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An understanding of indoor environmental quality (IEQ) and its effects on occupant well-
being can inform building system design and operation. The use of wearables in field
studies to collect subjective and objective health performance indicators (HPIs) from a
large number of occupants could deliver important improvements in IEQ. To facilitate the
use of wearables in IEQ studies, there is a need to identify which HPIs should be
collected and to evaluate data accessibility from these devices. To address this issue, a
literature review of previous IEQ studies was conducted to identify relationships
between different IEQ factors and HPIs, with a focus on HPIs that were collected
using wearables. A preliminary assessment of data accessibility from a selected
wearable device (Fitbit Versa 2) was performed and documented. The review
suggested the need to further investigate and collect sleep quality parameters, heart
rate, stress response, as well as subjective ratings of comfort using wearables. The data
accessibility assessment revealed issues related to missing data points and data
resolution from the examined device. A set of recommendations is outlined to inform
future studies.
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1 INTRODUCTION

The original energy crisis of the 1970s stimulated five decades of a nearly continuous focus on
improving the energy efficiency of buildings. The systems used to provide heating, air conditioning,
ventilation, and illumination in buildings continue to be radically transformed by this focus, along
with other energy users such as appliances, water heaters, refrigeration units, computers, and other
office equipment. Whereas early implementations of energy-efficient building technologies focused
on achieving energy savings while maintaining some simplistic measures of performance (e.g.,
illuminance, temperature, humidity), today’s evaluations of building performance strive to account
for a more holistic set of occupant experiences.

These occupant experiences are often expressed in terms of indoor environmental quality
(IEQ). As embodied in the US Green Building Council’s Leadership in Energy and Environmental
Design (LEED) Rating System, IEQ includes considerations of indoor air quality, thermal comfort,
acoustic performance, quality interior lighting (glare control, color rendering, dimming), daylight
exposure, and quality views to the outdoors (USGBC, 2021). Beyond energy savings, the
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justification for addressing these other attributes includes
protecting occupant health; promoting occupant productivity,
comfort, and well-being; reinforcing circadian rhythms;
enhancing a connection to nature; and facilitating
communications.

An understanding of IEQ and its effects on occupant well-
being can inform building system design and operation
(Bluyssen, 2013). Physical measurements of environmental
attributes such as illuminance and sound levels are
sometimes used to infer potential effects on occupants, but
these inferences typically rely on general relationships between
the IEQ measures and the occupant response. These responses
can vary by building and occupant type (e.g., workers in an
office may have a different response than nurses at a hospital).
In field studies, subjective measures such as perceived comfort
and satisfaction can be collected, but access to employees and
budget constraints usually limit the ability to collect objective
well-being indicators such as heart rate and activity level from
occupants; these measures combined with subjective responses
provide a more complete view of occupant responses to the
environment.

Methods and tools that can be utilized in the field to collect
both subjective and objective well-being data from many
occupants have the potential to improve our understanding
of the relationships between IEQ and occupant responses, and
ultimately to ensure that energy-efficient building technologies
achieve significant savings while supporting occupant needs.
Recent studies have begun exploring the use of non-invasive
wearable devices, such as smartwatches, for administering micro
ecological momentary assessments (μEMAs) (Intille et al., 2016;
Jayathissa et al., 2019, 2020a). These devices can also gather
objective data on measures such as sleep quality, physical
activity, and heart rate; collectively referred to herein as
health performance indicators (HPIs) (Allen et al., 2015).
While the possibility of more easily collecting these HPIs
while occupants are engaged in normal activities holds great
promise, it also raises new challenges related to knowing which
HPIs to collect, understanding precedents for measuring HPIs
using wearables, and ensuring data accessibility from wearable
devices.

This article aims to answer two questions: 1) which HPIs
should be collected using wearables? 2) how accessible is the data?
While there are several types of wearable devices that can be worn
on the wrist, chest, as a headset, or as a clip-on sensor (Piwek
et al., 2016; Taub et al., 2016), in this article the focus is on wrist or
chest-mounted devices that can be worn by occupants while
performing daily tasks in a field setting. In Section 2,
relationships between IEQ factors and HPIs were summarized
with a focus on identifying HPIs that can be collected using
wearables. Second, data accessibility from a market-available
wearable device (Fitbit Versa 2) is documented. Lastly,
recommendations for data collection and data accessibility
verification are described. The goal is to facilitate the use of
wearables in future IEQ field studies where data can be collected
from a large number of participants for extended durations. This
can further our understanding of dose-response relationships and
interactions between IEQ factors.

2 REVIEW OF PREVIOUS STUDIES THAT
EXAMINED EFFECTS OF IEQ ON
WELL-BEING
Well-being is a broad construct that includes physiological,
psychological, and cognitive HPIs such as stress, sleep quality,
comfort and satisfaction, mood, and cognitive performance. The
relationships between these HPIs and IEQ factors were examined
in previous studies (Veitch et al., 2008; Allen et al., 2016;
Colenberg et al., 2020) using different approaches. Some of the
studies used occupant questionnaires, with or without IEQ
measurements (Altomonte and Schiavon, 2013; Allen et al.,
2015), while others also included objectively-measured HPIs
such as heart rate variability, cortisol levels, and sleep duration
(Thayer et al., 2010; Boubekri et al., 2020).

