the best selected cluster
(C). Adapted from Palmeri et al. (2021) based on the CAE model of Maqdah et al. (2021).
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to discover and rebuild complicated underlying connections
between input and output variables from a relatively big
dataset (Liu et al., 2020) can be of great use while designing
spatial structures.

Mirra and Pugnale (2021) examined AI-generated design
spaces built using Variational Autoencoder (VAE) models, and
compared their outputs with those coming from a human-
generated explicit definition of design variables. Two relatively
simple but realistic cases were explored by Mirra and Pugnale
involving triangular and square footprints. A dataset of 800 depth
maps obtained from 3D models were used to train the VAE.
Three objectives were set for the optimization, including: 1) the
maximisation of the structural performance, quantified in terms
of deformations obtained from Finite Element Analysis (FEA), 2)
the maximisation of the height of the shell openings, and 3) the
minimisation of the difference between the final and target
footprints. They found that the AI-generated outputs had a
greater diversity and responded better to the performance
criteria in comparison with the solutions obtained from
human-defined generative designs. Besides, AI solutions
included structural configurations that would not have been
possible to find within the human-defined design space. This
hints to one of the main advantages of using AI in design: the
possibility of exploring design options beyond those traditionally
developed by human intelligence (Mueller, 2014).

The exploration of diverse design options brought about by AI
was also exploited by Maqdah et al. (2021) and Palmeri et al.
(2021) while studying the provision of structurally-efficient
regolith-based arch forms for extraterrestrial construction.
They built unsupervised machine learning models
(Convolutional Autoencoders, CAE) capable of detecting
patterns and differentiating between arch geometries and their
stress and deformation contours (Figure 4). These models were
then used to search for optimal sectional geometries considering
the effects of extreme thermal changes and seismic action under
low-gravity conditions. Various datasets, each one with over 500
thermal and static FEA analysis and a 60–40% training-validation
split were constructed for this purpose. Although the optimal
configurations found resembled those obtained by more
traditional approaches (McLean et al., 2021), the possibility of
including a diversity of design actions (gravity, thermal, and
seismic) and a substantial number of dimensions that are then
reduced to a smaller latent space where a holistic search process
can be used was featured as a clear contribution of AI. Moreover,
Maqdah et al. (2021) and Palmeri et al. (2021) were able to
elucidate some of the dependencies of the latent space (reduced)
dimensions on geometric and structural parameters which can be
helpful in making informed (partially explainable) searches.
Alongside the CAE, regression models were used to allow the
visualisation of the changes in the arch shape and stress fields
when moving towards a certain direction in the design space.

The works of Zheng et al. (2020) and Fuhrimann et al. (2018)
have explored the use of ML in leveraging the fundamental
relationship between force and form in shells. Zheng et al.
(2020) trained a NN model to predict the relations between
subdivision rules and structural and constructional performance
metrics on the basis of graphic statics results. This surrogate use

of ML models to enable a rapid exploration of design spaces
constitutes one of many important attempts to improve the
machine-human collaboration. Unfortunately, the parameters
employed; notably for constructibility (i.e., number of faces
with areas greater than a given threshold), may seem too
simple proxies to capture the complexities of the
manufacturing and construction challenges. On the other
hand, Fuhrimann et al. (2018) also explored the potential of
combining form-finding with ML in the form of Combinatorial
Equilibrium Modelling and Self Organizing Maps. Central to
these works is the need to grasp a complex space of solutions in
order to both increase its diversity and to make it manageable to
the designer.

The previously mentioned works have highlighted the basic
capability of ML to discover and rebuild complicated underlying
connections between input and output variables and to find
relationships between structural shape and performance. Once
those relationships are established, the corresponding
optimization of the structural configuration is simplified (Liu
et al., 2020). However, to set an optimization process where the
design parameters are chosen automatically by the machine
(algorithm) without human intervention remains difficult. This
is because these parameters must exist in a low-dimensional space
that can be optimized while not sacrificing their representational
capacity. An issue that was also observed while optimizing the
design of materials (Xue et al., 2020).