Wearable devices can be used to collect localized IEQ
measurements as well as subjective and objective HPIs that
traditionally have been limited to laboratory settings or a
small number of participants. Some examples include
measuring illuminance at the eye, CO2 in the inhalation zone
(Coulby et al., 2020; Salamone et al., 2021), EMAs, and
electrodermal activity (Jayathissa et al., 2020a; Zhang et al.,
2020). However, to effectively utilize wearables in IEQ studies,
there is a need to identify IEQ factors and HPIs that need to be
collected (Altomonte et al., 2020), explore the role of wearables
for collecting these data, and discuss considerations for data
collection. These issues are summarized and discussed through
a literature review of previous relevant studies. Given that the
focus was on the role of wearables, the review outlined in this
section is not exhaustive and does not discuss all possible
relationships between IEQ factors and HPIs.

2.1 Identifying Health Performance
Indicators That Were Collected Using
Wearables
2.1.1 Comfort Ratings
Previous studies examined occupants’ comfort and satisfaction to
determine comfortable and acceptable levels of different IEQ
factors. A detailed questionnaire was often used at a single or few
points in time to elicit responses evaluating satisfaction with
various environmental factors (Choi et al., 2012a; Heinzerling
et al., 2013; Elzeyadi et al., 2017; Park et al., 2019). While many
IEQ factors can affect occupant’s comfort, a recent analysis of a
large database revealed that satisfaction levels were lowest for
sound privacy, noise level, and temperature (Graham et al., 2021).
While detailed questionnaires can be helpful for general
evaluations and for identifying sources of discomfort, they are
unlikely to capture temporal variations in comfort and
satisfaction as a result of changing IEQ.

To track such variations, EMAs on smartphones or wearables
can be used (Wei et al., 2014; Konis and Annavaram, 2017; de
Vries et al., 2021; Peeters et al., 2021). μEMAs can provide higher
granularity, response rate, and are perceived to be less distracting
compared to online questionnaires or EMAs administered on
smart-phones (Intille et al., 2016; de Vries et al., 2021). Jayathissa
et al. (2020b) demonstrated potential for using μEMAs on a Fitbit
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smartwatch to record thermal, lighting, and acoustical
preferences (5–15 prompts per day). These preferences can be
used to identify occupant and space profiles and make comfort
predictions that could potentially be used to control building
systems.

2.1.2 Sick Building Syndrome Symptoms
Sick building syndrome (SBS) symptoms describe building-
related symptoms experienced by building occupants that are
relieved or go away after leaving the building. These symptoms
can be influenced by environmental and personal factors and can
be classified as (1) upper respiratory and mucosal symptoms such
as dry or itchy eyes; (2) lower respiratory irritation like cough; (3)
neurophysiological symptoms such as headache and mental
fatigue; and (4) skin irritation symptoms like itching or
reddening (Apte et al., 2000; Bluyssen et al., 2016; Sakellaris
et al., 2020). Several studies associated air quality factors such as
CO2, NO2, nicotine, particulate matter (PM), volatile organic
compounds (VOCs), and microbial contamination with SBS
symptoms (Erdmann et al., 2002; Menzies et al., 2003;
Mitchell et al., 2007; Colton et al., 2014; Azuma et al., 2018).
Additionally, air temperature and relative humidity were also
linked to SBS symptoms (Arundel et al., 1986; Fang et al., 2004;
Seppänen and Fisk, 2006; Wolkoff, 2017). To the authors’
knowledge, previous studies have not used μEMAs to check
SBS symptoms. This is expected because participants typically
report the frequency of experiencing symptoms over the past
month using detailed questionnaires (Apte et al., 2000).

2.1.3 Sleepiness
In addition to ratings of comfort and satisfaction, variations in
sleepiness can be captured using EMAs. Generally, lighting has
been shown to decrease subjective sleepiness, but this response
may vary by time of the day (Vetter et al., 2021). One of the
studies that had a different conclusion was a 3-weeks study where
higher illuminance at the eye led to negative effects on sleepiness
in the spring and no effects in the winter (Peeters et al., 2021).
This study evaluated sleepiness using the Karolinska Sleepiness
Scale (Åkerstedt and Gillberg, 1990) that was completed eight
times a day using EMAs on mobile phones. This highlights the
importance of capturing temporal and seasonal variations in
sleepiness. In addition to lighting, high noise levels can affect
self-reported tiredness (self-reported number of yawns in the last
10 min) and motivation, compared to low noise (Jahncke et al.,
2011).

2.1.4 Sleep Quality
Previous field studies utilized wearables that track activity
(actigraphs) to track sleep in relation to variations in light
intensity and spectral power distribution (de la Iglesia et al.,
2015; Wams et al., 2017; Cain et al., 2020; Peeters et al., 2020). For
example, a study by Boubekri et al. (2020) used a wrist-worn
device to track sleep duration over a week and found a significant
increase of 37 min in sleep duration associated with working in an
office that had optimized daylight and views, compared to roller
shades. Sleep quality parameters such as duration of deep sleep,
number of awakenings, sleep efficiency, and sleep onset

latency—all assessed using actigraphy—can be negatively
affected by other IEQ factors such as CO2 levels (Akimoto
et al., 2021) and air temperature (Pan et al., 2012; Caddick
et al., 2018).

2.1.5 Stress Response
The stress response can be elicited by several IEQ factors. Thayer
et al. (2010) examined two aspects of physiological stress,
circadian variations in heart rate variability and morning rise
in cortisol, for a group of 60 participants working in a traditional
or a modern office building. They found that physical features of
the work environment such as lighting, views, acoustics, and air
quality may affect both physiological stress indicators. In another
study, Razjouyan et al. (2020) used a chest-worn sensor to
examine the effects of relative humidity in offices on the stress
response. They found significant effects of relative humidity on
heart rate variability indices while occupants were in the office.
Participants that spent the majority of their work time with
relative humidity between 30 and 60% experienced 25% less
stress, compared to those that spent the majority of their time
in relative humidity levels under 30%. The chest-worn sensor also
estimated sleep quality, with the authors finding a significant
indirect effect of relative humidity on sleep quality, mediated by
the stress response.

Other studies have shown that noise levels can affect the stress
response. Physiological stress (indicated by skin conductance
levels) and respiratory rate increased at higher noise levels,
moderated by working experience (Shafiee Motlagh et al.,
2018). Furthermore, cognitive stress self-reported using the
cognitive stress scale was lower in open offices in a condition
with enhanced sound absorption (Seddigh et al., 2015; Colenberg
et al., 2020). Other factors such as workstation type and outdoor
view type were also found to affect stress response (Kaplan, 1995;
Bjørnstad et al., 2015; Lindberg et al., 2018).

2.1.6 Cognitive Performance
Increased CO2 levels can have negative physiological and cognitive
effects (Azuma et al., 2018). Compared to 600 ppm, Satish et al.
(2012) showed that the mean score of nine decision-making tasks
dropped 12 and 51% under CO2 levels of 1,000 and 2,500 ppm,
respectively. These results are consistent with another study that
found VOCs and CO2 to be independently associated with
cognitive scores (Allen et al., 2016). The mechanism by which
CO2 and VOCs affect cognitive performance remains unclear.

Lighting and access to views can affect cognitive performance.
A previous study reported 26–62% higher cognitive function
scores across the nine domains of the strategic management
simulation test in an office with electrochromic glazing
compared to roller blinds (Boubekri et al., 2020). These results
are consistent with the results of another study that found
improvements in working memory and inhibition in setting
with electrochromic glazing or mesh shades, compared to
blackout shades (Jamrozik et al., 2019). Using electric lighting
only, Ru et al. (2019) found significant improvements in reaction
speed at1000 lux compared to 100 lux at the eye.

It is important to note that most previous studies assessed
cognitive performance using computer-based tasks. Some studies,
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outside the IEQ research domain, explored administering
cognitive tests using wrist-mounted devices, smartphones, and
tablets to overcome challenges related to administering cognitive
tests in field studies and to allow for more frequent assessments of
cognitive performance (Matsangas et al., 2017; Moore et al., 2017;
Arsintescu et al., 2019; Koo and Vizer, 2019; Laurent et al., 2021).
Currently, the use of wearables for cognitive tests limits the types
of cognitive tests that can be administered, but this may change as
more cognitive tests are developed for wearables.

2.1.7 Summary
Table 1 summarizes the studied relationships between IEQ factors
and HPIs. This table does not show all possible relationships and
does not suggest that a causation relationship was demonstrated,

but it highlights objective HPIs that were collected using wrist or
chest-mounted devices, as well as subjective HPIs that were
assessed using EMAs from wearables or smartphones. Based on
this table and the reviewed studies in Section 2.1.1 through Section
2.1.6, a few key points can be noted:

• Wearables were used in previous IEQ studies to collect
several HPIs including sleep quality, heart rate, heart rate
variability, and subjective responses.

• In several cases, the same HPI is affected by multiple IEQ
factors. For example, sleep quality can be affected by
lighting, CO2, noise level, and air temperature. This
suggests that studies aiming to examine the effects of
lighting on sleep quality should consider potential

TABLE 1 | A summary of subjective and objective HPIs that were collected in at least one IEQ study using wearables. HPIs collected using smartphones are included for
reference.