An alternative approach was followed by Danhaive and
Mueller (2021) who tackled the design of a long span roof
structure. For this purpose, they used variational auto
encoders (VAE) to train low-dimensional (2D) models that
are intuitive to explore by the human engineer. By
conditioning the models on different performance indicators,
the models can adapt their mappings. A new performance-driven
sampling algorithm was proposed to generate databases that are
biased towards design regions with high performing structures.
The structural performance indicators employed in the case study
are only mass dependent and are normalized so they are evenly
distributed on the unit segment. A total of 36 design variables,
mainly topological, were used in the design and dimensioning of
the truss elements using the cross-section optimizer available in
Karamba (Preisinger and Heimrath, 2014). The salient feature of
this approach is that it gives the human designer a greater control
over performance trade-offs standing in the middle between
optimization methods, on the one side, and undirected search
algorithms, on the other.

The support provided by ML algorithms to the design of
spatial structures are not conscripted to structural calculations
but can include the quantification of traditionally less quantifiable
metrics such as aesthetics. For example, Zheng (2019) developed
a NN that could be used to quantitatively evaluate the personal
taste of an architect. By using force diagrams of polyhedral
geometries with unique and distinguishable forms and a clear
data structure and asking the human architect to score the inputs,
a NN was trained to learn their design preferences. The results,
which may seem unsurprising at first sight, put in evidence the
capability of ML to express what may be considered as inexplicit.
In doing so, Zheng demonstrated not only that solutions with
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higher scores can be generated with a higher probability of
satisfying any personal design taste, but what is more
important, that ML can learn relationships that may be
difficult to articulate in human parlance. It should be noted
that, given the natural difficulties human designers face when
asked to score many forms consistently to the same standard. In
these cases, the scores were mapped into a grading scale, from A
to D, which considers the number of times the forms have been
selected. This explains the final selection presented in Figure 5
where a structure with an initial score of 0.729 is chosen on top of
another with a score of 0.864. This is a compromised solution, but
one that massively narrows down the variety of forms from which
the designer has to choose. Thus, the door is open to integrate
both mechanistic and quantifiable metrics with other kinds of
design considerations and to apply this to a diversity of
design tasks.

4 AI APPLIED TO THE DESIGN OF
BUILDING STRUCTURES

The rationalization of the design process of building structures,
within a structural optimization framework, has usually been
separated into three components (Havelia, 2016): 1) topology,
which involves decisions on the number and connectivity of
members, usually done without optimizing the connection itself;
2) shape, which involves decisions related to the location of
elements and the layout of joints; and 3) sizing, which
involves defining member cross sections. More often than not,
these components are treated separately in the scientific
literature, however, they are strongly interrelated and decisions
involving one will greatly affect the others. Usually, the layout
space is reduced by architectural considerations, but it will still
encompass a large number of potential locations that are difficult
to explore without any pre-determining guiding principle.
Besides, early estimates of the building cost are usually based
on weight, however, the majority of the total cost can sometimes
be attributed to fabrication and erection which are not always
directly proportional to weight (Kang and Miranda, 2005) In

addition, material costs depend not only on tonnage, but also on
the type and size of cross sections utilized and erection costs are
also highly contingent on geography and local market conditions
Klanšek and Kravanja (2006). These facts will automatically
render impractical most topology optimization studies carried
out to date.

Some studies have incorporated, albeit in a simplified manner,
the design complexities outlined above. For example, Torii et al.
(2016) developed an optimization algorithm that penalizes the
number of members and joints in the structure in proportion to
the number of connected elements. Unfortunately, this was only
applied to trusses and no consideration was given to the fact that
the connection type is determinant in their cost. Hassett and
Putkey (2002) collected a comprehensive list of cost drivers and
their values for the most common moment-resisting and pinned
connections in the AISC catalogue. And Zhu et al. (2014)
considered constructibility issues in the optimization of frames
and demonstrated that some structures with a less efficient load
path can improve constructibility and lead to overall lower costs.
Zolfagharian and Irizarry (2017) used Principal Component
Analysis, a clustering ML technique, to group constructibility
factors into six major categories. To this end, they assembled a
dataset, via industry interviews, on 79 different constructibility
factors with given scores. As the design space increases
exponentially with the number of structural elements, the
number of structural typologies analysed, their connectivity
and the constructibility considerations, most currently
available optimization methods are rendered impractical for
full-scale real implementation. Other proposals, like that of
Havelia (2016) have used methods based on topology and
sizing optimization within a multi-disciplinary architecture
suitable for 2D steel framed buildings. Again, Havelia’s study
showed that a heavier structure can be more economical than its
lighter counterpart when connection and fabrication costs are
taken into account. One drawback of this study is that
serviceability constraints like maximum deflection or
vibrations are not considered and therefore its applicability to
real designs is hampered. On the other hand, high profile
applications of structural optimization like the Chicago 800

FIGURE 5 | Selection of form-found structures considering user taste by Zheng (2019).
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West Fulton Market or Shezhen’s Financial Center do not aim to
optimize the whole building economy or constructibility but are
concerned with only a small proportion of its load carrying
elements.

One of the first studies that departs from the above mentioned
trend is that of Ranalli (2021) who proposed a new AI-based
optimization module for the design of a flooring system with
varying degrees of composite action. User-defined variables
employed include the depth of the slab, the height of the steel
deck, the properties of concrete, a range of possible cambers, the
option to use shoring during construction, the degree of
composite action, and the range of wide flange sections. The
optimization framework iterates through each beam and girder,
automatically determines its static scheme, computes the
governing moment and deflection demands under the applied
loads, and efficiently iterates through the set of available design
options to find the most economical and feasible solution.
Serviceability limits are considered and material and labour
rates are assigned to arrive to an optimal solution through a
scenario exploration. However, the gravity resisting columns are
not considered, nor are issues related to their continuity and the
rotational restraint (or flexibility) they provide to the floor.
Nevertheless, the main strengths of Ranalli’s AI-driven
optimization framework are its computational scalability and
its readiness of applicability to new steel frame designs with
minimal pre-processing efforts.

Another interesting work was performed by Chang and Cheng
(2020) who re-formulate building frames as graphs (Figure 6)and
use Graph NN (or GNN) trained on simulation results that can
learn to suggest optimal beam and column cross-sections. This is
one of the first attempts to use GNN in the realm of design
optimization aided by differentiable approximators. The
optimization objective employed by Chang and Cheng (2020)
is simplistic, involving only mass minimization, but a variety of
constraints is considered together with serviceability limits to
produce optimal designs. The results are reported to be consistent
with typical engineering designs and also comparable to outputs
from Genetic Algorithm optimizations. The main limitations of
this work are related to the absence of slab continuity effects and
the treatment of the building skeleton as an input. However, the
possibility of implementing a graph representation and
generation algorithm in the initial phases of design to provide

an end-do-end solution generating tool is worth exploring
further.

Similarly, Ampanavos et al. (2021) developed a ML system for
the automatic generation of building layouts aimed at helping
architects present structurally feasible solutions during the early
stages of the project. A peculiarity of the system is that it does not
aim to estimate the full structure to start with, but uses an iterative
approach where the neural network gradually extends the
solution as necessary. In this way, the NN has better changes
of identifying patterns on a small building area at each step.
However, this approach is also prone to error accumulation for
large structures, although this error is dependent on the size of the
training dataset. Besides, the column positioning can be noisy.
However, future combinations of this approach with element
sizing tools andmore sound structural considerations are likely to
produce a scalable and helpful methodology.

In his thesis, Ranalli (2021), mentioned above, also considered
the problem of sizing lateral load resisting systems against strong
loads typical of earthquakes. The author treated this problem in
two iterative phases, the first of which searches for the most
economical solution that meets strength, constructibility and
ductility criteria. The second phase checks for lateral drift
compliance and design load combinations. An energy based
analysis is performed in case particular floors need to be adapted
to comply with the drift limits. The strength of this study is that
is able to combine commonly used analysis tools and relatively
justified cost functions to provide a whole-encompassing
approach to building design. It is also worth noting that a
high variance of cost across different design scenarios was
observed highlighting the important role of even small
changes in the variables on the overall building cost.

The above mentioned studies are mainly devoted to steel
framed solutions, where the domain is discrete since only a
certain number of steel sections are available. This may
simplify and reduce the design space and facilitate the
consideration of constructibility functions. By contrast,
designing concrete structures may introduce additional
complications since a relatively broader design space is to be
considered with added variations in member detailing. These
issues were approached by Pizarro and Massone (2021) who
aimed at supporting the design of reinforced concrete buildings
by keeping track of previously accepted design solutions, in

FIGURE 6 | An example building structure and its structural graph representation suitable for analysis by GNN, from Chang and Cheng (2020).
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contrast with other topology optimization methods based on
more heuristic approaches like those proposed by Zhang and
Mueller (2017), which do not have this feature.