HPIs IEQ factors References Wearable devices used
in corresponding studies,

respectively

Self-reported
thermal comfort

Air temperature and
relative humidity

Sanguinetti et al. (2016)a; Konis and Annavaram, (2017)a; Li
et al. (2017)a; Jayathissa et al. (2020a)b; Kallio et al. (2020)a

Fitbit Versa

Self-reported visual
comfort

Illuminance,
distribution, and
spectrum

Wei et al. (2014)a; Jayathissa et al. (2020b)b Fitbit Versa

Sleepiness/
alertness

Illuminance,
distribution, and
spectrum

Zhang et al. (2020)a; Peeters et al. (2021)a -

Air temperature Tham and Willem (2010) -

Heart rate Air temperature Choi et al. (2012b)c Sensor by Vernier (model HER-BTA)
CO2 MacNaughton et al. (2016)b; Azuma et al. (2018); Fisk

(2019)
Basis B1 watch

Sleep quality Air temperature Pan et al. (2012); Caddick et al. (2018); -
Illuminance,
distribution, and
spectrum

van Bommel (2006); Boubekri et al. (2014)b; Boubekri et al.
(2020)b; Caddick et al. (2018); Cain et al. (2020)b

Actiwatch-L Minimitter, ActiGraph wgt3x, Actiwatch
Spectrum Plus/2/L

Sound type and level Caddick et al. (2018) -
CO2 Akimoto et al. (2021)b; Caddick et al. (2018) Various actigraphs were used in studies reviewed by

Akimoto et al. like Fitbit Charge 2, Sensewear Armband, and
Fitbit Alta 2

Stress response Illuminance,
distribution, and
spectrum

Zhang et al. (2020)b Empatica E4

Air temperature Pigliautile et al. (2020)c BioHarness 3.0
Relative humidity Razjouyan et al. (2020)c EcgMove 3
Sound type and level Jahncke et al. (2011); Medvedev et al. (2015)c; Aletta et al.

(2018)
NeXus 10 device

Cognitive
performance

Air temperature Boubekri et al. (2020) -
Illuminance,
distribution, and
spectrum

van Bommel (2005); Jamrozik et al. (2019); Ru et al. (2019);
Boubekri et al. (2020)

-

Sound type and level Kjellberg and Landström (1994); Smith-Jackson and Klein
(2009); Jahncke et al. (2011)

-

CO2 Satish et al. (2012); Allen et al. (2016); Du et al. (2020) -
VOCs Allen et al. (2016) -
PM2.5 Laurent et al. (2021)a -

aDenotes studies that used smartphones.
bDenotes studies that used a wrist-worn device (e.g., a smartwatch) to collect HPI.
cDenotes studies that used a chest-worn device to collect HPI.
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impacts of other IEQ factors as well as possible interaction
effects between the IEQ factors.

• There is a need for a more holistic research model that
addresses other factors, interactions, and combined effects
(Bluyssen, 2020). Other stressors that need to be addressed
include psychological, work-related factors, social stressors,
and personal characteristics (Bluyssen et al., 2011).

• Because of the complexity in the relationships, it is
important to explore how data from wearables can
augment existing data collection tools, e.g., online
questionnaires, to provide a comprehensive
understanding of IEQ-HPI relationships.

• Lastly, most studies did not discuss the process and criteria
used for the selection of wearable devices. This information
is needed to help researchers select suitable devices and
effectively utilize them.

2.2 Data Collection Considerations
2.2.1 Localized IEQ Measurements
The spatial and temporal sampling resolution needed for IEQ
measurements will vary based on the research questions and
objectives. As discussed by Parkinson et al. (2019), spatio-
temporal sampling is limited by the logistical challenges of
characterizing different IEQ parameters with significant
variability in time and space scales. Physical features of the
space or activities of the occupants may also limit the
sampling resolution of IEQ measurements as it is important to
avoid any distraction or hindrance to participants. Previous
studies measured IEQ data at different spatial resolutions
ranging from localized measurements from wearables to point-
in-time measurements using a handheld device or IEQ carts
(Heinzerling et al., 2013).

Wearable devices offer the highest spatial resolution,
continuously monitoring IEQ conditions experienced by
individual participants as they move throughout multiple rooms
or buildings (Figueiro et al., 2019; Boubekri et al., 2020; Cain et al.,
2020; Peeters et al., 2020). The use of wearable devices to sense IEQ
conditions provides advantages over fixed sensing stations in
spaces with high spatial and/or temporal variability (Adamsson
et al., 2019; Clements et al., 2019). Personal light exposure is one of
the most common IEQ parameters collected via wearables, but it is
also possible to measure and track temperature, relative humidity,
CO2, and sound level. One study showed that thermal comfort
sensors could be placed into a small enclosure and worn on the
wrist; those sensors could then control an air conditioning system
based on localized comfort estimates (Feldmeier and Paradiso,
2010). Ghahramani et al. (2018) utilized a wearable sensor worn on
the chest to measure sound pressure level, CO2, illuminance, air
temperature, relative humidity, and pressure. A large-scale study
used soundmeasurements from a smart watch to examine personal
sound exposures (Smith et al., 2020). Salamone et al. (2021)
provided a comprehensive review of previous studies that used
wearables for IEQ sensing.

Localized IEQ measurements using wearables can be directly
related to other occupant-level data such as HPIs but may not be
representative of ambient space-level conditions. For studies
where participants spend the majority of their time in one

location, like offices, a fixed monitoring station at each desk
allows IEQ measurements to be captured and related to each
participant (MacNaughton et al., 2016; Jamrozik et al., 2018;
Clements et al., 2019). For environments where desktop
monitoring stations are not feasible, a coarser approach is to
use sensor stations on a mobile cart. These stations are often
placed in the center of the room, capturing IEQ measurements
overtime, or moved between workstations to capture point-in-
time measurements of conditions participants may be
experiencing (Chiang et al., 2001; Castaldo et al., 2018; Choi
and Lee, 2018; Jin et al., 2018).

2.2.2 Other Data Types Needed for a Holistic
Evaluation
In addition to measuring IEQ factors and HPIs, previous studies
suggested other data types that need to be collected for more
holistic investigations (Figure 1). Personal and work-related
factors can directly affect or mediate effects of IEQ on
occupant well-being (Veitch, 2001; Boyce, 2003; Bluyssen
et al., 2011; Bluyssen, 2020). The model proposed by Bluyssen
et al. (2011) considered both physical and psychosocial stressors
and their effects on well-being. Many personal factors can be
considered including age, gender, ethnicity, life events, body mass
index, consumption of stimulants, smoking, use of medications
(allergy, anxiety, melatonin, sleep), chronotype, sleep
disturbances, and responsibilities outside of work. Work-
related factors include workload, job type, satisfaction with
work, perceived productivity, workstation type, and level of
education (Bluyssen et al., 2011). These factors can be used in
the inclusion or exclusion process and can aid in data analysis to
account for potential confounding effects. For example, Boubekri
et al. (2020) collected information on the medical status of
potential participants and excluded those that had sleep apnea,
chronic depression, and other health issues that may affect sleep.

In studies where the goal is to examine relationships between
building system characteristics and occupant well-being, it is
important to document general building attributes and system
characteristics. Building system characteristics can be
documented using existing checklists, such as the modified
checklist from the Health Optimisation Protocol for Energy-
efficient Buildings (HOPE) study (Cox, 2005; Bluyssen et al.,
2016) and the Technical Attributes of Building Systems (TABS)
survey (Aziz et al., 2010).

2.2.3 Privacy Concerns Related to Wearables
The use of wearable devices in a research study can raise privacy
concerns that may affect recruitment and collected responses.
Hence, it is important to develop a strategy to address privacy
during early stages of research planning. Safavi and Shukur (2014)
proposed a conceptual framework that included ten principles for
collecting and handling health data from wearables. The principles
highlight the importance of transparency in communicating study
purpose, the technology used to collect data, data collection
procedures, and ownership of collected data.

Paul and Irvine (2014) tested four wearable devices and found
that two had policies allowing them to collect information about the
user from other sources. Other issues in privacy policies were related
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to data ownership, right to privacy of data, and whether device
manufacturers can use collected data for commercial purposes. In a
study that examined privacy concerns for wrist-mounted devices,
participants were concerned about the Global Positioning System
(GPS) sensor (Motti and Caine, 2015). Additionally, participants
were generally concerned about these devices collecting information
about them from a social network, the inability to recall and delete
collected data, and having organizations or the government access
the data without their awareness and consent. Fitbit’s approach of
using social networks, such as Facebook, to log in can lead to
concerns on data breaches or misuse of user profile data (Orlosky
et al., 2019). To protect the subject’s privacy when publishing data,
several techniques are often used such as anonymization,
deidentification, and pseudonymization.

Data anonymization can be defined as an irreversible removal
of the link between a subject and his/her record data (Kushida
et al., 2012). This requires an a priori decision by researchers
whether there would be any need in the future to link data to
subjects, such as if there might be data removal requests when a
subject opts out of a study. A less stringent technique is data de-
identification, which is the removal or manipulation of direct and
indirect identifiers such that reestablishing a link between a
subject and his/her data would require a key that can be used
to reverse the de-identification process (Garfinkel, 2015). De-
identification can be achieved by replacing identifiers with
pseudonyms or codes, or pseudonymization (Ren et al., 2021).
For example, Kallio et al. (2020) assigned pseudonymization
codes to participants that were used to log in and provide
ratings of IEQ. Another study generated an ID for each
participant using a cryptographic secure hash algorithm (SHA-
1) using father and mother initials and months of birth (Bluyssen
et al., 2016).

A complementary procedure that can be considered for certain
data types from wearables is generalization, which transforms
absolute data to ranges or categories. For example, age 30 can be
transformed to age 25–35. Another example is location

obfuscation, which is to deliberately reduce the precision of
the position info. Like a circular area instead of exact
geographical coordinates (Liu et al., 2018).

3 EVALUATING ACCESSIBILITY OF HPI
DATA

The previous section highlighted four main HPIs that were
collected in prior studies using wearables including μEMAs of
comfort ratings, sleep quality, heart rate, and stress response. To
ensure success in a research study that uses wearables, researchers
will likely need to examine several devices to select a device that
fits the needs of the study. Device selection criteria may include
data accessibility, types of data generated, accuracy and validation
for the population of interest, sampling frequency, as well as
system integration, and scalability. Other criteria that can be
considered when selecting a wearable device are device reliability
over time, device malfunction, firmware updates, and the use of
proprietary algorithms (de Zambotti et al., 2019).