Pizarro and Massone (2021) proposed a predictive model for
the length and thickness of reinforced concrete building walls
based on Deep NN trained with 165 Chilean residential projects.
The walls were described in both geometrical and topological
domains and three variations of the data, achieved by modifying
the building plan angle and its scale, were considered. Highly
accurate predictions of wall thickness and length were obtained
and the authors recommend the method to provide the engineer
with a preliminary but reliable wall plan. Although not holistic in
its scope, this work stresses the potential of ML-based tools to
enhance the engineer-architect interaction via the machine.
Besides, although important in number, the database of 165
building designs employed puts in evidence the small-data
nature of most structural engineering problems. In addition,
the regressive model proposed by Pizarro and Massone (2021)
does not incorporate contextual information and can lead to poor
estimations of wall translation.

In a companion paper, Pizarro et al. (2021) improve upon
their previous work and present Convolutional NN models
that take the architectural data as input and can output the
final engineering floor plan. To this end, two regressive
models are used to predict the thickness, length, and
translations of the wall. A second prediction of plan is
obtained by using a model that generates a likely image of
each wall. Both independently predicted plans are combined
to lead to the final engineering design as shown in Figure 7.
This methodology was proven to be a feasible option to
accelerate decisions regarding the building layout and can
be adapted to incorporate estimations of building drift
demands or force distributions.

Along the same vein as the above-mentioned studies, the work
of Liao et al. (2021) uses generative adversarial networks (GAN),
that have been previously used to generate building floor plans
(Chaillou, 2020), to perform structural designs of shear wall
residential buildings. To this end, the authors use a semantic
process to extract essential architectural and structural features
from technical drawings of around 250 pairs of architectural-

structural human designs. The outputs of the GAN model are
evaluated in two case studies where their safety and economy are
compared against designs carried out by competent human
engineers. It is concluded that GAN-generated designs can
improve significantly the speed at which new designs are
generated without compromising the quality of building
structures. Similarly, Lou et al. (2021) optimized the shear wall
layout of high-rise buildings through a tabu search algorithm.
Support vector machines (SVM) were used to construct surrogate
models and speed-up the analysis time. Their objective was to
minimize the structural weight with constraints on the period
ratio and story drift. Through a series of case studies, the authors
showed that the proposed approach works well. In this case,
however, a meta-heuristic algorithm was used for the
optimization part and the ML model was employed only to
reduce the computational cost due to repetitive structural
analyses.

5 THE GRAILS OF CREATIVITY AND
INTUITION

Modelling human intelligence on the perceived way we process
and understand information has lead to remarkable tools that can
augment the engineers’ design skills, allowing them to operate
over large datasets and make ever more accurate predictions of
response and performance. However, understanding and
reasoning are not the only, or even the most frequent, ways
engineers use to solve problems (Graziano and Leone, 2019).
Intuition, understood as “a form of recognition” (Simon, 1995),
or the ability to understand something almost instinctively
without concious reasoning, plays an important role in
engineering decisions. In fact, engineers, who may prefer to
call it judgement, use intuition even when developing
computer models such as when framing the design question
the model is set to answer or deciding what to include and what to
leave out of that question. Appeals to recognize the importance of
intuition in engineering design have grown almost in parallel with
the proliferation of computational tools in engineering (Young,
2018).

FIGURE 7 | Predicted plan obtained by Pizarro et al. (2021).
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Recent pioneering research has started to look at ways to
integrate intuition into AI and ML with encouraging results in
areas as diverse as chemical engineering (Duros et al., 2019),
automated planning (Kim et al., 2017), and mathematics (Davies
et al., 2021). In all these cases, the authors propose schemes for
the incorporation of a human experimenter as part of the
solution-generation process. For example, Davies et al. (2021)
approach is akin to a “test bed for intuition”whereML algorithms
guide the experimenter by: 1) verifying the existence of a
hypothesized mathematical pattern using supervised ML; and
2) if the pattern exists, by helping in understanding it using
Attribution Techniques. Likewise, Duros et al. (2019) propose the
integration of human and machine in the selection of potential
chemical experiments within a single decision-making loop. In all
these cases, by making human and machine work together, a
significantly higher performance is achieved than either of them
could achieve individually.