Arguably, a critical requirement for considering the use of a
wearable device in a research study is data accessibility, which can
be particularly challenging from consumer-grade devices that are
typically intended for general tracking. Different devices may
offer different access options that may require further effort or
affect data resolution. Generally, previous IEQ studies that used
wearables did not report device selection process and how data
accessibility was verified prior to start of study. While most
manufacturers clearly state data access options, some may
require technical implementations such as the use of
authentication (i.e., OAuth) and/or user/key management, and
some may have reliability issues such as dropped data points.

Several wearable devices were used in previous studies, as
shown in Table 1. Out of these devices, Fitbit Versa allowed for
administering μEMAs. While this model is currently obsolete, its
successor Fitbit Versa 2 can also be used with the Cozie clockface

FIGURE 1 | A diagram showing four main data types that are needed for a holistic evaluation of IEQ. Bold italic font denotes HPIs that can be collected from
wearables.

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 7872896

Abboushi et al. Wearables in IEQ Studies

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


to prompt μEMAs (Jayathissa et al., 2020a). Additionally, Fitbit
Versa 2 collects sleep quality, heart rate, physical activity, and the
companion phone application calculates metrics such as heart
rate variability, resting heart rate, and breathing rate. The
advantages and drawbacks of other devices that we reviewed
are shown in Table 2. Some devices did not collect heart rate, had
a short battery life that makes it inadequate for IEQ field studies,
or device cost was high limiting the ability to deploy it to a large
number of participants in a field IEQ study. Research-grade
devices tended to require a wired connection via to retrieve
data which make them more appropriate for laboratory studies.

The Fitbit Versa 2 collects the needed HPIs and may be
appropriate for IEQ field studies. To explore data access
options, accessible data types, and identify potential issues that

might be encountered when using this device, a preliminary
assessment of data accessibility from this device was
conducted. Data accessibility was the only topic being
explored; this study did not investigate any hypotheses related
to the collected data.

3.1 Evaluation Method
Three Fitbit Versa 2 devices (Version 35.72.1.15; 9/2021) were
acquired and worn by three of the authors for 2 weeks. During
this period, these three participants volunteered to complete daily
μEMAs using the Cozie clockface which included default
questions about participant’s overall comfort, thermal comfort,
satisfaction with lighting, noise, and location (indoor/outdoor).
Figure 2 shows example questions from the Cozie question

TABLE 2 | A summary of wearable devices that were considered for the data-accessibility investigation.

Device Measured quantities Calculated metrics Communication Battery
life

Notes

Fitbit Versa 2 Device orientation, heart rate,
oxygen saturation, skin
temperature variation

Sleep quality parameters (sleep
onset, sleep offset, duration, duration
of sleep phases), physical activity, off-
wrist detection, breathing rate, heart
rate variability, resting heart rate

Bluetooth 6 days This model can be used to
administer EMAs using Cozie
clockface. A software development
environment is available. Compatible
with multiple smartphones

Fitbit Sense Device orientation, heart rate,
oxygen saturation, skin
temperature variation, GPS

In addition to those measured by
Fitbit Versa 2, this model assesses
heart rhythm and electrodermal
activity

Bluetooth 6 days A software development
environment is available. Compatible
with multiple smartphones

Apple Watch
SE (GPS +
Cellular)

Heart rate, GPS, device
orientation, oxygen saturation

Sleep quality parameters, physical
activity, heart rate variability, irregular
heart rhythm detection

Bluetooth, Wi-Fi, cellular 18 h Software development environment

ActiGraph
wGT3X-BT

Ambient lighting, off-wrist
detection

Sleep quality parameters, physical
activity

USB connection might
be needed to download
data

25 days Research-grade device; can be worn
on wrist; waist, ankle, or thigh

Actiwatch
Spectrum PRO

Ambient lighting Sleep quality parameters, physical
activity, off-wrist detection

Data only accessible via
USB cable

50 days Research-grade device; allows for
collecting subjective numerical
ratings

Fatigue
Science
Readiband

Body motion Sleep quality parameters (92%
accuracy), fatigue, alertness score

Bluetooth 30 days Wireless data syncing feature in field
settings. Does not collect other HPIs

Polar H10 Electrocardiogram - Bluetooth 400 h Does not collect other HPIs. Chest-
worn sensor may not be practical in
field studies

FIGURE 2 | An example of questions used in the data accessibility evaluation.
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library as presented on the device (Jayathissa et al., 2020b). Each
question could be answered by selecting one of two or three
responses that were presented on the watch screen. The three
authors that participated were working remotely during the 2-
week test period. Each participant received a Fitbit Versa 2 a few
weeks before the test period to become familiar with the device.
The characteristics of the device are shown in Table 2. During the
testing period, they were asked to complete as many μEMAs as
possible while their phones were connected to internet via Wi-Fi
or a cellular service.