In the structural engineering field, a relatively similar
approach has been attempted by Danhaive and Mueller
(2021). In their work, briefly described in the previous section,
Danhaive andMueller allow the design engineer access to a family
of 2D latent spaces that can be adapted by changing the user-
defined performance condition. This feature encourages
designers to investigate different trade-offs between
performance and other design features and opens the door for
a more integrated machine-designer collaboration that does not
aim to replace intuition with deterministic and quantitative
rules but instead to incorporate it within the design process.
However, to make the latent space intuitive and apt for human
exploration, Danhaive and Mueller have to limit it to two
dimensions. This highlights a defining feature of human
intuition: that it emerges from the natural inability of the
human mind to process scenarios with multiple variables
(Halford et al., 2005). It is when faced with high
uncertainties and multiple unknowns that the engineer
resorts to intuition to be able to define a direction of
exploration without getting boggled by the details. One
would expect that the growing ability of AI to identify
complex patterns in high-dimensional spaces will supersede
the advantages of rules of thumb and educated guesses in
determining high level features of the design process. Until
then, the integration of human and machine intelligence offers a
promising alternative. In addition, intuition’s deciding role
during the initial design stages fades down as the design is
gradually informed by mechanics and structural analyses.
Nevertheless, intuition remains as one of the last strongholds
of traditional structural engineering practice as it adapts and
responds to the challenges of digitalization. The other being
creativity.

Creativity is usually defined as the generation of novel and
useful ideas (Jung et al., 2013). This immediately invokes the
existence of a judge, a person to whom the idea, or in our case the
design, would appear novel or useful. It is perhaps this subjective
strength of the term the reason for its recent prominence in the
discussions around the training of the next generation of
structural engineers (Ibell, 2015) where it is usually pitted
against the more quantifiable (and declining) numerical skills.

However, this subjectivity is not amorphous or ethereal since
creativity does not emerge in the vacuum but is rather tied to
socially contextualized phenomena (Kaufman and Sternberg,
2010). As such it will appear that creativity can be taught and
learnt, if by humans also by machines. In this regard, the
examples presented in previous sections have highlighted the
possibility of incorporating measures of taste in ML tools and
algorithms have been shown to enhance the diversity of the
solutions found. In this context, it has been argued that
novelty constitutes a critical issue to address with
computational approaches, e.g., (Amabile, 2020). This is due
to the fact that training of ML models usually relies on
minimizing a loss expectation function and therefore the
model is encouraged to perform well in the most common
elements of already established knowledge.

A number of approaches could be taken to improve the
“creativity” of ML algorithms (Boden, 1998), namely: 1) by
producing novel designs from the combination of familiar
solutions, 2) by discovering new paths in conceptual spaces,
and 3) by disrupting the design space with solutions that were
not previously considered. Consequently, it would seem that
there are yet many routes to encourage artificial creativity.
These aspects are in fact being developed within (and are
probably more suited to) reinforcement learning approaches.
Similarly, efforts to incorporate heuristic thinking into AI have
been trialled in other branches of design (Nanda and Koder,
2010) and it may be beneficial to explore those in structural
engineering also. At the end of the day, heuristics (intuition) is
already routinely used by engineers to reduce the search space
of potentially feasible designs, e.g., (Maqdah et al., 2021;
Palmeri et al., 2021; Danhaive and Mueller, 2021). A
perceived hurdle, however, comes form the fact that much
of the progress of ML and AI has come from the formalization
of mathematical and logical approaches aiming at well defined
problems with clear goals. To answer this, may be the
distinction between: 1) algorithms that search the entire
decision space, and 2) those that perform bounded searches
to provide satisfactory solutions (Simon, 2019) can be helpful
here. Ultimately, much to the regret of the new breed of
curriculum transformation proposers, computer programs
constitute a body of empirical phenomena to which the
student of design can address himself and which he can
seek to understand. There is no question, since these
programs exist, of the design process hiding behind the
cloak of “judgment” or “experience” (Simon, 2019). To
which we may add:“ or creativity”.