Two aspects of data accessibility were evaluated: checking
μEMAs for missing responses, and verifying the resolution of
sleep, heart rate, and physical activity data. μEMA responses from
each participant were assigned unique consecutive numbers, i.e.,
count. A missing count number indicates a missing response that
was inaccessible. Fitbit data resolution was checked by directly
querying the data using device API or web API (Fitbit, 2021).

All data from the three Fitbit devices were collected in a
JavaScript Object Notation (JSON) file format and forwarded to a
serverless function hosted on Azure cloud computing services.
The serverless functions were Python scripts that checked
incoming data for correct source, structure, and organization.
Incoming data were passed to an Azure CosmoDB database,
which could be accessed by the authors. The data were saved in a
nested JSON format where higher levels have generic and wide-
reaching descriptors while low levels are composed of specific and
limited descriptors. The descriptors were formatted in a key-value
paradigm structure (i.e., participant-name). The overall data
collection structure allowed for each data source to collect
their data independently and forward it to the same cloud service.

3.2 Preliminary Results
The three participants completed 50, 56, and 57 μEMAs. The
responses consisted of a numerical value for each response and
did not require any post processing as shown in the example in
Figure 3 and in Jayathissa et al. (2020b). The percentage of
accessible EMAs were 88, 89, and 96.5%, respectively. In general,
out of the 163 μEMAs that were completed using the Cozie

clockface, 149 (91.4%) were accessible. This led to the conclusion
that some of the μEMAs were being dropped. This issue could be
due to the Fitbit not syncing the responses with the mobile device
causing the dropped responses. One potential solution is to send
reminders to participants asking them to maintain a connection
between the wearable and mobile phone to regularly sync their
responses. Given that responses were stored locally on the device
then uploaded to the server, it is unlikely that the missing
responses are due to the use of Wi-Fi versus cellular internet
connection. GPS data were not accessible if a participant did not
carry their phone at the time of completing a µEMA, this is
because the Fitbit Versa 2 did not have a dedicated GPS sensor
and used GPS data from the connected phone.

The Fitbit Versa 2 provided sleep quality, heart rate, and
physical activity data in their respective metrics and did not
require any post processing (Fitbit, 2021). We found that the
resolution of sleep and heart rate data was limited when accessed
directly using the device API, compared to the web API. Using the
device API, sleep data were binary indicating whether a person
was asleep or not at the time of the query. Similarly, heart rate
data were only for one point in time. TheWeb API provided sleep
duration and time spent in each sleep stage in minutes as shown
in Figure 3. Heart rate time-series data were collected at about 10-
s intervals. Physical activity data from the Web API were daily
summaries as well as minutes spent in each activity level
(sedentary, light activity, fairly active, and very active).
Physical activity data could not be accessed using the device
API. Other metrics that were displayed in the Fitbit app like heart
rate variability and breathing rate were not accessible from either
access option.

Due to the nature of internet-capable devices and services,
their software is subject to being updated partway through an
experiment (Woolley et al., 2019; Chinoy et al., 2021; de Zambotti
et al., 2019). This can cause unnoticeable to disruptive changes
that can affect the consistency of measurements. This issue was
not evaluated and warrants further investigation. The evaluation
of data accessibility and resolution that we conducted focused on
understanding device capability. A case study evaluation of

FIGURE 3 | Example μEMA responses and ancillary data from the Cozie clockface (A), and sleep quality data (B).
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wearables for a specific use case was outside the scope of the
current investigation but important to explore in future studies.

4 RECOMMENDATIONS

The recommendations in this section are based on the literature
review (Section 2) as well as the preliminary device assessment
(Section 3). It is important to note that the recommendations are
intended to be a starting point for researchers and are expected to
be informed by specific research questions, research setting(s),
study design, participant demographics, wearable device
capabilities, along with other practical considerations for field
studies.

4.1 Data Types That Should Be Collected
To help evaluate effects of IEQ factors on occupant well-being, we
recommend collecting subjective ratings of comfort via μEMAs,
sleep quality parameters (sleep onset, sleep offset, sleep duration,
and sleep efficiency), heart rate, and stress response as indicated
by heart rate variability or skin conductance. Collecting these
HPIs can help understand the mechanisms by which IEQ factors
affect well-being. For example, Razjouyan et al. (2020) found
indirect effects of relative humidity on sleep quality mediated by
stress responses. It is important to note that each one of these
HPIs can be influenced by several IEQ factors (Table 1).
Therefore, we strongly recommend recording all related IEQ
factors. This can help better quantify direct and indirect effects as
well as interactions between different IEQ factors.

4.2 Administering μEMAs on Wearables
Administering μEMAs on comfort ratings on a smartwatch is
recommended because it can help improve completion and
compliance rates while reducing perceived distraction,
compared to EMAs administered on a smartphone (Intille
et al., 2016). It is important to note that standardized
questionnaires such as Karolinska Sleepiness Scale will need to
be adapted and validated for use on a wearable device. The
frequency and timing of μEMA prompt are dependent on the
research questions, design, and setting. For example, a study
examining changes in reported comfort in a research setting with
high temporal variability in IEQ conditions may have a higher
number of prompts compared to another study conducted in a
research setting with fairly stable conditions (Clements et al.,
2019). It is important to note that there is no agreed-upon
maximum number of μEMA prompts acceptable. Generally,
we recommend up to five prompts a day to reduce
participation burden (Burke et al., 2017), which may affect
wearable device compliance over the course of a study
(Mundnich et al., 2020).

4.3 Localized IEQ Measurements Using
Wearables
Wearable sensors can be used to capture localized IEQ
measurements. The location of the wearable sensor should be
carefully considered as it may affect the performance of the device

and usability of collected data. For example, to address the non-
image-forming effects of light, vertical illuminance and spectrum
are best measured using a wearable sensor placed close to the eye
(Aarts et al., 2017; Peeters et al., 2021). Wearable light sensors
should be placed on the front of the participant’s torso within
approximately 20 cm from the chin (Cain et al., 2020), in a
location that will not be blocked by clothing or hair. We do
not recommend wrist-worn devices for measuring light exposure
as they can be easily covered by clothing and may not provide an
accurate representation of light at the eye of the occupant
(Figueiro et al., 2013).

4.4 Techniques to Protect Participant’s
Privacy
When wearables are used in an IEQ study, it is important to
develop a strategy and implement techniques to protect the
privacy of participants. A pseudonymization technique can be
used for its flexibility, as used by Bluyssen et al. (2016). For
example, it allows researchers to identify a participant to delete all
or part of their data after data collection had ended. Another
technique that is particularly useful for GPS data is generalization,
which can help identify a participant’s general location, e.g., to
determine if a participant was in or out of the office (Liu et al.,
2018). These two techniques can facilitate recruitment by
alleviating privacy concerns and reducing the ability to re-
identify participants from IEQ sensors and wearable data.

4.5 Evaluating Data Accessibility From a
Wearable Device
While Table 2 shows several criteria that can be considered when
selecting a wearable device, our assessment (Section 3) was
limited to exploring data accessibility. Different platforms may
have one or several options for accessing the data. If a system
offers multiple data access options, it should be considered that
the accuracy and precision of the data may differ depending on
the access method. Some examples of the different ways data can
be accessed include raw sensor values, web API, data forwards,
bulk FTP downloads, web dashboards, and csv file download.
Researchers and investigators should be aware that data points
may be dropped or go missing throughout an experiment. For
example, a device that is reliant on a smartphone connection for
internet access may be susceptible to dropping data at multiple
points in the chain of communicating data points to the
investigator.

To verify data accessibility, we recommend first exploring
the various access options the device provides. Manufacturer’s
documentation and previous studies that used the same device
can be a good place to start. While a literature review can aid
in determining the specifications of a system, real-world
implementations can reveal unforeseen issues. Therefore,
we also recommend testing sample devices prior to the
start of a study. This testing can help assess data
accessibility by determining whether all data types were
accessible at the desired resolution, and whether any data
points were lost.
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5 CONCLUSION

HPIs that were collected using wearables and are relevant to IEQ
factors include comfort ratings, sleep quality parameters, heart
rate, and stress response. Our review showed that each one of
these HPIs can be affected by multiple IEQ factors. Hence, ideally,
all relevant IEQ factors should be monitored to better quantify
their direct and indirect effects as well as any potential
interactions. Similarly, monitoring multiple HPIs is highly
advantageous to help identify the mechanisms by which IEQ
factors affect different HPIs. For example, to determine whether
effects of relative humidity on sleep quality are mediated by stress
response as explored by Razjouyan et al. (2020).

The evaluation of data accessibility from the Fitbit Versa 2
with Cozie clockface proved helpful as we found that some μEMA
data were lost and that there were differences in data resolution
depending on how the data were collected. Conducting a similar
evaluation is recommended prior to research or operational
deployment to identify potential issues and, if possible,
mitigate them (e.g., choose a data collection option that
provides necessary resolution) or develop methods for limiting
their impact on data usage (e.g., collect more than the minimum
data required for analysis to improve resiliency against data loss).
Based on the results of this work, future IEQ research studies that
utilize wearables are encouraged to report and discuss device
selection process and data accessibility challenges, and propose
best practices for human subject recruitment, human subject
engagement and compensation, study duration, and data
analysis.

If data accessibility and other challenges can be overcome, the
use of wearables might be extended beyond research studies to
use in building system control. For example, subjective alertness
response data might be used in control strategies that adjust light
color and intensity to improve alertness. Such closed-loop
systems could provide continuous refinements that are

customized to the actual building occupants, rather than based
on recommended practices or estimates of “average” occupant
needs. As a result, these systems might deliver significant
improvements to occupant well-being and reductions in
energy use as compared to standard practices.
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NOMENCLATURE

API application programming interface

FTP file transfer protocol

GPS global positioning system

HPIs health performance indicators

IEQ indoor environmental quality

EMAs ecological momentary assessments

JSON javascript object notation

LEED leadership in energy and environmental design

PM particulate matter

SBS sick building symptoms

VOCs volatile organic compounds
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