None of the above mentioned explorations to embed artificial
intuition or to enhance artificial creativity in machine
intelligence has yet been fully explored in structural
engineering design. This constitutes an area of great research
potential. Since much of the ML research has been based on
mimicking the theories of human cognition it is entirely possible
that the restrictions of human creativity and intuition are in turn
limiting machine intelligence. This calls for a re-evaluation of
the human-machine creative partnership. New investigations
that take at face value the human-machine duo, like it has been
done in other creative industries (Nika and Bresson, 2021), are
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likely to benefit the realm of structural design with fresh and
surprising views. So it seems that in the short term we may be
seeing more design cooperation between human and machine
where the role of ML, however, is not circumscribed to repetitive
tasks but can assist in the creative work itself.

6 CONCLUSION

It has been suggested (Gero, 1994) that there are three views that
can be taken about artificial intelligence in design: 1) AI as a
framework in which to explore ideas about design; 2) AI as
provider of a schema to model human design; and 3) AI as a
means to allow the development of tools for human designers.
This review paper has concerned itself with a strong version of the
third view, by highlighting the path not only towards the
development and proliferation of ML tools but also towards
the automation of entire parts of the design process. In fact, a
multitude of ML tools have been proposed aimed at different
individual tasks along the design chain (like predicting the
strength or condition of a given element, or the optimization
of a section or connection). Design, however, is more complex
than any of these individual tasks andMLmethods aimed at it are
more scarce.

It has been shown that ML tools have now started to appear
that allow engineers to access complex multi-dimensional spaces
beyond the ability of human intelligence alone. It was argued that
the defining characteristic of ML to identify complex patterns and
use those to predict or propose new engineering design solutions
will form the basis for the automatization of increasingly large
portions of the design endeavour. Importantly, these ML-enabled
explorations can include not only hard mechanistic constraints
but also metrics of taste and intuition. Indeed, although currently
still producing timid results, the learning capacity of ML
algorithms can be used to incorporate aesthetic and creative
criteria that is sometimes difficult to articulate but which
nevertheless the machine can learn. In addition, this learning
can feed not only from engineering precedents at large but from
the “best” precedents we currently have.

Another advantage of ML algorithms applied to design is
found in the increased diversity of outputs produced. ML
algorithms have been shown to increase the design diversity
by recombining the features that characterise individual
designs producing solutions beyond those which would
have been imagined by human engineers. This
recombination is usually neglected in engineering designs
due to the large demands of data and time associated with

it. However, with the use of data augmentation tools and
computer simulation, it is expected that this hurdle will be
solved sooner rather than later.

Nonetheless, the data requirements of ML algorithms will
continue to be a limiting factor, particularly in the structural
engineering field. If the ML-enabled design automation is to be
attained, larger datasets of real-world designs should be made
freely available. Most of the ML algorithms reviewed herein have
used training datasets in the order of the hundreds. This is “small
data” science and requires specific data augmentation techniques
that the focus on “big data” is currently concealing. Data
acquisition and curation is indeed the single most important
step in the development of ML models. Robust, complete and
reliable data sources should be produced and shared. Echoing
current public demands in the sustainability and industrial
ecology quarters of the design enterprise (in terms of
environmental impact, LCA, etc.) (D’Amico et al., 2019) the
field of structural ML design also needs all its stakeholders to
contribute their design databases. Only then, truly optimal and
“out of the box” ML-enabled design solutions can be realistically
proposed paving the way towards more resilient, economical and
sustainable new structures.

All in all, we should continue to guard against the well
known dangers lurking around ML implementation. To this
end, issues of interpretability and overfitting should continue
to be raised and efforts made to increase model explainability
(by conducting and reporting sensitivity tests and marginal
effects studies for example), increase data sources, improve
noise filtering processes and carefully select the ML models (to
reduce overfitting) should carry on. Finally, it has been said
that ML tremendous success so far has been achieved by
showing that some cognitive processes thought to be
complex and difficult are, in fact, not so. This, taken
together with the acceptance that routine design is broadly
defined as that activity that occurs when all the necessary
knowledge is available (Gero, 1994); should prepare us well to
be less surprised when the next generation of ML tools hits the
structural design enterprise with the automation of large
portions of the design process. Hence the question of how
long until, not if, the human engineer is superseded in
structural design.
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